Properties

Label 1323.4
Level 1323
Weight 4
Dimension 143672
Nonzero newspaces 32
Sturm bound 508032
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 32 \)
Sturm bound: \(508032\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1323))\).

Total New Old
Modular forms 192312 145224 47088
Cusp forms 188712 143672 45040
Eisenstein series 3600 1552 2048

Trace form

\( 143672 q - 123 q^{2} - 186 q^{3} - 199 q^{4} - 99 q^{5} - 198 q^{6} - 252 q^{7} - 357 q^{8} - 234 q^{9} - 255 q^{10} + 3 q^{11} - 33 q^{12} + 37 q^{13} + 120 q^{14} - 360 q^{15} - 415 q^{16} - 813 q^{17}+ \cdots - 1818 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1323))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1323.4.a \(\chi_{1323}(1, \cdot)\) 1323.4.a.a 1 1
1323.4.a.b 1
1323.4.a.c 1
1323.4.a.d 1
1323.4.a.e 1
1323.4.a.f 1
1323.4.a.g 1
1323.4.a.h 1
1323.4.a.i 1
1323.4.a.j 1
1323.4.a.k 1
1323.4.a.l 1
1323.4.a.m 1
1323.4.a.n 1
1323.4.a.o 2
1323.4.a.p 2
1323.4.a.q 2
1323.4.a.r 2
1323.4.a.s 2
1323.4.a.t 2
1323.4.a.u 2
1323.4.a.v 2
1323.4.a.w 2
1323.4.a.x 2
1323.4.a.y 3
1323.4.a.z 3
1323.4.a.ba 4
1323.4.a.bb 6
1323.4.a.bc 6
1323.4.a.bd 6
1323.4.a.be 6
1323.4.a.bf 6
1323.4.a.bg 6
1323.4.a.bh 7
1323.4.a.bi 7
1323.4.a.bj 7
1323.4.a.bk 7
1323.4.a.bl 8
1323.4.a.bm 8
1323.4.a.bn 8
1323.4.a.bo 8
1323.4.a.bp 12
1323.4.a.bq 12
1323.4.c \(\chi_{1323}(1322, \cdot)\) n/a 160 1
1323.4.e \(\chi_{1323}(1108, \cdot)\) n/a 320 2
1323.4.f \(\chi_{1323}(442, \cdot)\) n/a 236 2
1323.4.g \(\chi_{1323}(361, \cdot)\) n/a 232 2
1323.4.h \(\chi_{1323}(226, \cdot)\) n/a 232 2
1323.4.i \(\chi_{1323}(521, \cdot)\) n/a 232 2
1323.4.o \(\chi_{1323}(440, \cdot)\) n/a 232 2
1323.4.p \(\chi_{1323}(80, \cdot)\) n/a 320 2
1323.4.s \(\chi_{1323}(656, \cdot)\) n/a 232 2
1323.4.u \(\chi_{1323}(190, \cdot)\) n/a 1344 6
1323.4.v \(\chi_{1323}(67, \cdot)\) n/a 2136 6
1323.4.w \(\chi_{1323}(148, \cdot)\) n/a 2184 6
1323.4.x \(\chi_{1323}(214, \cdot)\) n/a 2136 6
1323.4.z \(\chi_{1323}(188, \cdot)\) n/a 1344 6
1323.4.be \(\chi_{1323}(68, \cdot)\) n/a 2136 6
1323.4.bh \(\chi_{1323}(362, \cdot)\) n/a 2136 6
1323.4.bi \(\chi_{1323}(146, \cdot)\) n/a 2136 6
1323.4.bk \(\chi_{1323}(37, \cdot)\) n/a 1992 12
1323.4.bl \(\chi_{1323}(100, \cdot)\) n/a 1992 12
1323.4.bm \(\chi_{1323}(64, \cdot)\) n/a 1992 12
1323.4.bn \(\chi_{1323}(109, \cdot)\) n/a 2688 12
1323.4.bp \(\chi_{1323}(17, \cdot)\) n/a 1992 12
1323.4.bs \(\chi_{1323}(26, \cdot)\) n/a 2688 12
1323.4.bt \(\chi_{1323}(62, \cdot)\) n/a 1992 12
1323.4.bz \(\chi_{1323}(143, \cdot)\) n/a 1992 12
1323.4.ca \(\chi_{1323}(25, \cdot)\) n/a 18072 36
1323.4.cb \(\chi_{1323}(22, \cdot)\) n/a 18072 36
1323.4.cc \(\chi_{1323}(4, \cdot)\) n/a 18072 36
1323.4.ce \(\chi_{1323}(20, \cdot)\) n/a 18072 36
1323.4.cf \(\chi_{1323}(47, \cdot)\) n/a 18072 36
1323.4.ci \(\chi_{1323}(5, \cdot)\) n/a 18072 36

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1323))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1323)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(189))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(441))\)\(^{\oplus 2}\)