Defining parameters
| Level: | \( N \) | = | \( 1323 = 3^{3} \cdot 7^{2} \) |
| Weight: | \( k \) | = | \( 4 \) |
| Nonzero newspaces: | \( 32 \) | ||
| Sturm bound: | \(508032\) | ||
| Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1323))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 192312 | 145224 | 47088 |
| Cusp forms | 188712 | 143672 | 45040 |
| Eisenstein series | 3600 | 1552 | 2048 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1323))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1323))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(1323)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(189))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(441))\)\(^{\oplus 2}\)