Properties

Label 1323.2.s.d.656.22
Level $1323$
Weight $2$
Character 1323.656
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(656,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.656"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 656.22
Character \(\chi\) \(=\) 1323.656
Dual form 1323.2.s.d.962.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.80506 - 1.04215i) q^{2} +(1.17216 - 2.03024i) q^{4} +3.30465 q^{5} -0.717672i q^{8} +(5.96509 - 3.44395i) q^{10} +2.66137i q^{11} +(2.11249 - 1.21964i) q^{13} +(1.59640 + 2.76504i) q^{16} +(-3.59017 - 6.21836i) q^{17} +(4.24746 + 2.45227i) q^{19} +(3.87358 - 6.70924i) q^{20} +(2.77356 + 4.80394i) q^{22} +4.99031i q^{23} +5.92072 q^{25} +(2.54211 - 4.40306i) q^{26} +(-5.50701 - 3.17947i) q^{29} +(-2.30833 - 1.33271i) q^{31} +(7.00624 + 4.04505i) q^{32} +(-12.9609 - 7.48301i) q^{34} +(0.844787 - 1.46321i) q^{37} +10.2226 q^{38} -2.37166i q^{40} +(-0.553137 - 0.958062i) q^{41} +(2.93481 - 5.08323i) q^{43} +(5.40324 + 3.11956i) q^{44} +(5.20066 + 9.00781i) q^{46} +(-2.44098 - 4.22790i) q^{47} +(10.6873 - 6.17029i) q^{50} -5.71848i q^{52} +(-8.94013 + 5.16159i) q^{53} +8.79491i q^{55} -13.2540 q^{58} +(2.56820 - 4.44826i) q^{59} +(-4.44613 + 2.56698i) q^{61} -5.55556 q^{62} +10.4766 q^{64} +(6.98103 - 4.03050i) q^{65} +(-4.16544 + 7.21476i) q^{67} -16.8330 q^{68} +2.07026i q^{71} +(6.94112 - 4.00746i) q^{73} -3.52159i q^{74} +(9.95741 - 5.74891i) q^{76} +(-2.50501 - 4.33881i) q^{79} +(5.27554 + 9.13750i) q^{80} +(-1.99689 - 1.15291i) q^{82} +(-1.04482 + 1.80968i) q^{83} +(-11.8643 - 20.5495i) q^{85} -12.2341i q^{86} +1.90999 q^{88} +(0.541267 - 0.937501i) q^{89} +(10.1315 + 5.84945i) q^{92} +(-8.81223 - 5.08774i) q^{94} +(14.0364 + 8.10390i) q^{95} +(-9.47203 - 5.46868i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{4} - 24 q^{16} + 48 q^{25} + 120 q^{32} - 96 q^{44} - 48 q^{50} - 48 q^{53} - 48 q^{64} + 120 q^{65} - 24 q^{79} - 24 q^{85} + 144 q^{92} + 96 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80506 1.04215i 1.27637 0.736913i 0.300191 0.953879i \(-0.402950\pi\)
0.976179 + 0.216966i \(0.0696162\pi\)
\(3\) 0 0
\(4\) 1.17216 2.03024i 0.586081 1.01512i
\(5\) 3.30465 1.47788 0.738942 0.673769i \(-0.235326\pi\)
0.738942 + 0.673769i \(0.235326\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0.717672i 0.253735i
\(9\) 0 0
\(10\) 5.96509 3.44395i 1.88633 1.08907i
\(11\) 2.66137i 0.802434i 0.915983 + 0.401217i \(0.131413\pi\)
−0.915983 + 0.401217i \(0.868587\pi\)
\(12\) 0 0
\(13\) 2.11249 1.21964i 0.585899 0.338269i −0.177576 0.984107i \(-0.556825\pi\)
0.763474 + 0.645839i \(0.223492\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.59640 + 2.76504i 0.399100 + 0.691261i
\(17\) −3.59017 6.21836i −0.870744 1.50817i −0.861228 0.508219i \(-0.830304\pi\)
−0.00951656 0.999955i \(-0.503029\pi\)
\(18\) 0 0
\(19\) 4.24746 + 2.45227i 0.974433 + 0.562589i 0.900585 0.434680i \(-0.143139\pi\)
0.0738485 + 0.997269i \(0.476472\pi\)
\(20\) 3.87358 6.70924i 0.866160 1.50023i
\(21\) 0 0
\(22\) 2.77356 + 4.80394i 0.591324 + 1.02420i
\(23\) 4.99031i 1.04055i 0.853998 + 0.520276i \(0.174171\pi\)
−0.853998 + 0.520276i \(0.825829\pi\)
\(24\) 0 0
\(25\) 5.92072 1.18414
\(26\) 2.54211 4.40306i 0.498549 0.863512i
\(27\) 0 0
\(28\) 0 0
\(29\) −5.50701 3.17947i −1.02263 0.590413i −0.107762 0.994177i \(-0.534368\pi\)
−0.914863 + 0.403764i \(0.867702\pi\)
\(30\) 0 0
\(31\) −2.30833 1.33271i −0.414588 0.239362i 0.278171 0.960531i \(-0.410272\pi\)
−0.692759 + 0.721169i \(0.743605\pi\)
\(32\) 7.00624 + 4.04505i 1.23854 + 0.715071i
\(33\) 0 0
\(34\) −12.9609 7.48301i −2.22278 1.28333i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.844787 1.46321i 0.138882 0.240551i −0.788192 0.615430i \(-0.788982\pi\)
0.927074 + 0.374879i \(0.122316\pi\)
\(38\) 10.2226 1.65832
\(39\) 0 0
\(40\) 2.37166i 0.374992i
\(41\) −0.553137 0.958062i −0.0863855 0.149624i 0.819595 0.572943i \(-0.194198\pi\)
−0.905981 + 0.423319i \(0.860865\pi\)
\(42\) 0 0
\(43\) 2.93481 5.08323i 0.447554 0.775186i −0.550672 0.834721i \(-0.685629\pi\)
0.998226 + 0.0595356i \(0.0189620\pi\)
\(44\) 5.40324 + 3.11956i 0.814568 + 0.470291i
\(45\) 0 0
\(46\) 5.20066 + 9.00781i 0.766796 + 1.32813i
\(47\) −2.44098 4.22790i −0.356053 0.616703i 0.631244 0.775584i \(-0.282545\pi\)
−0.987298 + 0.158881i \(0.949211\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 10.6873 6.17029i 1.51141 0.872610i
\(51\) 0 0
\(52\) 5.71848i 0.793011i
\(53\) −8.94013 + 5.16159i −1.22802 + 0.708999i −0.966616 0.256230i \(-0.917519\pi\)
−0.261406 + 0.965229i \(0.584186\pi\)
\(54\) 0 0
\(55\) 8.79491i 1.18591i
\(56\) 0 0
\(57\) 0 0
\(58\) −13.2540 −1.74033
\(59\) 2.56820 4.44826i 0.334351 0.579114i −0.649009 0.760781i \(-0.724816\pi\)
0.983360 + 0.181667i \(0.0581494\pi\)
\(60\) 0 0
\(61\) −4.44613 + 2.56698i −0.569269 + 0.328668i −0.756857 0.653580i \(-0.773266\pi\)
0.187588 + 0.982248i \(0.439933\pi\)
\(62\) −5.55556 −0.705556
\(63\) 0 0
\(64\) 10.4766 1.30958
\(65\) 6.98103 4.03050i 0.865891 0.499922i
\(66\) 0 0
\(67\) −4.16544 + 7.21476i −0.508890 + 0.881423i 0.491057 + 0.871127i \(0.336611\pi\)
−0.999947 + 0.0102956i \(0.996723\pi\)
\(68\) −16.8330 −2.04131
\(69\) 0 0
\(70\) 0 0
\(71\) 2.07026i 0.245695i 0.992426 + 0.122848i \(0.0392026\pi\)
−0.992426 + 0.122848i \(0.960797\pi\)
\(72\) 0 0
\(73\) 6.94112 4.00746i 0.812396 0.469037i −0.0353910 0.999374i \(-0.511268\pi\)
0.847787 + 0.530336i \(0.177934\pi\)
\(74\) 3.52159i 0.409376i
\(75\) 0 0
\(76\) 9.95741 5.74891i 1.14219 0.659445i
\(77\) 0 0
\(78\) 0 0
\(79\) −2.50501 4.33881i −0.281836 0.488155i 0.690001 0.723809i \(-0.257610\pi\)
−0.971837 + 0.235654i \(0.924277\pi\)
\(80\) 5.27554 + 9.13750i 0.589823 + 1.02160i
\(81\) 0 0
\(82\) −1.99689 1.15291i −0.220520 0.127317i
\(83\) −1.04482 + 1.80968i −0.114684 + 0.198638i −0.917653 0.397382i \(-0.869919\pi\)
0.802970 + 0.596020i \(0.203252\pi\)
\(84\) 0 0
\(85\) −11.8643 20.5495i −1.28686 2.22891i
\(86\) 12.2341i 1.31923i
\(87\) 0 0
\(88\) 1.90999 0.203606
\(89\) 0.541267 0.937501i 0.0573741 0.0993749i −0.835912 0.548864i \(-0.815061\pi\)
0.893286 + 0.449489i \(0.148394\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 10.1315 + 5.84945i 1.05629 + 0.609847i
\(93\) 0 0
\(94\) −8.81223 5.08774i −0.908912 0.524761i
\(95\) 14.0364 + 8.10390i 1.44010 + 0.831442i
\(96\) 0 0
\(97\) −9.47203 5.46868i −0.961739 0.555260i −0.0650310 0.997883i \(-0.520715\pi\)
−0.896708 + 0.442623i \(0.854048\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 6.94004 12.0205i 0.694004 1.20205i
\(101\) −0.527915 −0.0525295 −0.0262647 0.999655i \(-0.508361\pi\)
−0.0262647 + 0.999655i \(0.508361\pi\)
\(102\) 0 0
\(103\) 0.783733i 0.0772235i 0.999254 + 0.0386118i \(0.0122936\pi\)
−0.999254 + 0.0386118i \(0.987706\pi\)
\(104\) −0.875305 1.51607i −0.0858308 0.148663i
\(105\) 0 0
\(106\) −10.7583 + 18.6340i −1.04494 + 1.80989i
\(107\) −4.63398 2.67543i −0.447984 0.258644i 0.258994 0.965879i \(-0.416609\pi\)
−0.706978 + 0.707235i \(0.749942\pi\)
\(108\) 0 0
\(109\) −2.98261 5.16603i −0.285682 0.494816i 0.687092 0.726570i \(-0.258887\pi\)
−0.972774 + 0.231754i \(0.925553\pi\)
\(110\) 9.16563 + 15.8753i 0.873909 + 1.51365i
\(111\) 0 0
\(112\) 0 0
\(113\) −10.0024 + 5.77487i −0.940944 + 0.543254i −0.890256 0.455461i \(-0.849475\pi\)
−0.0506876 + 0.998715i \(0.516141\pi\)
\(114\) 0 0
\(115\) 16.4912i 1.53782i
\(116\) −12.9102 + 7.45371i −1.19868 + 0.692059i
\(117\) 0 0
\(118\) 10.7058i 0.985551i
\(119\) 0 0
\(120\) 0 0
\(121\) 3.91709 0.356099
\(122\) −5.35036 + 9.26709i −0.484399 + 0.839003i
\(123\) 0 0
\(124\) −5.41146 + 3.12431i −0.485963 + 0.280571i
\(125\) 3.04265 0.272143
\(126\) 0 0
\(127\) −19.0954 −1.69444 −0.847221 0.531241i \(-0.821726\pi\)
−0.847221 + 0.531241i \(0.821726\pi\)
\(128\) 4.89849 2.82815i 0.432970 0.249975i
\(129\) 0 0
\(130\) 8.40079 14.5506i 0.736798 1.27617i
\(131\) 4.15126 0.362697 0.181349 0.983419i \(-0.441954\pi\)
0.181349 + 0.983419i \(0.441954\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 17.3641i 1.50003i
\(135\) 0 0
\(136\) −4.46274 + 2.57657i −0.382677 + 0.220939i
\(137\) 6.29419i 0.537749i −0.963175 0.268874i \(-0.913348\pi\)
0.963175 0.268874i \(-0.0866516\pi\)
\(138\) 0 0
\(139\) 1.32575 0.765423i 0.112449 0.0649223i −0.442721 0.896660i \(-0.645987\pi\)
0.555170 + 0.831737i \(0.312653\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.15753 + 3.73695i 0.181056 + 0.313598i
\(143\) 3.24593 + 5.62212i 0.271438 + 0.470145i
\(144\) 0 0
\(145\) −18.1987 10.5070i −1.51132 0.872563i
\(146\) 8.35276 14.4674i 0.691279 1.19733i
\(147\) 0 0
\(148\) −1.98045 3.43025i −0.162792 0.281965i
\(149\) 5.34815i 0.438137i 0.975709 + 0.219069i \(0.0703019\pi\)
−0.975709 + 0.219069i \(0.929698\pi\)
\(150\) 0 0
\(151\) 11.4877 0.934854 0.467427 0.884032i \(-0.345181\pi\)
0.467427 + 0.884032i \(0.345181\pi\)
\(152\) 1.75993 3.04828i 0.142749 0.247248i
\(153\) 0 0
\(154\) 0 0
\(155\) −7.62821 4.40415i −0.612713 0.353750i
\(156\) 0 0
\(157\) −5.77243 3.33271i −0.460690 0.265979i 0.251644 0.967820i \(-0.419029\pi\)
−0.712334 + 0.701840i \(0.752362\pi\)
\(158\) −9.04340 5.22121i −0.719454 0.415377i
\(159\) 0 0
\(160\) 23.1532 + 13.3675i 1.83042 + 1.05679i
\(161\) 0 0
\(162\) 0 0
\(163\) 11.5460 19.9983i 0.904356 1.56639i 0.0825775 0.996585i \(-0.473685\pi\)
0.821779 0.569807i \(-0.192982\pi\)
\(164\) −2.59346 −0.202516
\(165\) 0 0
\(166\) 4.35543i 0.338047i
\(167\) 7.95418 + 13.7770i 0.615513 + 1.06610i 0.990294 + 0.138986i \(0.0443844\pi\)
−0.374782 + 0.927113i \(0.622282\pi\)
\(168\) 0 0
\(169\) −3.52493 + 6.10536i −0.271149 + 0.469643i
\(170\) −42.8314 24.7287i −3.28502 1.89661i
\(171\) 0 0
\(172\) −6.88013 11.9167i −0.524605 0.908643i
\(173\) 9.33097 + 16.1617i 0.709421 + 1.22875i 0.965072 + 0.261984i \(0.0843767\pi\)
−0.255651 + 0.966769i \(0.582290\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −7.35882 + 4.24861i −0.554692 + 0.320251i
\(177\) 0 0
\(178\) 2.25633i 0.169119i
\(179\) 19.0792 11.0154i 1.42604 0.823326i 0.429237 0.903192i \(-0.358782\pi\)
0.996806 + 0.0798653i \(0.0254490\pi\)
\(180\) 0 0
\(181\) 17.6986i 1.31552i 0.753226 + 0.657762i \(0.228497\pi\)
−0.753226 + 0.657762i \(0.771503\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3.58141 0.264025
\(185\) 2.79173 4.83541i 0.205252 0.355507i
\(186\) 0 0
\(187\) 16.5494 9.55479i 1.21021 0.698715i
\(188\) −11.4449 −0.834704
\(189\) 0 0
\(190\) 33.7820 2.45080
\(191\) 13.2711 7.66209i 0.960265 0.554409i 0.0640104 0.997949i \(-0.479611\pi\)
0.896255 + 0.443540i \(0.146278\pi\)
\(192\) 0 0
\(193\) −12.9333 + 22.4012i −0.930962 + 1.61247i −0.149280 + 0.988795i \(0.547696\pi\)
−0.781681 + 0.623678i \(0.785638\pi\)
\(194\) −22.7968 −1.63671
\(195\) 0 0
\(196\) 0 0
\(197\) 4.18301i 0.298027i −0.988835 0.149014i \(-0.952390\pi\)
0.988835 0.149014i \(-0.0476098\pi\)
\(198\) 0 0
\(199\) −19.0592 + 11.0038i −1.35107 + 0.780041i −0.988399 0.151876i \(-0.951468\pi\)
−0.362671 + 0.931917i \(0.618135\pi\)
\(200\) 4.24914i 0.300459i
\(201\) 0 0
\(202\) −0.952918 + 0.550168i −0.0670471 + 0.0387097i
\(203\) 0 0
\(204\) 0 0
\(205\) −1.82793 3.16606i −0.127668 0.221127i
\(206\) 0.816769 + 1.41469i 0.0569070 + 0.0985658i
\(207\) 0 0
\(208\) 6.74474 + 3.89408i 0.467664 + 0.270006i
\(209\) −6.52641 + 11.3041i −0.451441 + 0.781919i
\(210\) 0 0
\(211\) 12.2926 + 21.2914i 0.846257 + 1.46576i 0.884525 + 0.466493i \(0.154483\pi\)
−0.0382677 + 0.999268i \(0.512184\pi\)
\(212\) 24.2009i 1.66212i
\(213\) 0 0
\(214\) −11.1528 −0.762392
\(215\) 9.69851 16.7983i 0.661433 1.14564i
\(216\) 0 0
\(217\) 0 0
\(218\) −10.7676 6.21666i −0.729272 0.421045i
\(219\) 0 0
\(220\) 17.8558 + 10.3091i 1.20384 + 0.695036i
\(221\) −15.1684 8.75747i −1.02034 0.589091i
\(222\) 0 0
\(223\) −7.31908 4.22567i −0.490122 0.282972i 0.234503 0.972115i \(-0.424654\pi\)
−0.724625 + 0.689143i \(0.757987\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −12.0366 + 20.8480i −0.800662 + 1.38679i
\(227\) −5.82949 −0.386917 −0.193458 0.981108i \(-0.561970\pi\)
−0.193458 + 0.981108i \(0.561970\pi\)
\(228\) 0 0
\(229\) 4.79826i 0.317078i 0.987353 + 0.158539i \(0.0506783\pi\)
−0.987353 + 0.158539i \(0.949322\pi\)
\(230\) 17.1864 + 29.7677i 1.13324 + 1.96282i
\(231\) 0 0
\(232\) −2.28182 + 3.95223i −0.149809 + 0.259476i
\(233\) 19.9587 + 11.5232i 1.30754 + 0.754907i 0.981685 0.190513i \(-0.0610151\pi\)
0.325853 + 0.945420i \(0.394348\pi\)
\(234\) 0 0
\(235\) −8.06659 13.9717i −0.526206 0.911416i
\(236\) −6.02069 10.4281i −0.391914 0.678815i
\(237\) 0 0
\(238\) 0 0
\(239\) −5.91972 + 3.41775i −0.382915 + 0.221076i −0.679086 0.734059i \(-0.737624\pi\)
0.296171 + 0.955135i \(0.404290\pi\)
\(240\) 0 0
\(241\) 4.49308i 0.289424i 0.989474 + 0.144712i \(0.0462256\pi\)
−0.989474 + 0.144712i \(0.953774\pi\)
\(242\) 7.07058 4.08220i 0.454514 0.262414i
\(243\) 0 0
\(244\) 12.0356i 0.770503i
\(245\) 0 0
\(246\) 0 0
\(247\) 11.9636 0.761225
\(248\) −0.956451 + 1.65662i −0.0607347 + 0.105196i
\(249\) 0 0
\(250\) 5.49217 3.17091i 0.347355 0.200546i
\(251\) 0.467438 0.0295044 0.0147522 0.999891i \(-0.495304\pi\)
0.0147522 + 0.999891i \(0.495304\pi\)
\(252\) 0 0
\(253\) −13.2811 −0.834975
\(254\) −34.4683 + 19.9003i −2.16273 + 1.24866i
\(255\) 0 0
\(256\) −4.58192 + 7.93613i −0.286370 + 0.496008i
\(257\) −21.4865 −1.34029 −0.670146 0.742229i \(-0.733769\pi\)
−0.670146 + 0.742229i \(0.733769\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 18.8976i 1.17198i
\(261\) 0 0
\(262\) 7.49327 4.32624i 0.462936 0.267276i
\(263\) 11.0897i 0.683819i 0.939733 + 0.341909i \(0.111074\pi\)
−0.939733 + 0.341909i \(0.888926\pi\)
\(264\) 0 0
\(265\) −29.5440 + 17.0572i −1.81487 + 1.04782i
\(266\) 0 0
\(267\) 0 0
\(268\) 9.76514 + 16.9137i 0.596501 + 1.03317i
\(269\) −11.0288 19.1024i −0.672435 1.16469i −0.977212 0.212268i \(-0.931915\pi\)
0.304776 0.952424i \(-0.401418\pi\)
\(270\) 0 0
\(271\) 4.10874 + 2.37218i 0.249588 + 0.144100i 0.619576 0.784937i \(-0.287305\pi\)
−0.369988 + 0.929037i \(0.620638\pi\)
\(272\) 11.4627 19.8540i 0.695028 1.20382i
\(273\) 0 0
\(274\) −6.55950 11.3614i −0.396274 0.686366i
\(275\) 15.7572i 0.950198i
\(276\) 0 0
\(277\) −6.42658 −0.386136 −0.193068 0.981185i \(-0.561844\pi\)
−0.193068 + 0.981185i \(0.561844\pi\)
\(278\) 1.59537 2.76327i 0.0956842 0.165730i
\(279\) 0 0
\(280\) 0 0
\(281\) 17.0883 + 9.86595i 1.01940 + 0.588553i 0.913931 0.405869i \(-0.133031\pi\)
0.105473 + 0.994422i \(0.466364\pi\)
\(282\) 0 0
\(283\) −4.85087 2.80065i −0.288354 0.166481i 0.348845 0.937180i \(-0.386574\pi\)
−0.637199 + 0.770699i \(0.719907\pi\)
\(284\) 4.20314 + 2.42668i 0.249410 + 0.143997i
\(285\) 0 0
\(286\) 11.7182 + 6.76551i 0.692912 + 0.400053i
\(287\) 0 0
\(288\) 0 0
\(289\) −17.2787 + 29.9275i −1.01639 + 1.76044i
\(290\) −43.7997 −2.57201
\(291\) 0 0
\(292\) 18.7895i 1.09957i
\(293\) −15.0393 26.0488i −0.878603 1.52178i −0.852875 0.522115i \(-0.825143\pi\)
−0.0257278 0.999669i \(-0.508190\pi\)
\(294\) 0 0
\(295\) 8.48701 14.6999i 0.494133 0.855863i
\(296\) −1.05011 0.606281i −0.0610363 0.0352393i
\(297\) 0 0
\(298\) 5.57358 + 9.65373i 0.322869 + 0.559225i
\(299\) 6.08641 + 10.5420i 0.351986 + 0.609658i
\(300\) 0 0
\(301\) 0 0
\(302\) 20.7360 11.9719i 1.19322 0.688906i
\(303\) 0 0
\(304\) 15.6592i 0.898117i
\(305\) −14.6929 + 8.48296i −0.841314 + 0.485733i
\(306\) 0 0
\(307\) 23.4497i 1.33835i −0.743106 0.669173i \(-0.766648\pi\)
0.743106 0.669173i \(-0.233352\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −18.3592 −1.04273
\(311\) −8.35507 + 14.4714i −0.473773 + 0.820599i −0.999549 0.0300243i \(-0.990442\pi\)
0.525776 + 0.850623i \(0.323775\pi\)
\(312\) 0 0
\(313\) −12.8757 + 7.43377i −0.727776 + 0.420182i −0.817608 0.575775i \(-0.804700\pi\)
0.0898319 + 0.995957i \(0.471367\pi\)
\(314\) −13.8928 −0.784014
\(315\) 0 0
\(316\) −11.7451 −0.660715
\(317\) 1.96761 1.13600i 0.110512 0.0638040i −0.443725 0.896163i \(-0.646343\pi\)
0.554237 + 0.832359i \(0.313010\pi\)
\(318\) 0 0
\(319\) 8.46176 14.6562i 0.473768 0.820590i
\(320\) 34.6216 1.93541
\(321\) 0 0
\(322\) 0 0
\(323\) 35.2163i 1.95949i
\(324\) 0 0
\(325\) 12.5074 7.22117i 0.693788 0.400559i
\(326\) 48.1309i 2.66573i
\(327\) 0 0
\(328\) −0.687575 + 0.396971i −0.0379650 + 0.0219191i
\(329\) 0 0
\(330\) 0 0
\(331\) 5.97440 + 10.3480i 0.328383 + 0.568775i 0.982191 0.187885i \(-0.0601631\pi\)
−0.653808 + 0.756660i \(0.726830\pi\)
\(332\) 2.44939 + 4.24247i 0.134428 + 0.232836i
\(333\) 0 0
\(334\) 28.7155 + 16.5789i 1.57124 + 0.907158i
\(335\) −13.7653 + 23.8423i −0.752080 + 1.30264i
\(336\) 0 0
\(337\) 2.34636 + 4.06402i 0.127815 + 0.221381i 0.922830 0.385208i \(-0.125870\pi\)
−0.795015 + 0.606590i \(0.792537\pi\)
\(338\) 14.6941i 0.799251i
\(339\) 0 0
\(340\) −55.6273 −3.01681
\(341\) 3.54685 6.14332i 0.192073 0.332679i
\(342\) 0 0
\(343\) 0 0
\(344\) −3.64810 2.10623i −0.196692 0.113560i
\(345\) 0 0
\(346\) 33.6859 + 19.4486i 1.81097 + 1.04556i
\(347\) 6.40529 + 3.69809i 0.343854 + 0.198524i 0.661975 0.749526i \(-0.269719\pi\)
−0.318121 + 0.948050i \(0.603052\pi\)
\(348\) 0 0
\(349\) 18.0496 + 10.4209i 0.966171 + 0.557819i 0.898067 0.439859i \(-0.144972\pi\)
0.0681042 + 0.997678i \(0.478305\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −10.7654 + 18.6462i −0.573798 + 0.993847i
\(353\) 7.09907 0.377845 0.188923 0.981992i \(-0.439500\pi\)
0.188923 + 0.981992i \(0.439500\pi\)
\(354\) 0 0
\(355\) 6.84150i 0.363109i
\(356\) −1.26890 2.19780i −0.0672517 0.116483i
\(357\) 0 0
\(358\) 22.9593 39.7668i 1.21344 2.10174i
\(359\) 8.56701 + 4.94616i 0.452149 + 0.261049i 0.708737 0.705472i \(-0.249265\pi\)
−0.256588 + 0.966521i \(0.582598\pi\)
\(360\) 0 0
\(361\) 2.52726 + 4.37734i 0.133014 + 0.230386i
\(362\) 18.4446 + 31.9470i 0.969426 + 1.67910i
\(363\) 0 0
\(364\) 0 0
\(365\) 22.9380 13.2432i 1.20063 0.693183i
\(366\) 0 0
\(367\) 31.2140i 1.62936i −0.579911 0.814680i \(-0.696913\pi\)
0.579911 0.814680i \(-0.303087\pi\)
\(368\) −13.7984 + 7.96653i −0.719293 + 0.415284i
\(369\) 0 0
\(370\) 11.6376i 0.605011i
\(371\) 0 0
\(372\) 0 0
\(373\) 29.0463 1.50396 0.751981 0.659185i \(-0.229099\pi\)
0.751981 + 0.659185i \(0.229099\pi\)
\(374\) 19.9151 34.4939i 1.02978 1.78364i
\(375\) 0 0
\(376\) −3.03425 + 1.75182i −0.156479 + 0.0903434i
\(377\) −15.5113 −0.798873
\(378\) 0 0
\(379\) −0.518354 −0.0266261 −0.0133130 0.999911i \(-0.504238\pi\)
−0.0133130 + 0.999911i \(0.504238\pi\)
\(380\) 32.9058 18.9981i 1.68803 0.974584i
\(381\) 0 0
\(382\) 15.9701 27.6611i 0.817102 1.41526i
\(383\) 13.2102 0.675011 0.337505 0.941324i \(-0.390417\pi\)
0.337505 + 0.941324i \(0.390417\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 53.9140i 2.74415i
\(387\) 0 0
\(388\) −22.2055 + 12.8203i −1.12731 + 0.650854i
\(389\) 33.8236i 1.71492i −0.514549 0.857461i \(-0.672040\pi\)
0.514549 0.857461i \(-0.327960\pi\)
\(390\) 0 0
\(391\) 31.0316 17.9161i 1.56933 0.906055i
\(392\) 0 0
\(393\) 0 0
\(394\) −4.35933 7.55059i −0.219620 0.380393i
\(395\) −8.27820 14.3383i −0.416521 0.721436i
\(396\) 0 0
\(397\) −7.42483 4.28673i −0.372641 0.215145i 0.301970 0.953317i \(-0.402356\pi\)
−0.674612 + 0.738173i \(0.735689\pi\)
\(398\) −22.9353 + 39.7251i −1.14964 + 1.99124i
\(399\) 0 0
\(400\) 9.45183 + 16.3710i 0.472591 + 0.818552i
\(401\) 16.1362i 0.805801i −0.915244 0.402900i \(-0.868002\pi\)
0.915244 0.402900i \(-0.131998\pi\)
\(402\) 0 0
\(403\) −6.50175 −0.323875
\(404\) −0.618801 + 1.07180i −0.0307865 + 0.0533238i
\(405\) 0 0
\(406\) 0 0
\(407\) 3.89416 + 2.24830i 0.193026 + 0.111444i
\(408\) 0 0
\(409\) −14.1364 8.16165i −0.699000 0.403568i 0.107975 0.994154i \(-0.465563\pi\)
−0.806975 + 0.590586i \(0.798897\pi\)
\(410\) −6.59903 3.80995i −0.325903 0.188160i
\(411\) 0 0
\(412\) 1.59117 + 0.918662i 0.0783913 + 0.0452592i
\(413\) 0 0
\(414\) 0 0
\(415\) −3.45276 + 5.98035i −0.169489 + 0.293564i
\(416\) 19.7341 0.967544
\(417\) 0 0
\(418\) 27.2060i 1.33069i
\(419\) 0.589031 + 1.02023i 0.0287760 + 0.0498415i 0.880055 0.474872i \(-0.157506\pi\)
−0.851279 + 0.524714i \(0.824172\pi\)
\(420\) 0 0
\(421\) 3.43544 5.95035i 0.167433 0.290002i −0.770084 0.637943i \(-0.779786\pi\)
0.937517 + 0.347941i \(0.113119\pi\)
\(422\) 44.3777 + 25.6215i 2.16027 + 1.24724i
\(423\) 0 0
\(424\) 3.70433 + 6.41609i 0.179898 + 0.311593i
\(425\) −21.2564 36.8172i −1.03109 1.78589i
\(426\) 0 0
\(427\) 0 0
\(428\) −10.8636 + 6.27208i −0.525110 + 0.303172i
\(429\) 0 0
\(430\) 40.4293i 1.94967i
\(431\) 0.702488 0.405582i 0.0338377 0.0195362i −0.482986 0.875628i \(-0.660448\pi\)
0.516823 + 0.856092i \(0.327114\pi\)
\(432\) 0 0
\(433\) 8.59662i 0.413127i −0.978433 0.206564i \(-0.933772\pi\)
0.978433 0.206564i \(-0.0662280\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −13.9844 −0.669731
\(437\) −12.2376 + 21.1961i −0.585404 + 1.01395i
\(438\) 0 0
\(439\) 23.8968 13.7968i 1.14053 0.658486i 0.193969 0.981008i \(-0.437864\pi\)
0.946562 + 0.322522i \(0.104530\pi\)
\(440\) 6.31186 0.300906
\(441\) 0 0
\(442\) −36.5065 −1.73643
\(443\) −10.6051 + 6.12286i −0.503864 + 0.290906i −0.730308 0.683118i \(-0.760623\pi\)
0.226444 + 0.974024i \(0.427290\pi\)
\(444\) 0 0
\(445\) 1.78870 3.09811i 0.0847924 0.146865i
\(446\) −17.6152 −0.834103
\(447\) 0 0
\(448\) 0 0
\(449\) 22.0163i 1.03901i −0.854466 0.519507i \(-0.826116\pi\)
0.854466 0.519507i \(-0.173884\pi\)
\(450\) 0 0
\(451\) 2.54976 1.47211i 0.120064 0.0693187i
\(452\) 27.0763i 1.27356i
\(453\) 0 0
\(454\) −10.5226 + 6.07522i −0.493849 + 0.285124i
\(455\) 0 0
\(456\) 0 0
\(457\) −12.0780 20.9196i −0.564983 0.978579i −0.997051 0.0767380i \(-0.975550\pi\)
0.432069 0.901841i \(-0.357784\pi\)
\(458\) 5.00051 + 8.66114i 0.233659 + 0.404709i
\(459\) 0 0
\(460\) 33.4812 + 19.3304i 1.56107 + 0.901284i
\(461\) 16.3899 28.3881i 0.763352 1.32216i −0.177762 0.984074i \(-0.556886\pi\)
0.941114 0.338091i \(-0.109781\pi\)
\(462\) 0 0
\(463\) 15.7659 + 27.3074i 0.732704 + 1.26908i 0.955723 + 0.294266i \(0.0950753\pi\)
−0.223020 + 0.974814i \(0.571591\pi\)
\(464\) 20.3028i 0.942535i
\(465\) 0 0
\(466\) 48.0355 2.22520
\(467\) 16.5765 28.7114i 0.767070 1.32860i −0.172075 0.985084i \(-0.555047\pi\)
0.939145 0.343521i \(-0.111620\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −29.1213 16.8132i −1.34327 0.775536i
\(471\) 0 0
\(472\) −3.19239 1.84313i −0.146942 0.0848368i
\(473\) 13.5284 + 7.81062i 0.622036 + 0.359133i
\(474\) 0 0
\(475\) 25.1480 + 14.5192i 1.15387 + 0.666187i
\(476\) 0 0
\(477\) 0 0
\(478\) −7.12364 + 12.3385i −0.325828 + 0.564350i
\(479\) 22.7945 1.04151 0.520754 0.853707i \(-0.325651\pi\)
0.520754 + 0.853707i \(0.325651\pi\)
\(480\) 0 0
\(481\) 4.12136i 0.187918i
\(482\) 4.68247 + 8.11027i 0.213281 + 0.369413i
\(483\) 0 0
\(484\) 4.59146 7.95264i 0.208703 0.361484i
\(485\) −31.3017 18.0721i −1.42134 0.820611i
\(486\) 0 0
\(487\) 1.36560 + 2.36528i 0.0618811 + 0.107181i 0.895306 0.445451i \(-0.146957\pi\)
−0.833425 + 0.552632i \(0.813623\pi\)
\(488\) 1.84225 + 3.19087i 0.0833946 + 0.144444i
\(489\) 0 0
\(490\) 0 0
\(491\) −21.6775 + 12.5155i −0.978291 + 0.564817i −0.901754 0.432250i \(-0.857720\pi\)
−0.0765375 + 0.997067i \(0.524387\pi\)
\(492\) 0 0
\(493\) 45.6594i 2.05640i
\(494\) 21.5950 12.4679i 0.971605 0.560957i
\(495\) 0 0
\(496\) 8.51016i 0.382118i
\(497\) 0 0
\(498\) 0 0
\(499\) 8.59962 0.384972 0.192486 0.981300i \(-0.438345\pi\)
0.192486 + 0.981300i \(0.438345\pi\)
\(500\) 3.56648 6.17732i 0.159498 0.276258i
\(501\) 0 0
\(502\) 0.843754 0.487141i 0.0376586 0.0217422i
\(503\) 39.0362 1.74054 0.870269 0.492577i \(-0.163945\pi\)
0.870269 + 0.492577i \(0.163945\pi\)
\(504\) 0 0
\(505\) −1.74457 −0.0776325
\(506\) −23.9732 + 13.8409i −1.06574 + 0.615304i
\(507\) 0 0
\(508\) −22.3829 + 38.7683i −0.993079 + 1.72006i
\(509\) 32.5819 1.44417 0.722083 0.691806i \(-0.243185\pi\)
0.722083 + 0.691806i \(0.243185\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 30.4128i 1.34407i
\(513\) 0 0
\(514\) −38.7845 + 22.3922i −1.71071 + 0.987679i
\(515\) 2.58997i 0.114128i
\(516\) 0 0
\(517\) 11.2520 6.49636i 0.494864 0.285710i
\(518\) 0 0
\(519\) 0 0
\(520\) −2.89258 5.01009i −0.126848 0.219707i
\(521\) 3.68456 + 6.38185i 0.161424 + 0.279594i 0.935379 0.353646i \(-0.115058\pi\)
−0.773956 + 0.633240i \(0.781725\pi\)
\(522\) 0 0
\(523\) −37.5991 21.7078i −1.64409 0.949217i −0.979357 0.202138i \(-0.935211\pi\)
−0.664735 0.747079i \(-0.731455\pi\)
\(524\) 4.86594 8.42806i 0.212570 0.368181i
\(525\) 0 0
\(526\) 11.5571 + 20.0175i 0.503915 + 0.872806i
\(527\) 19.1387i 0.833693i
\(528\) 0 0
\(529\) −1.90322 −0.0827487
\(530\) −35.5525 + 61.5787i −1.54430 + 2.67481i
\(531\) 0 0
\(532\) 0 0
\(533\) −2.33699 1.34926i −0.101226 0.0584430i
\(534\) 0 0
\(535\) −15.3137 8.84137i −0.662069 0.382246i
\(536\) 5.17783 + 2.98942i 0.223648 + 0.129123i
\(537\) 0 0
\(538\) −39.8151 22.9873i −1.71655 0.991052i
\(539\) 0 0
\(540\) 0 0
\(541\) 10.8221 18.7444i 0.465278 0.805884i −0.533936 0.845525i \(-0.679288\pi\)
0.999214 + 0.0396402i \(0.0126212\pi\)
\(542\) 9.88869 0.424755
\(543\) 0 0
\(544\) 58.0897i 2.49058i
\(545\) −9.85648 17.0719i −0.422205 0.731281i
\(546\) 0 0
\(547\) −11.9092 + 20.6273i −0.509200 + 0.881960i 0.490743 + 0.871304i \(0.336725\pi\)
−0.999943 + 0.0106561i \(0.996608\pi\)
\(548\) −12.7787 7.37780i −0.545880 0.315164i
\(549\) 0 0
\(550\) 16.4214 + 28.4428i 0.700213 + 1.21280i
\(551\) −15.5938 27.0093i −0.664320 1.15064i
\(552\) 0 0
\(553\) 0 0
\(554\) −11.6004 + 6.69748i −0.492852 + 0.284548i
\(555\) 0 0
\(556\) 3.58880i 0.152199i
\(557\) 9.42040 5.43887i 0.399155 0.230452i −0.286964 0.957941i \(-0.592646\pi\)
0.686119 + 0.727489i \(0.259313\pi\)
\(558\) 0 0
\(559\) 14.3177i 0.605574i
\(560\) 0 0
\(561\) 0 0
\(562\) 41.1273 1.73485
\(563\) −6.67759 + 11.5659i −0.281427 + 0.487445i −0.971736 0.236069i \(-0.924141\pi\)
0.690310 + 0.723514i \(0.257474\pi\)
\(564\) 0 0
\(565\) −33.0543 + 19.0839i −1.39061 + 0.802867i
\(566\) −11.6748 −0.490729
\(567\) 0 0
\(568\) 1.48577 0.0623415
\(569\) 8.34729 4.81931i 0.349937 0.202036i −0.314721 0.949184i \(-0.601911\pi\)
0.664657 + 0.747148i \(0.268578\pi\)
\(570\) 0 0
\(571\) 17.2031 29.7966i 0.719926 1.24695i −0.241102 0.970500i \(-0.577509\pi\)
0.961028 0.276449i \(-0.0891578\pi\)
\(572\) 15.2190 0.636339
\(573\) 0 0
\(574\) 0 0
\(575\) 29.5462i 1.23216i
\(576\) 0 0
\(577\) 20.9017 12.0676i 0.870149 0.502381i 0.00275107 0.999996i \(-0.499124\pi\)
0.867398 + 0.497616i \(0.165791\pi\)
\(578\) 72.0280i 2.99597i
\(579\) 0 0
\(580\) −42.6637 + 24.6319i −1.77151 + 1.02278i
\(581\) 0 0
\(582\) 0 0
\(583\) −13.7369 23.7930i −0.568925 0.985407i
\(584\) −2.87604 4.98145i −0.119011 0.206134i
\(585\) 0 0
\(586\) −54.2935 31.3464i −2.24284 1.29491i
\(587\) 3.96848 6.87362i 0.163797 0.283704i −0.772431 0.635099i \(-0.780959\pi\)
0.936227 + 0.351395i \(0.114293\pi\)
\(588\) 0 0
\(589\) −6.53634 11.3213i −0.269325 0.466485i
\(590\) 35.3790i 1.45653i
\(591\) 0 0
\(592\) 5.39447 0.221711
\(593\) −20.9147 + 36.2252i −0.858862 + 1.48759i 0.0141532 + 0.999900i \(0.495495\pi\)
−0.873015 + 0.487693i \(0.837839\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10.8580 + 6.26889i 0.444763 + 0.256784i
\(597\) 0 0
\(598\) 21.9727 + 12.6859i 0.898529 + 0.518766i
\(599\) −7.57344 4.37253i −0.309442 0.178657i 0.337235 0.941421i \(-0.390508\pi\)
−0.646677 + 0.762764i \(0.723842\pi\)
\(600\) 0 0
\(601\) 12.6427 + 7.29924i 0.515705 + 0.297742i 0.735176 0.677877i \(-0.237100\pi\)
−0.219471 + 0.975619i \(0.570433\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 13.4654 23.3228i 0.547900 0.948990i
\(605\) 12.9446 0.526273
\(606\) 0 0
\(607\) 10.9862i 0.445918i −0.974828 0.222959i \(-0.928428\pi\)
0.974828 0.222959i \(-0.0715716\pi\)
\(608\) 19.8391 + 34.3624i 0.804583 + 1.39358i
\(609\) 0 0
\(610\) −17.6811 + 30.6245i −0.715885 + 1.23995i
\(611\) −10.3131 5.95426i −0.417222 0.240883i
\(612\) 0 0
\(613\) −11.9068 20.6231i −0.480909 0.832959i 0.518851 0.854865i \(-0.326360\pi\)
−0.999760 + 0.0219056i \(0.993027\pi\)
\(614\) −24.4382 42.3282i −0.986244 1.70823i
\(615\) 0 0
\(616\) 0 0
\(617\) 36.5255 21.0880i 1.47046 0.848971i 0.471011 0.882127i \(-0.343889\pi\)
0.999450 + 0.0331557i \(0.0105557\pi\)
\(618\) 0 0
\(619\) 26.1577i 1.05137i −0.850680 0.525683i \(-0.823810\pi\)
0.850680 0.525683i \(-0.176190\pi\)
\(620\) −17.8830 + 10.3247i −0.718198 + 0.414652i
\(621\) 0 0
\(622\) 34.8290i 1.39652i
\(623\) 0 0
\(624\) 0 0
\(625\) −19.5487 −0.781947
\(626\) −15.4942 + 26.8368i −0.619274 + 1.07261i
\(627\) 0 0
\(628\) −13.5324 + 7.81295i −0.540003 + 0.311771i
\(629\) −12.1317 −0.483724
\(630\) 0 0
\(631\) −19.2419 −0.766009 −0.383004 0.923746i \(-0.625111\pi\)
−0.383004 + 0.923746i \(0.625111\pi\)
\(632\) −3.11385 + 1.79778i −0.123862 + 0.0715118i
\(633\) 0 0
\(634\) 2.36776 4.10109i 0.0940359 0.162875i
\(635\) −63.1036 −2.50419
\(636\) 0 0
\(637\) 0 0
\(638\) 35.2738i 1.39650i
\(639\) 0 0
\(640\) 16.1878 9.34604i 0.639879 0.369435i
\(641\) 17.6072i 0.695444i 0.937598 + 0.347722i \(0.113045\pi\)
−0.937598 + 0.347722i \(0.886955\pi\)
\(642\) 0 0
\(643\) −43.1158 + 24.8929i −1.70032 + 0.981680i −0.754893 + 0.655848i \(0.772311\pi\)
−0.945428 + 0.325832i \(0.894355\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −36.7007 63.5675i −1.44397 2.50103i
\(647\) −5.77035 9.99454i −0.226856 0.392926i 0.730019 0.683427i \(-0.239511\pi\)
−0.956875 + 0.290501i \(0.906178\pi\)
\(648\) 0 0
\(649\) 11.8385 + 6.83495i 0.464701 + 0.268295i
\(650\) 15.0511 26.0693i 0.590354 1.02252i
\(651\) 0 0
\(652\) −27.0677 46.8826i −1.06005 1.83606i
\(653\) 21.0444i 0.823529i −0.911290 0.411765i \(-0.864913\pi\)
0.911290 0.411765i \(-0.135087\pi\)
\(654\) 0 0
\(655\) 13.7185 0.536024
\(656\) 1.76606 3.05890i 0.0689529 0.119430i
\(657\) 0 0
\(658\) 0 0
\(659\) 31.8016 + 18.3607i 1.23881 + 0.715230i 0.968852 0.247641i \(-0.0796555\pi\)
0.269962 + 0.962871i \(0.412989\pi\)
\(660\) 0 0
\(661\) −19.9819 11.5365i −0.777205 0.448719i 0.0582339 0.998303i \(-0.481453\pi\)
−0.835439 + 0.549583i \(0.814786\pi\)
\(662\) 21.5683 + 12.4525i 0.838276 + 0.483979i
\(663\) 0 0
\(664\) 1.29875 + 0.749836i 0.0504015 + 0.0290993i
\(665\) 0 0
\(666\) 0 0
\(667\) 15.8666 27.4817i 0.614356 1.06410i
\(668\) 37.2943 1.44296
\(669\) 0 0
\(670\) 57.3823i 2.21687i
\(671\) −6.83168 11.8328i −0.263734 0.456801i
\(672\) 0 0
\(673\) 24.7594 42.8846i 0.954406 1.65308i 0.218684 0.975796i \(-0.429824\pi\)
0.735722 0.677284i \(-0.236843\pi\)
\(674\) 8.47065 + 4.89053i 0.326277 + 0.188376i
\(675\) 0 0
\(676\) 8.26358 + 14.3129i 0.317830 + 0.550498i
\(677\) 14.9077 + 25.8208i 0.572948 + 0.992374i 0.996261 + 0.0863911i \(0.0275335\pi\)
−0.423314 + 0.905983i \(0.639133\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −14.7478 + 8.51465i −0.565553 + 0.326522i
\(681\) 0 0
\(682\) 14.7854i 0.566163i
\(683\) −26.1841 + 15.1174i −1.00191 + 0.578451i −0.908812 0.417207i \(-0.863009\pi\)
−0.0930943 + 0.995657i \(0.529676\pi\)
\(684\) 0 0
\(685\) 20.8001i 0.794731i
\(686\) 0 0
\(687\) 0 0
\(688\) 18.7405 0.714474
\(689\) −12.5906 + 21.8076i −0.479664 + 0.830802i
\(690\) 0 0
\(691\) 26.7555 15.4473i 1.01783 0.587642i 0.104352 0.994540i \(-0.466723\pi\)
0.913473 + 0.406899i \(0.133390\pi\)
\(692\) 43.7496 1.66311
\(693\) 0 0
\(694\) 15.4159 0.585180
\(695\) 4.38115 2.52946i 0.166186 0.0959478i
\(696\) 0 0
\(697\) −3.97172 + 6.87921i −0.150439 + 0.260569i
\(698\) 43.4407 1.64426
\(699\) 0 0
\(700\) 0 0
\(701\) 0.757329i 0.0286039i 0.999898 + 0.0143020i \(0.00455261\pi\)
−0.999898 + 0.0143020i \(0.995447\pi\)
\(702\) 0 0
\(703\) 7.17640 4.14329i 0.270663 0.156267i
\(704\) 27.8823i 1.05085i
\(705\) 0 0
\(706\) 12.8142 7.39831i 0.482270 0.278439i
\(707\) 0 0
\(708\) 0 0
\(709\) 10.7544 + 18.6271i 0.403889 + 0.699556i 0.994191 0.107626i \(-0.0343249\pi\)
−0.590303 + 0.807182i \(0.700992\pi\)
\(710\) 7.12988 + 12.3493i 0.267580 + 0.463461i
\(711\) 0 0
\(712\) −0.672819 0.388452i −0.0252149 0.0145579i
\(713\) 6.65065 11.5193i 0.249069 0.431400i
\(714\) 0 0
\(715\) 10.7267 + 18.5791i 0.401155 + 0.694820i
\(716\) 51.6471i 1.93014i
\(717\) 0 0
\(718\) 20.6186 0.769480
\(719\) −22.1254 + 38.3224i −0.825140 + 1.42918i 0.0766729 + 0.997056i \(0.475570\pi\)
−0.901813 + 0.432127i \(0.857763\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 9.12371 + 5.26758i 0.339549 + 0.196039i
\(723\) 0 0
\(724\) 35.9324 + 20.7456i 1.33542 + 0.771003i
\(725\) −32.6054 18.8248i −1.21094 0.699134i
\(726\) 0 0
\(727\) 2.95166 + 1.70414i 0.109471 + 0.0632031i 0.553736 0.832692i \(-0.313202\pi\)
−0.444265 + 0.895895i \(0.646535\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 27.6029 47.8097i 1.02163 1.76952i
\(731\) −42.1458 −1.55882
\(732\) 0 0
\(733\) 6.30937i 0.233042i 0.993188 + 0.116521i \(0.0371742\pi\)
−0.993188 + 0.116521i \(0.962826\pi\)
\(734\) −32.5298 56.3432i −1.20070 2.07967i
\(735\) 0 0
\(736\) −20.1861 + 34.9633i −0.744069 + 1.28876i
\(737\) −19.2012 11.0858i −0.707284 0.408351i
\(738\) 0 0
\(739\) 2.45388 + 4.25024i 0.0902674 + 0.156348i 0.907624 0.419785i \(-0.137895\pi\)
−0.817356 + 0.576133i \(0.804561\pi\)
\(740\) −6.54471 11.3358i −0.240588 0.416711i
\(741\) 0 0
\(742\) 0 0
\(743\) −26.1921 + 15.1220i −0.960895 + 0.554773i −0.896448 0.443148i \(-0.853862\pi\)
−0.0644465 + 0.997921i \(0.520528\pi\)
\(744\) 0 0
\(745\) 17.6738i 0.647516i
\(746\) 52.4304 30.2707i 1.91961 1.10829i
\(747\) 0 0
\(748\) 44.7990i 1.63801i
\(749\) 0 0
\(750\) 0 0
\(751\) −50.0642 −1.82687 −0.913435 0.406986i \(-0.866580\pi\)
−0.913435 + 0.406986i \(0.866580\pi\)
\(752\) 7.79355 13.4988i 0.284202 0.492252i
\(753\) 0 0
\(754\) −27.9988 + 16.1651i −1.01966 + 0.588700i
\(755\) 37.9628 1.38161
\(756\) 0 0
\(757\) 37.2695 1.35458 0.677291 0.735716i \(-0.263154\pi\)
0.677291 + 0.735716i \(0.263154\pi\)
\(758\) −0.935660 + 0.540204i −0.0339847 + 0.0196211i
\(759\) 0 0
\(760\) 5.81594 10.0735i 0.210966 0.365405i
\(761\) −10.5435 −0.382201 −0.191100 0.981570i \(-0.561206\pi\)
−0.191100 + 0.981570i \(0.561206\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 35.9248i 1.29971i
\(765\) 0 0
\(766\) 23.8452 13.7671i 0.861563 0.497424i
\(767\) 12.5292i 0.452403i
\(768\) 0 0
\(769\) −12.4720 + 7.20070i −0.449751 + 0.259664i −0.707725 0.706488i \(-0.750278\pi\)
0.257974 + 0.966152i \(0.416945\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 30.3199 + 52.5156i 1.09124 + 1.89008i
\(773\) 10.9386 + 18.9462i 0.393433 + 0.681446i 0.992900 0.118954i \(-0.0379541\pi\)
−0.599467 + 0.800400i \(0.704621\pi\)
\(774\) 0 0
\(775\) −13.6669 7.89062i −0.490931 0.283439i
\(776\) −3.92472 + 6.79781i −0.140889 + 0.244027i
\(777\) 0 0
\(778\) −35.2493 61.0536i −1.26375 2.18888i
\(779\) 5.42577i 0.194398i
\(780\) 0 0
\(781\) −5.50974 −0.197154
\(782\) 37.3425 64.6792i 1.33537 2.31292i
\(783\) 0 0
\(784\) 0 0
\(785\) −19.0759 11.0135i −0.680847 0.393087i
\(786\) 0 0
\(787\) 23.9804 + 13.8451i 0.854807 + 0.493523i 0.862270 0.506449i \(-0.169042\pi\)
−0.00746275 + 0.999972i \(0.502375\pi\)
\(788\) −8.49253 4.90316i −0.302534 0.174668i
\(789\) 0 0
\(790\) −29.8853 17.2543i −1.06327 0.613880i
\(791\) 0 0
\(792\) 0 0
\(793\) −6.26160 + 10.8454i −0.222356 + 0.385132i
\(794\) −17.8697 −0.634171
\(795\) 0 0
\(796\) 51.5930i 1.82867i
\(797\) −21.3285 36.9420i −0.755493 1.30855i −0.945129 0.326697i \(-0.894064\pi\)
0.189636 0.981854i \(-0.439269\pi\)
\(798\) 0 0
\(799\) −17.5271 + 30.3578i −0.620063 + 1.07398i
\(800\) 41.4820 + 23.9496i 1.46661 + 0.846747i
\(801\) 0 0
\(802\) −16.8163 29.1267i −0.593805 1.02850i
\(803\) 10.6653 + 18.4729i 0.376372 + 0.651895i
\(804\) 0 0
\(805\) 0 0
\(806\) −11.7360 + 6.77581i −0.413384 + 0.238668i
\(807\) 0 0
\(808\) 0.378870i 0.0133286i
\(809\) −30.9391 + 17.8627i −1.08776 + 0.628019i −0.932979 0.359930i \(-0.882801\pi\)
−0.154781 + 0.987949i \(0.549467\pi\)
\(810\) 0 0
\(811\) 5.85377i 0.205554i −0.994704 0.102777i \(-0.967227\pi\)
0.994704 0.102777i \(-0.0327728\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 9.37226 0.328498
\(815\) 38.1557 66.0875i 1.33653 2.31495i
\(816\) 0 0
\(817\) 24.9309 14.3939i 0.872223 0.503578i
\(818\) −34.0227 −1.18958
\(819\) 0 0
\(820\) −8.57050 −0.299295
\(821\) 15.2220 8.78841i 0.531251 0.306718i −0.210275 0.977642i \(-0.567436\pi\)
0.741526 + 0.670925i \(0.234103\pi\)
\(822\) 0 0
\(823\) −15.1893 + 26.3086i −0.529465 + 0.917060i 0.469945 + 0.882696i \(0.344274\pi\)
−0.999409 + 0.0343640i \(0.989059\pi\)
\(824\) 0.562464 0.0195943
\(825\) 0 0
\(826\) 0 0
\(827\) 15.4454i 0.537089i 0.963267 + 0.268545i \(0.0865426\pi\)
−0.963267 + 0.268545i \(0.913457\pi\)
\(828\) 0 0
\(829\) −35.4158 + 20.4473i −1.23004 + 0.710164i −0.967038 0.254631i \(-0.918046\pi\)
−0.263002 + 0.964795i \(0.584713\pi\)
\(830\) 14.3932i 0.499595i
\(831\) 0 0
\(832\) 22.1318 12.7778i 0.767281 0.442990i
\(833\) 0 0
\(834\) 0 0
\(835\) 26.2858 + 45.5283i 0.909657 + 1.57557i
\(836\) 15.3000 + 26.5004i 0.529162 + 0.916535i
\(837\) 0 0
\(838\) 2.12647 + 1.22772i 0.0734577 + 0.0424108i
\(839\) −16.8620 + 29.2058i −0.582140 + 1.00830i 0.413086 + 0.910692i \(0.364451\pi\)
−0.995225 + 0.0976035i \(0.968882\pi\)
\(840\) 0 0
\(841\) 5.71808 + 9.90401i 0.197175 + 0.341517i
\(842\) 14.3210i 0.493534i
\(843\) 0 0
\(844\) 57.6356 1.98390
\(845\) −11.6487 + 20.1761i −0.400726 + 0.694079i
\(846\) 0 0
\(847\) 0 0
\(848\) −28.5440 16.4799i −0.980206 0.565922i
\(849\) 0 0
\(850\) −76.7381 44.3048i −2.63210 1.51964i
\(851\) 7.30190 + 4.21575i 0.250306 + 0.144514i
\(852\) 0 0
\(853\) −37.6715 21.7497i −1.28985 0.744694i −0.311221 0.950337i \(-0.600738\pi\)
−0.978627 + 0.205643i \(0.934071\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.92008 + 3.32568i −0.0656271 + 0.113669i
\(857\) 8.43068 0.287986 0.143993 0.989579i \(-0.454006\pi\)
0.143993 + 0.989579i \(0.454006\pi\)
\(858\) 0 0
\(859\) 2.40096i 0.0819197i −0.999161 0.0409598i \(-0.986958\pi\)
0.999161 0.0409598i \(-0.0130416\pi\)
\(860\) −22.7364 39.3807i −0.775306 1.34287i
\(861\) 0 0
\(862\) 0.845356 1.46420i 0.0287929 0.0498708i
\(863\) 8.12017 + 4.68818i 0.276414 + 0.159588i 0.631799 0.775132i \(-0.282317\pi\)
−0.355385 + 0.934720i \(0.615650\pi\)
\(864\) 0 0
\(865\) 30.8356 + 53.4089i 1.04844 + 1.81596i
\(866\) −8.95898 15.5174i −0.304439 0.527303i
\(867\) 0 0
\(868\) 0 0
\(869\) 11.5472 6.66678i 0.391712 0.226155i
\(870\) 0 0
\(871\) 20.3214i 0.688566i
\(872\) −3.70751 + 2.14053i −0.125552 + 0.0724877i
\(873\) 0 0
\(874\) 51.0137i 1.72557i
\(875\) 0 0
\(876\) 0 0
\(877\) 3.43084 0.115851 0.0579256 0.998321i \(-0.481551\pi\)
0.0579256 + 0.998321i \(0.481551\pi\)
\(878\) 28.7568 49.8082i 0.970493 1.68094i
\(879\) 0 0
\(880\) −24.3183 + 14.0402i −0.819770 + 0.473295i
\(881\) 43.4962 1.46542 0.732712 0.680539i \(-0.238254\pi\)
0.732712 + 0.680539i \(0.238254\pi\)
\(882\) 0 0
\(883\) 49.6074 1.66942 0.834711 0.550688i \(-0.185635\pi\)
0.834711 + 0.550688i \(0.185635\pi\)
\(884\) −35.5596 + 20.5303i −1.19600 + 0.690510i
\(885\) 0 0
\(886\) −12.7619 + 22.1043i −0.428745 + 0.742607i
\(887\) 35.1532 1.18033 0.590164 0.807283i \(-0.299063\pi\)
0.590164 + 0.807283i \(0.299063\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 7.45638i 0.249938i
\(891\) 0 0
\(892\) −17.1583 + 9.90634i −0.574502 + 0.331689i
\(893\) 23.9438i 0.801248i
\(894\) 0 0
\(895\) 63.0500 36.4019i 2.10753 1.21678i
\(896\) 0 0
\(897\) 0 0
\(898\) −22.9443 39.7407i −0.765662 1.32617i
\(899\) 8.47464 + 14.6785i 0.282645 + 0.489556i
\(900\) 0 0
\(901\) 64.1932 + 37.0620i 2.13859 + 1.23471i
\(902\) 3.06832 5.31448i 0.102164 0.176953i
\(903\) 0 0
\(904\) 4.14446 + 7.17842i 0.137843 + 0.238751i
\(905\) 58.4876i 1.94419i
\(906\) 0 0
\(907\) 38.1633 1.26719 0.633596 0.773664i \(-0.281578\pi\)
0.633596 + 0.773664i \(0.281578\pi\)
\(908\) −6.83310 + 11.8353i −0.226765 + 0.392768i
\(909\) 0 0
\(910\) 0 0
\(911\) 39.9027 + 23.0378i 1.32203 + 0.763277i 0.984053 0.177876i \(-0.0569226\pi\)
0.337981 + 0.941153i \(0.390256\pi\)
\(912\) 0 0
\(913\) −4.81623 2.78065i −0.159394 0.0920261i
\(914\) −43.6028 25.1741i −1.44225 0.832686i
\(915\) 0 0
\(916\) 9.74163 + 5.62433i 0.321872 + 0.185833i
\(917\) 0 0
\(918\) 0 0
\(919\) −5.27574 + 9.13785i −0.174031 + 0.301430i −0.939825 0.341655i \(-0.889013\pi\)
0.765795 + 0.643085i \(0.222346\pi\)
\(920\) 11.8353 0.390198
\(921\) 0 0
\(922\) 68.3229i 2.25009i
\(923\) 2.52499 + 4.37340i 0.0831109 + 0.143952i
\(924\) 0 0
\(925\) 5.00175 8.66328i 0.164456 0.284847i
\(926\) 56.9168 + 32.8609i 1.87040 + 1.07988i
\(927\) 0 0
\(928\) −25.7223 44.5523i −0.844375 1.46250i
\(929\) −26.4514 45.8152i −0.867843 1.50315i −0.864196 0.503155i \(-0.832172\pi\)
−0.00364718 0.999993i \(-0.501161\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 46.7896 27.0140i 1.53265 0.884873i
\(933\) 0 0
\(934\) 69.1010i 2.26106i
\(935\) 54.6899 31.5752i 1.78855 1.03262i
\(936\) 0 0
\(937\) 10.3265i 0.337353i 0.985671 + 0.168676i \(0.0539493\pi\)
−0.985671 + 0.168676i \(0.946051\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −37.8214 −1.23360
\(941\) 0.505336 0.875268i 0.0164735 0.0285329i −0.857671 0.514199i \(-0.828089\pi\)
0.874145 + 0.485666i \(0.161423\pi\)
\(942\) 0 0
\(943\) 4.78103 2.76033i 0.155692 0.0898887i
\(944\) 16.3995 0.533758
\(945\) 0 0
\(946\) 32.5594 1.05860
\(947\) 9.36454 5.40662i 0.304307 0.175692i −0.340069 0.940400i \(-0.610451\pi\)
0.644376 + 0.764709i \(0.277117\pi\)
\(948\) 0 0
\(949\) 9.77535 16.9314i 0.317321 0.549616i
\(950\) 60.5249 1.96369
\(951\) 0 0
\(952\) 0 0
\(953\) 26.7466i 0.866408i −0.901296 0.433204i \(-0.857383\pi\)
0.901296 0.433204i \(-0.142617\pi\)
\(954\) 0 0
\(955\) 43.8564 25.3205i 1.41916 0.819353i
\(956\) 16.0246i 0.518274i
\(957\) 0 0
\(958\) 41.1454 23.7553i 1.32935 0.767500i
\(959\) 0 0
\(960\) 0 0
\(961\) −11.9478 20.6941i −0.385411 0.667552i
\(962\) −4.29509 7.43931i −0.138479 0.239853i
\(963\) 0 0
\(964\) 9.12204 + 5.26661i 0.293801 + 0.169626i
\(965\) −42.7402 + 74.0281i −1.37585 + 2.38305i
\(966\) 0 0
\(967\) 1.62313 + 2.81134i 0.0521962 + 0.0904065i 0.890943 0.454115i \(-0.150045\pi\)
−0.838747 + 0.544522i \(0.816711\pi\)
\(968\) 2.81119i 0.0903549i
\(969\) 0 0
\(970\) −75.3354 −2.41887
\(971\) 4.41423 7.64567i 0.141659 0.245361i −0.786462 0.617638i \(-0.788090\pi\)
0.928122 + 0.372277i \(0.121423\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 4.92997 + 2.84632i 0.157966 + 0.0912019i
\(975\) 0 0
\(976\) −14.1956 8.19584i −0.454390 0.262342i
\(977\) 36.2748 + 20.9433i 1.16053 + 0.670035i 0.951432 0.307859i \(-0.0996124\pi\)
0.209102 + 0.977894i \(0.432946\pi\)
\(978\) 0 0
\(979\) 2.49504 + 1.44051i 0.0797419 + 0.0460390i
\(980\) 0 0
\(981\) 0 0
\(982\) −26.0861 + 45.1825i −0.832441 + 1.44183i
\(983\) 4.70388 0.150031 0.0750153 0.997182i \(-0.476099\pi\)
0.0750153 + 0.997182i \(0.476099\pi\)
\(984\) 0 0
\(985\) 13.8234i 0.440450i
\(986\) 47.5840 + 82.4179i 1.51538 + 2.62472i
\(987\) 0 0
\(988\) 14.0233 24.2890i 0.446139 0.772736i
\(989\) 25.3669 + 14.6456i 0.806621 + 0.465703i
\(990\) 0 0
\(991\) −18.9327 32.7924i −0.601418 1.04169i −0.992607 0.121375i \(-0.961269\pi\)
0.391189 0.920310i \(-0.372064\pi\)
\(992\) −10.7818 18.6746i −0.342322 0.592919i
\(993\) 0 0
\(994\) 0 0
\(995\) −62.9840 + 36.3638i −1.99673 + 1.15281i
\(996\) 0 0
\(997\) 3.67583i 0.116415i 0.998305 + 0.0582073i \(0.0185384\pi\)
−0.998305 + 0.0582073i \(0.981462\pi\)
\(998\) 15.5228 8.96211i 0.491367 0.283691i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.s.d.656.22 48
3.2 odd 2 441.2.s.d.362.4 48
7.2 even 3 1323.2.o.e.440.3 48
7.3 odd 6 1323.2.i.d.521.16 48
7.4 even 3 1323.2.i.d.521.23 48
7.5 odd 6 1323.2.o.e.440.4 48
7.6 odd 2 inner 1323.2.s.d.656.21 48
9.4 even 3 441.2.i.d.68.22 48
9.5 odd 6 1323.2.i.d.1097.16 48
21.2 odd 6 441.2.o.e.146.21 48
21.5 even 6 441.2.o.e.146.22 yes 48
21.11 odd 6 441.2.i.d.227.3 48
21.17 even 6 441.2.i.d.227.4 48
21.20 even 2 441.2.s.d.362.3 48
63.4 even 3 441.2.s.d.374.3 48
63.5 even 6 1323.2.o.e.881.3 48
63.13 odd 6 441.2.i.d.68.21 48
63.23 odd 6 1323.2.o.e.881.4 48
63.31 odd 6 441.2.s.d.374.4 48
63.32 odd 6 inner 1323.2.s.d.962.21 48
63.40 odd 6 441.2.o.e.293.21 yes 48
63.41 even 6 1323.2.i.d.1097.23 48
63.58 even 3 441.2.o.e.293.22 yes 48
63.59 even 6 inner 1323.2.s.d.962.22 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.21 48 63.13 odd 6
441.2.i.d.68.22 48 9.4 even 3
441.2.i.d.227.3 48 21.11 odd 6
441.2.i.d.227.4 48 21.17 even 6
441.2.o.e.146.21 48 21.2 odd 6
441.2.o.e.146.22 yes 48 21.5 even 6
441.2.o.e.293.21 yes 48 63.40 odd 6
441.2.o.e.293.22 yes 48 63.58 even 3
441.2.s.d.362.3 48 21.20 even 2
441.2.s.d.362.4 48 3.2 odd 2
441.2.s.d.374.3 48 63.4 even 3
441.2.s.d.374.4 48 63.31 odd 6
1323.2.i.d.521.16 48 7.3 odd 6
1323.2.i.d.521.23 48 7.4 even 3
1323.2.i.d.1097.16 48 9.5 odd 6
1323.2.i.d.1097.23 48 63.41 even 6
1323.2.o.e.440.3 48 7.2 even 3
1323.2.o.e.440.4 48 7.5 odd 6
1323.2.o.e.881.3 48 63.5 even 6
1323.2.o.e.881.4 48 63.23 odd 6
1323.2.s.d.656.21 48 7.6 odd 2 inner
1323.2.s.d.656.22 48 1.1 even 1 trivial
1323.2.s.d.962.21 48 63.32 odd 6 inner
1323.2.s.d.962.22 48 63.59 even 6 inner