Properties

Label 132.2.p.a.29.4
Level $132$
Weight $2$
Character 132.29
Analytic conductor $1.054$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [132,2,Mod(17,132)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(132, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("132.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 132.p (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.05402530668\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 23 x^{12} - 72 x^{11} + 146 x^{10} - 176 x^{9} + 223 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 29.4
Root \(-1.12228 - 1.31928i\) of defining polynomial
Character \(\chi\) \(=\) 132.29
Dual form 132.2.p.a.41.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.60151 + 0.659669i) q^{3} +(-1.45030 - 1.99617i) q^{5} +(3.40640 - 1.10681i) q^{7} +(2.12967 + 2.11293i) q^{9} +(-2.38857 + 2.30103i) q^{11} +(-2.28837 + 3.14966i) q^{13} +(-1.00586 - 4.15361i) q^{15} +(-0.938264 + 0.681689i) q^{17} +(-5.03232 - 1.63510i) q^{19} +(6.18551 + 0.474534i) q^{21} -7.11355i q^{23} +(-0.336235 + 1.03483i) q^{25} +(2.01686 + 4.78877i) q^{27} +(0.775461 + 2.38662i) q^{29} +(-4.08293 - 2.96642i) q^{31} +(-5.34324 + 2.10946i) q^{33} +(-7.14969 - 5.19455i) q^{35} +(-0.123555 - 0.380264i) q^{37} +(-5.74258 + 3.53466i) q^{39} +(-3.48049 + 10.7118i) q^{41} +1.31310i q^{43} +(1.12911 - 7.31559i) q^{45} +(5.67347 + 1.84342i) q^{47} +(4.71542 - 3.42595i) q^{49} +(-1.95233 + 0.472788i) q^{51} +(1.57118 - 2.16254i) q^{53} +(8.05740 + 1.43080i) q^{55} +(-6.98069 - 5.93830i) q^{57} +(11.7221 - 3.80874i) q^{59} +(4.67521 + 6.43487i) q^{61} +(9.59313 + 4.84036i) q^{63} +9.60609 q^{65} -3.87535 q^{67} +(4.69259 - 11.3924i) q^{69} +(-1.89329 - 2.60589i) q^{71} +(-4.98614 + 1.62010i) q^{73} +(-1.22113 + 1.43548i) q^{75} +(-5.58962 + 10.4819i) q^{77} +(8.63038 - 11.8787i) q^{79} +(0.0710170 + 8.99972i) q^{81} +(-2.92652 + 2.12624i) q^{83} +(2.72153 + 0.884280i) q^{85} +(-0.332473 + 4.33375i) q^{87} -12.1910i q^{89} +(-4.30902 + 13.2618i) q^{91} +(-4.58200 - 7.44414i) q^{93} +(4.03445 + 12.4168i) q^{95} +(-2.49831 - 1.81513i) q^{97} +(-9.94880 - 0.146440i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{3} + 5 q^{9} + 9 q^{15} - 30 q^{19} - 12 q^{25} + q^{27} - 10 q^{31} - 41 q^{33} - 24 q^{37} - 35 q^{39} + 2 q^{45} + 12 q^{49} - 15 q^{51} + 62 q^{55} + 35 q^{57} + 40 q^{61} + 55 q^{63} + 44 q^{67}+ \cdots - 101 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/132\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(67\) \(89\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.60151 + 0.659669i 0.924633 + 0.380860i
\(4\) 0 0
\(5\) −1.45030 1.99617i −0.648595 0.892715i 0.350442 0.936584i \(-0.386031\pi\)
−0.999037 + 0.0438695i \(0.986031\pi\)
\(6\) 0 0
\(7\) 3.40640 1.10681i 1.28750 0.418333i 0.416283 0.909235i \(-0.363333\pi\)
0.871215 + 0.490902i \(0.163333\pi\)
\(8\) 0 0
\(9\) 2.12967 + 2.11293i 0.709891 + 0.704311i
\(10\) 0 0
\(11\) −2.38857 + 2.30103i −0.720180 + 0.693787i
\(12\) 0 0
\(13\) −2.28837 + 3.14966i −0.634678 + 0.873560i −0.998318 0.0579800i \(-0.981534\pi\)
0.363639 + 0.931540i \(0.381534\pi\)
\(14\) 0 0
\(15\) −1.00586 4.15361i −0.259713 1.07246i
\(16\) 0 0
\(17\) −0.938264 + 0.681689i −0.227562 + 0.165334i −0.695724 0.718309i \(-0.744916\pi\)
0.468162 + 0.883643i \(0.344916\pi\)
\(18\) 0 0
\(19\) −5.03232 1.63510i −1.15449 0.375118i −0.331659 0.943399i \(-0.607608\pi\)
−0.822834 + 0.568281i \(0.807608\pi\)
\(20\) 0 0
\(21\) 6.18551 + 0.474534i 1.34979 + 0.103552i
\(22\) 0 0
\(23\) 7.11355i 1.48328i −0.670799 0.741639i \(-0.734049\pi\)
0.670799 0.741639i \(-0.265951\pi\)
\(24\) 0 0
\(25\) −0.336235 + 1.03483i −0.0672470 + 0.206965i
\(26\) 0 0
\(27\) 2.01686 + 4.78877i 0.388144 + 0.921599i
\(28\) 0 0
\(29\) 0.775461 + 2.38662i 0.143999 + 0.443185i 0.996881 0.0789198i \(-0.0251471\pi\)
−0.852882 + 0.522104i \(0.825147\pi\)
\(30\) 0 0
\(31\) −4.08293 2.96642i −0.733315 0.532785i 0.157295 0.987552i \(-0.449723\pi\)
−0.890611 + 0.454767i \(0.849723\pi\)
\(32\) 0 0
\(33\) −5.34324 + 2.10946i −0.930138 + 0.367210i
\(34\) 0 0
\(35\) −7.14969 5.19455i −1.20852 0.878039i
\(36\) 0 0
\(37\) −0.123555 0.380264i −0.0203123 0.0625150i 0.940387 0.340108i \(-0.110463\pi\)
−0.960699 + 0.277593i \(0.910463\pi\)
\(38\) 0 0
\(39\) −5.74258 + 3.53466i −0.919548 + 0.565998i
\(40\) 0 0
\(41\) −3.48049 + 10.7118i −0.543561 + 1.67291i 0.180827 + 0.983515i \(0.442122\pi\)
−0.724388 + 0.689392i \(0.757878\pi\)
\(42\) 0 0
\(43\) 1.31310i 0.200246i 0.994975 + 0.100123i \(0.0319236\pi\)
−0.994975 + 0.100123i \(0.968076\pi\)
\(44\) 0 0
\(45\) 1.12911 7.31559i 0.168317 1.09054i
\(46\) 0 0
\(47\) 5.67347 + 1.84342i 0.827561 + 0.268891i 0.692018 0.721881i \(-0.256722\pi\)
0.135543 + 0.990771i \(0.456722\pi\)
\(48\) 0 0
\(49\) 4.71542 3.42595i 0.673631 0.489421i
\(50\) 0 0
\(51\) −1.95233 + 0.472788i −0.273381 + 0.0662035i
\(52\) 0 0
\(53\) 1.57118 2.16254i 0.215818 0.297048i −0.687358 0.726319i \(-0.741229\pi\)
0.903176 + 0.429271i \(0.141229\pi\)
\(54\) 0 0
\(55\) 8.05740 + 1.43080i 1.08646 + 0.192928i
\(56\) 0 0
\(57\) −6.98069 5.93830i −0.924615 0.786547i
\(58\) 0 0
\(59\) 11.7221 3.80874i 1.52609 0.495855i 0.578589 0.815619i \(-0.303604\pi\)
0.947497 + 0.319764i \(0.103604\pi\)
\(60\) 0 0
\(61\) 4.67521 + 6.43487i 0.598599 + 0.823901i 0.995579 0.0939265i \(-0.0299419\pi\)
−0.396980 + 0.917827i \(0.629942\pi\)
\(62\) 0 0
\(63\) 9.59313 + 4.84036i 1.20862 + 0.609828i
\(64\) 0 0
\(65\) 9.60609 1.19149
\(66\) 0 0
\(67\) −3.87535 −0.473449 −0.236725 0.971577i \(-0.576074\pi\)
−0.236725 + 0.971577i \(0.576074\pi\)
\(68\) 0 0
\(69\) 4.69259 11.3924i 0.564921 1.37149i
\(70\) 0 0
\(71\) −1.89329 2.60589i −0.224692 0.309262i 0.681756 0.731580i \(-0.261217\pi\)
−0.906448 + 0.422317i \(0.861217\pi\)
\(72\) 0 0
\(73\) −4.98614 + 1.62010i −0.583584 + 0.189618i −0.585905 0.810379i \(-0.699261\pi\)
0.00232161 + 0.999997i \(0.499261\pi\)
\(74\) 0 0
\(75\) −1.22113 + 1.43548i −0.141004 + 0.165755i
\(76\) 0 0
\(77\) −5.58962 + 10.4819i −0.636996 + 1.19452i
\(78\) 0 0
\(79\) 8.63038 11.8787i 0.970994 1.33646i 0.0294502 0.999566i \(-0.490624\pi\)
0.941543 0.336892i \(-0.109376\pi\)
\(80\) 0 0
\(81\) 0.0710170 + 8.99972i 0.00789078 + 0.999969i
\(82\) 0 0
\(83\) −2.92652 + 2.12624i −0.321227 + 0.233385i −0.736699 0.676221i \(-0.763617\pi\)
0.415472 + 0.909606i \(0.363617\pi\)
\(84\) 0 0
\(85\) 2.72153 + 0.884280i 0.295192 + 0.0959136i
\(86\) 0 0
\(87\) −0.332473 + 4.33375i −0.0356448 + 0.464627i
\(88\) 0 0
\(89\) 12.1910i 1.29225i −0.763234 0.646123i \(-0.776389\pi\)
0.763234 0.646123i \(-0.223611\pi\)
\(90\) 0 0
\(91\) −4.30902 + 13.2618i −0.451708 + 1.39021i
\(92\) 0 0
\(93\) −4.58200 7.44414i −0.475131 0.771921i
\(94\) 0 0
\(95\) 4.03445 + 12.4168i 0.413926 + 1.27393i
\(96\) 0 0
\(97\) −2.49831 1.81513i −0.253665 0.184298i 0.453685 0.891162i \(-0.350109\pi\)
−0.707349 + 0.706864i \(0.750109\pi\)
\(98\) 0 0
\(99\) −9.94880 0.146440i −0.999892 0.0147177i
\(100\) 0 0
\(101\) 2.92652 + 2.12624i 0.291200 + 0.211569i 0.723788 0.690023i \(-0.242400\pi\)
−0.432588 + 0.901592i \(0.642400\pi\)
\(102\) 0 0
\(103\) 1.67101 + 5.14283i 0.164649 + 0.506738i 0.999010 0.0444801i \(-0.0141631\pi\)
−0.834361 + 0.551218i \(0.814163\pi\)
\(104\) 0 0
\(105\) −8.02362 13.0356i −0.783025 1.27214i
\(106\) 0 0
\(107\) 3.03750 9.34846i 0.293646 0.903749i −0.690027 0.723784i \(-0.742401\pi\)
0.983673 0.179966i \(-0.0575987\pi\)
\(108\) 0 0
\(109\) 17.2330i 1.65062i −0.564681 0.825310i \(-0.691001\pi\)
0.564681 0.825310i \(-0.308999\pi\)
\(110\) 0 0
\(111\) 0.0529733 0.690502i 0.00502800 0.0655395i
\(112\) 0 0
\(113\) 11.8430 + 3.84801i 1.11409 + 0.361991i 0.807510 0.589854i \(-0.200815\pi\)
0.306582 + 0.951844i \(0.400815\pi\)
\(114\) 0 0
\(115\) −14.1999 + 10.3168i −1.32414 + 0.962047i
\(116\) 0 0
\(117\) −11.5285 + 1.87259i −1.06581 + 0.173121i
\(118\) 0 0
\(119\) −2.44160 + 3.36058i −0.223821 + 0.308064i
\(120\) 0 0
\(121\) 0.410506 10.9923i 0.0373187 0.999303i
\(122\) 0 0
\(123\) −12.6403 + 14.8591i −1.13974 + 1.33980i
\(124\) 0 0
\(125\) −9.17987 + 2.98272i −0.821072 + 0.266783i
\(126\) 0 0
\(127\) 2.69400 + 3.70797i 0.239053 + 0.329029i 0.911640 0.410990i \(-0.134817\pi\)
−0.672587 + 0.740018i \(0.734817\pi\)
\(128\) 0 0
\(129\) −0.866211 + 2.10294i −0.0762656 + 0.185154i
\(130\) 0 0
\(131\) 9.77772 0.854284 0.427142 0.904185i \(-0.359520\pi\)
0.427142 + 0.904185i \(0.359520\pi\)
\(132\) 0 0
\(133\) −18.9518 −1.64333
\(134\) 0 0
\(135\) 6.63414 10.9712i 0.570976 0.944247i
\(136\) 0 0
\(137\) 5.82713 + 8.02035i 0.497845 + 0.685225i 0.981811 0.189862i \(-0.0608041\pi\)
−0.483966 + 0.875087i \(0.660804\pi\)
\(138\) 0 0
\(139\) 10.0684 3.27143i 0.853993 0.277479i 0.150875 0.988553i \(-0.451791\pi\)
0.703117 + 0.711074i \(0.251791\pi\)
\(140\) 0 0
\(141\) 7.87008 + 6.69487i 0.662780 + 0.563810i
\(142\) 0 0
\(143\) −1.78156 12.7888i −0.148982 1.06945i
\(144\) 0 0
\(145\) 3.63945 5.00928i 0.302240 0.415998i
\(146\) 0 0
\(147\) 9.81178 2.37608i 0.809262 0.195976i
\(148\) 0 0
\(149\) −6.46004 + 4.69349i −0.529227 + 0.384506i −0.820069 0.572265i \(-0.806065\pi\)
0.290841 + 0.956771i \(0.406065\pi\)
\(150\) 0 0
\(151\) −8.01167 2.60315i −0.651980 0.211841i −0.0356933 0.999363i \(-0.511364\pi\)
−0.616287 + 0.787522i \(0.711364\pi\)
\(152\) 0 0
\(153\) −3.43856 0.530716i −0.277991 0.0429058i
\(154\) 0 0
\(155\) 12.4524i 1.00020i
\(156\) 0 0
\(157\) −4.39155 + 13.5158i −0.350483 + 1.07868i 0.608099 + 0.793861i \(0.291932\pi\)
−0.958582 + 0.284816i \(0.908068\pi\)
\(158\) 0 0
\(159\) 3.94282 2.42688i 0.312686 0.192464i
\(160\) 0 0
\(161\) −7.87332 24.2316i −0.620505 1.90972i
\(162\) 0 0
\(163\) 6.85233 + 4.97851i 0.536716 + 0.389947i 0.822864 0.568238i \(-0.192375\pi\)
−0.286148 + 0.958185i \(0.592375\pi\)
\(164\) 0 0
\(165\) 11.9602 + 7.60665i 0.931097 + 0.592177i
\(166\) 0 0
\(167\) −13.7375 9.98086i −1.06304 0.772342i −0.0883895 0.996086i \(-0.528172\pi\)
−0.974648 + 0.223744i \(0.928172\pi\)
\(168\) 0 0
\(169\) −0.666550 2.05143i −0.0512731 0.157802i
\(170\) 0 0
\(171\) −7.26234 14.1152i −0.555365 1.07942i
\(172\) 0 0
\(173\) −2.52546 + 7.77256i −0.192007 + 0.590937i 0.807991 + 0.589194i \(0.200555\pi\)
−0.999998 + 0.00174265i \(0.999445\pi\)
\(174\) 0 0
\(175\) 3.89718i 0.294599i
\(176\) 0 0
\(177\) 21.2856 + 1.63297i 1.59992 + 0.122741i
\(178\) 0 0
\(179\) −19.5207 6.34266i −1.45905 0.474073i −0.531268 0.847204i \(-0.678284\pi\)
−0.927779 + 0.373131i \(0.878284\pi\)
\(180\) 0 0
\(181\) 4.11147 2.98716i 0.305603 0.222034i −0.424405 0.905473i \(-0.639517\pi\)
0.730008 + 0.683439i \(0.239517\pi\)
\(182\) 0 0
\(183\) 3.24251 + 13.3896i 0.239693 + 0.989788i
\(184\) 0 0
\(185\) −0.579879 + 0.798135i −0.0426335 + 0.0586800i
\(186\) 0 0
\(187\) 0.672519 3.78723i 0.0491795 0.276950i
\(188\) 0 0
\(189\) 12.1705 + 14.0802i 0.885271 + 1.02418i
\(190\) 0 0
\(191\) −0.444200 + 0.144329i −0.0321412 + 0.0104433i −0.325043 0.945699i \(-0.605379\pi\)
0.292902 + 0.956142i \(0.405379\pi\)
\(192\) 0 0
\(193\) 13.5372 + 18.6324i 0.974429 + 1.34119i 0.939778 + 0.341787i \(0.111032\pi\)
0.0346512 + 0.999399i \(0.488968\pi\)
\(194\) 0 0
\(195\) 15.3843 + 6.33684i 1.10169 + 0.453791i
\(196\) 0 0
\(197\) −15.8503 −1.12929 −0.564643 0.825335i \(-0.690986\pi\)
−0.564643 + 0.825335i \(0.690986\pi\)
\(198\) 0 0
\(199\) 12.3482 0.875342 0.437671 0.899135i \(-0.355803\pi\)
0.437671 + 0.899135i \(0.355803\pi\)
\(200\) 0 0
\(201\) −6.20642 2.55645i −0.437767 0.180318i
\(202\) 0 0
\(203\) 5.28306 + 7.27150i 0.370798 + 0.510360i
\(204\) 0 0
\(205\) 26.4304 8.58776i 1.84598 0.599795i
\(206\) 0 0
\(207\) 15.0305 15.1495i 1.04469 1.05297i
\(208\) 0 0
\(209\) 15.7825 7.67398i 1.09170 0.530821i
\(210\) 0 0
\(211\) 2.31691 3.18895i 0.159502 0.219536i −0.721785 0.692118i \(-0.756678\pi\)
0.881287 + 0.472582i \(0.156678\pi\)
\(212\) 0 0
\(213\) −1.31310 5.42231i −0.0899721 0.371531i
\(214\) 0 0
\(215\) 2.62117 1.90439i 0.178762 0.129878i
\(216\) 0 0
\(217\) −17.1913 5.58580i −1.16702 0.379189i
\(218\) 0 0
\(219\) −9.05409 0.694603i −0.611819 0.0469369i
\(220\) 0 0
\(221\) 4.51517i 0.303723i
\(222\) 0 0
\(223\) 0.0354754 0.109182i 0.00237561 0.00731138i −0.949862 0.312670i \(-0.898776\pi\)
0.952237 + 0.305359i \(0.0987765\pi\)
\(224\) 0 0
\(225\) −2.90259 + 1.49340i −0.193506 + 0.0995598i
\(226\) 0 0
\(227\) 1.98139 + 6.09809i 0.131509 + 0.404744i 0.995031 0.0995679i \(-0.0317461\pi\)
−0.863521 + 0.504312i \(0.831746\pi\)
\(228\) 0 0
\(229\) −15.2749 11.0979i −1.00939 0.733368i −0.0453123 0.998973i \(-0.514428\pi\)
−0.964082 + 0.265605i \(0.914428\pi\)
\(230\) 0 0
\(231\) −15.8664 + 13.0996i −1.04393 + 0.861890i
\(232\) 0 0
\(233\) 16.2469 + 11.8041i 1.06437 + 0.773311i 0.974892 0.222678i \(-0.0714799\pi\)
0.0894787 + 0.995989i \(0.471480\pi\)
\(234\) 0 0
\(235\) −4.54847 13.9987i −0.296709 0.913177i
\(236\) 0 0
\(237\) 21.6577 13.3307i 1.40682 0.865920i
\(238\) 0 0
\(239\) 5.00853 15.4147i 0.323975 0.997091i −0.647927 0.761703i \(-0.724364\pi\)
0.971901 0.235389i \(-0.0756363\pi\)
\(240\) 0 0
\(241\) 18.1990i 1.17230i 0.810202 + 0.586150i \(0.199357\pi\)
−0.810202 + 0.586150i \(0.800643\pi\)
\(242\) 0 0
\(243\) −5.82310 + 14.4600i −0.373552 + 0.927609i
\(244\) 0 0
\(245\) −13.6776 4.44411i −0.873828 0.283924i
\(246\) 0 0
\(247\) 16.6658 12.1084i 1.06042 0.770440i
\(248\) 0 0
\(249\) −6.08947 + 1.47466i −0.385904 + 0.0934530i
\(250\) 0 0
\(251\) −1.62300 + 2.23387i −0.102443 + 0.141001i −0.857161 0.515049i \(-0.827774\pi\)
0.754718 + 0.656050i \(0.227774\pi\)
\(252\) 0 0
\(253\) 16.3685 + 16.9912i 1.02908 + 1.06823i
\(254\) 0 0
\(255\) 3.77523 + 3.21150i 0.236414 + 0.201112i
\(256\) 0 0
\(257\) −24.1449 + 7.84517i −1.50612 + 0.489368i −0.941796 0.336185i \(-0.890863\pi\)
−0.564324 + 0.825553i \(0.690863\pi\)
\(258\) 0 0
\(259\) −0.841756 1.15858i −0.0523042 0.0719905i
\(260\) 0 0
\(261\) −3.39130 + 6.72122i −0.209916 + 0.416033i
\(262\) 0 0
\(263\) −21.5021 −1.32588 −0.662938 0.748674i \(-0.730691\pi\)
−0.662938 + 0.748674i \(0.730691\pi\)
\(264\) 0 0
\(265\) −6.59549 −0.405158
\(266\) 0 0
\(267\) 8.04204 19.5240i 0.492165 1.19485i
\(268\) 0 0
\(269\) −9.94281 13.6851i −0.606224 0.834395i 0.390036 0.920799i \(-0.372462\pi\)
−0.996260 + 0.0864040i \(0.972462\pi\)
\(270\) 0 0
\(271\) −23.7625 + 7.72091i −1.44347 + 0.469012i −0.922977 0.384854i \(-0.874252\pi\)
−0.520493 + 0.853866i \(0.674252\pi\)
\(272\) 0 0
\(273\) −15.6493 + 18.3964i −0.947141 + 1.11340i
\(274\) 0 0
\(275\) −1.57805 3.24544i −0.0951597 0.195707i
\(276\) 0 0
\(277\) −2.78013 + 3.82652i −0.167042 + 0.229913i −0.884329 0.466865i \(-0.845384\pi\)
0.717287 + 0.696778i \(0.245384\pi\)
\(278\) 0 0
\(279\) −2.42745 14.9445i −0.145328 0.894702i
\(280\) 0 0
\(281\) 13.0447 9.47749i 0.778179 0.565380i −0.126253 0.991998i \(-0.540295\pi\)
0.904432 + 0.426618i \(0.140295\pi\)
\(282\) 0 0
\(283\) −22.9146 7.44542i −1.36213 0.442584i −0.465379 0.885112i \(-0.654082\pi\)
−0.896755 + 0.442527i \(0.854082\pi\)
\(284\) 0 0
\(285\) −1.72974 + 22.5470i −0.102461 + 1.33557i
\(286\) 0 0
\(287\) 40.3410i 2.38125i
\(288\) 0 0
\(289\) −4.83765 + 14.8888i −0.284568 + 0.875809i
\(290\) 0 0
\(291\) −2.80368 4.55500i −0.164355 0.267019i
\(292\) 0 0
\(293\) −4.60821 14.1826i −0.269215 0.828558i −0.990692 0.136120i \(-0.956537\pi\)
0.721478 0.692438i \(-0.243463\pi\)
\(294\) 0 0
\(295\) −24.6035 17.8755i −1.43247 1.04075i
\(296\) 0 0
\(297\) −15.8365 6.79744i −0.918927 0.394427i
\(298\) 0 0
\(299\) 22.4053 + 16.2784i 1.29573 + 0.941404i
\(300\) 0 0
\(301\) 1.45335 + 4.47294i 0.0837695 + 0.257816i
\(302\) 0 0
\(303\) 3.28424 + 5.33573i 0.188674 + 0.306530i
\(304\) 0 0
\(305\) 6.06463 18.6650i 0.347260 1.06876i
\(306\) 0 0
\(307\) 7.86496i 0.448877i −0.974488 0.224439i \(-0.927945\pi\)
0.974488 0.224439i \(-0.0720548\pi\)
\(308\) 0 0
\(309\) −0.716431 + 9.33861i −0.0407563 + 0.531255i
\(310\) 0 0
\(311\) 9.19784 + 2.98856i 0.521562 + 0.169466i 0.557954 0.829872i \(-0.311587\pi\)
−0.0363921 + 0.999338i \(0.511587\pi\)
\(312\) 0 0
\(313\) −7.32629 + 5.32286i −0.414106 + 0.300866i −0.775262 0.631640i \(-0.782382\pi\)
0.361156 + 0.932505i \(0.382382\pi\)
\(314\) 0 0
\(315\) −4.25075 26.1695i −0.239503 1.47449i
\(316\) 0 0
\(317\) 2.48353 3.41829i 0.139489 0.191990i −0.733557 0.679628i \(-0.762141\pi\)
0.873046 + 0.487638i \(0.162141\pi\)
\(318\) 0 0
\(319\) −7.34393 3.91625i −0.411181 0.219268i
\(320\) 0 0
\(321\) 11.0315 12.9679i 0.615717 0.723798i
\(322\) 0 0
\(323\) 5.83627 1.89632i 0.324739 0.105514i
\(324\) 0 0
\(325\) −2.48992 3.42709i −0.138116 0.190101i
\(326\) 0 0
\(327\) 11.3681 27.5988i 0.628655 1.52622i
\(328\) 0 0
\(329\) 21.3664 1.17797
\(330\) 0 0
\(331\) 24.5669 1.35032 0.675159 0.737672i \(-0.264075\pi\)
0.675159 + 0.737672i \(0.264075\pi\)
\(332\) 0 0
\(333\) 0.540340 1.07090i 0.0296104 0.0586850i
\(334\) 0 0
\(335\) 5.62043 + 7.73586i 0.307077 + 0.422655i
\(336\) 0 0
\(337\) 4.71231 1.53112i 0.256696 0.0834056i −0.177842 0.984059i \(-0.556912\pi\)
0.434538 + 0.900653i \(0.356912\pi\)
\(338\) 0 0
\(339\) 16.4282 + 13.9751i 0.892259 + 0.759022i
\(340\) 0 0
\(341\) 16.5782 2.30945i 0.897758 0.125064i
\(342\) 0 0
\(343\) −2.46617 + 3.39439i −0.133160 + 0.183280i
\(344\) 0 0
\(345\) −29.5469 + 7.15526i −1.59075 + 0.385226i
\(346\) 0 0
\(347\) −1.56203 + 1.13488i −0.0838542 + 0.0609237i −0.628922 0.777468i \(-0.716504\pi\)
0.545068 + 0.838392i \(0.316504\pi\)
\(348\) 0 0
\(349\) 12.5123 + 4.06551i 0.669771 + 0.217622i 0.624111 0.781335i \(-0.285461\pi\)
0.0456592 + 0.998957i \(0.485461\pi\)
\(350\) 0 0
\(351\) −19.6983 4.60602i −1.05142 0.245851i
\(352\) 0 0
\(353\) 19.4850i 1.03708i 0.855052 + 0.518542i \(0.173525\pi\)
−0.855052 + 0.518542i \(0.826475\pi\)
\(354\) 0 0
\(355\) −2.45596 + 7.55867i −0.130349 + 0.401172i
\(356\) 0 0
\(357\) −6.12713 + 3.77135i −0.324282 + 0.199601i
\(358\) 0 0
\(359\) 3.52666 + 10.8539i 0.186130 + 0.572849i 0.999966 0.00824573i \(-0.00262473\pi\)
−0.813836 + 0.581094i \(0.802625\pi\)
\(360\) 0 0
\(361\) 7.27938 + 5.28878i 0.383125 + 0.278357i
\(362\) 0 0
\(363\) 7.90874 17.3335i 0.415101 0.909775i
\(364\) 0 0
\(365\) 10.4654 + 7.60356i 0.547784 + 0.397989i
\(366\) 0 0
\(367\) 7.47211 + 22.9968i 0.390041 + 1.20042i 0.932757 + 0.360506i \(0.117396\pi\)
−0.542716 + 0.839916i \(0.682604\pi\)
\(368\) 0 0
\(369\) −30.0457 + 15.4587i −1.56412 + 0.804746i
\(370\) 0 0
\(371\) 2.95855 9.10548i 0.153600 0.472733i
\(372\) 0 0
\(373\) 29.4637i 1.52557i −0.646650 0.762787i \(-0.723830\pi\)
0.646650 0.762787i \(-0.276170\pi\)
\(374\) 0 0
\(375\) −16.6693 1.27882i −0.860797 0.0660379i
\(376\) 0 0
\(377\) −9.29160 3.01902i −0.478542 0.155488i
\(378\) 0 0
\(379\) 13.7061 9.95804i 0.704033 0.511510i −0.177210 0.984173i \(-0.556707\pi\)
0.881243 + 0.472663i \(0.156707\pi\)
\(380\) 0 0
\(381\) 1.86843 + 7.71550i 0.0957227 + 0.395277i
\(382\) 0 0
\(383\) −2.43171 + 3.34696i −0.124254 + 0.171021i −0.866612 0.498982i \(-0.833707\pi\)
0.742358 + 0.670003i \(0.233707\pi\)
\(384\) 0 0
\(385\) 29.0303 4.04412i 1.47952 0.206107i
\(386\) 0 0
\(387\) −2.77449 + 2.79647i −0.141035 + 0.142153i
\(388\) 0 0
\(389\) 0.812483 0.263992i 0.0411945 0.0133849i −0.288347 0.957526i \(-0.593106\pi\)
0.329542 + 0.944141i \(0.393106\pi\)
\(390\) 0 0
\(391\) 4.84923 + 6.67439i 0.245236 + 0.337538i
\(392\) 0 0
\(393\) 15.6591 + 6.45006i 0.789899 + 0.325363i
\(394\) 0 0
\(395\) −36.2286 −1.82286
\(396\) 0 0
\(397\) −6.51344 −0.326900 −0.163450 0.986552i \(-0.552262\pi\)
−0.163450 + 0.986552i \(0.552262\pi\)
\(398\) 0 0
\(399\) −30.3516 12.5019i −1.51948 0.625880i
\(400\) 0 0
\(401\) 2.76297 + 3.80290i 0.137976 + 0.189908i 0.872413 0.488769i \(-0.162554\pi\)
−0.734437 + 0.678676i \(0.762554\pi\)
\(402\) 0 0
\(403\) 18.6865 6.07160i 0.930839 0.302448i
\(404\) 0 0
\(405\) 17.8620 13.1941i 0.887569 0.655619i
\(406\) 0 0
\(407\) 1.17012 + 0.623981i 0.0580006 + 0.0309296i
\(408\) 0 0
\(409\) −0.453254 + 0.623851i −0.0224120 + 0.0308474i −0.820076 0.572255i \(-0.806069\pi\)
0.797664 + 0.603102i \(0.206069\pi\)
\(410\) 0 0
\(411\) 4.04143 + 16.6887i 0.199349 + 0.823191i
\(412\) 0 0
\(413\) 35.7146 25.9482i 1.75740 1.27683i
\(414\) 0 0
\(415\) 8.48868 + 2.75814i 0.416693 + 0.135392i
\(416\) 0 0
\(417\) 18.2828 + 1.40260i 0.895310 + 0.0686856i
\(418\) 0 0
\(419\) 11.7786i 0.575422i −0.957717 0.287711i \(-0.907106\pi\)
0.957717 0.287711i \(-0.0928943\pi\)
\(420\) 0 0
\(421\) 4.31809 13.2897i 0.210451 0.647701i −0.788994 0.614400i \(-0.789398\pi\)
0.999445 0.0333010i \(-0.0106020\pi\)
\(422\) 0 0
\(423\) 8.18761 + 15.9136i 0.398095 + 0.773744i
\(424\) 0 0
\(425\) −0.389951 1.20015i −0.0189154 0.0582157i
\(426\) 0 0
\(427\) 23.0478 + 16.7452i 1.11536 + 0.810356i
\(428\) 0 0
\(429\) 5.58317 21.6566i 0.269558 1.04559i
\(430\) 0 0
\(431\) 6.79130 + 4.93417i 0.327126 + 0.237671i 0.739210 0.673475i \(-0.235199\pi\)
−0.412084 + 0.911146i \(0.635199\pi\)
\(432\) 0 0
\(433\) −0.0797922 0.245575i −0.00383457 0.0118016i 0.949121 0.314912i \(-0.101975\pi\)
−0.952955 + 0.303110i \(0.901975\pi\)
\(434\) 0 0
\(435\) 9.13309 5.62158i 0.437898 0.269534i
\(436\) 0 0
\(437\) −11.6314 + 35.7977i −0.556404 + 1.71244i
\(438\) 0 0
\(439\) 21.7453i 1.03785i 0.854821 + 0.518923i \(0.173667\pi\)
−0.854821 + 0.518923i \(0.826333\pi\)
\(440\) 0 0
\(441\) 17.2811 + 2.66721i 0.822910 + 0.127010i
\(442\) 0 0
\(443\) −0.829709 0.269589i −0.0394207 0.0128086i 0.289240 0.957257i \(-0.406597\pi\)
−0.328661 + 0.944448i \(0.606597\pi\)
\(444\) 0 0
\(445\) −24.3354 + 17.6807i −1.15361 + 0.838144i
\(446\) 0 0
\(447\) −13.4420 + 3.25519i −0.635784 + 0.153965i
\(448\) 0 0
\(449\) 8.71051 11.9890i 0.411074 0.565795i −0.552406 0.833575i \(-0.686290\pi\)
0.963480 + 0.267780i \(0.0862901\pi\)
\(450\) 0 0
\(451\) −16.3349 33.5946i −0.769180 1.58191i
\(452\) 0 0
\(453\) −11.1136 9.45402i −0.522160 0.444189i
\(454\) 0 0
\(455\) 32.7222 10.6321i 1.53404 0.498440i
\(456\) 0 0
\(457\) −20.3100 27.9544i −0.950064 1.30765i −0.951499 0.307652i \(-0.900457\pi\)
0.00143531 0.999999i \(-0.499543\pi\)
\(458\) 0 0
\(459\) −5.15679 3.11826i −0.240698 0.145548i
\(460\) 0 0
\(461\) −23.7180 −1.10466 −0.552328 0.833627i \(-0.686260\pi\)
−0.552328 + 0.833627i \(0.686260\pi\)
\(462\) 0 0
\(463\) −22.1878 −1.03116 −0.515578 0.856843i \(-0.672423\pi\)
−0.515578 + 0.856843i \(0.672423\pi\)
\(464\) 0 0
\(465\) −8.21449 + 19.9427i −0.380938 + 0.924821i
\(466\) 0 0
\(467\) 0.774712 + 1.06630i 0.0358494 + 0.0493424i 0.826565 0.562841i \(-0.190292\pi\)
−0.790716 + 0.612183i \(0.790292\pi\)
\(468\) 0 0
\(469\) −13.2010 + 4.28926i −0.609565 + 0.198060i
\(470\) 0 0
\(471\) −15.9491 + 18.7487i −0.734894 + 0.863895i
\(472\) 0 0
\(473\) −3.02148 3.13643i −0.138928 0.144213i
\(474\) 0 0
\(475\) 3.38409 4.65780i 0.155273 0.213714i
\(476\) 0 0
\(477\) 7.91541 1.28571i 0.362422 0.0588687i
\(478\) 0 0
\(479\) 3.61934 2.62960i 0.165372 0.120150i −0.502021 0.864855i \(-0.667410\pi\)
0.667393 + 0.744706i \(0.267410\pi\)
\(480\) 0 0
\(481\) 1.48044 + 0.481025i 0.0675024 + 0.0219328i
\(482\) 0 0
\(483\) 3.37562 44.0009i 0.153596 2.00211i
\(484\) 0 0
\(485\) 7.61954i 0.345985i
\(486\) 0 0
\(487\) −6.33410 + 19.4943i −0.287025 + 0.883373i 0.698759 + 0.715357i \(0.253736\pi\)
−0.985784 + 0.168016i \(0.946264\pi\)
\(488\) 0 0
\(489\) 7.68991 + 12.4934i 0.347750 + 0.564972i
\(490\) 0 0
\(491\) 4.63109 + 14.2530i 0.208998 + 0.643231i 0.999525 + 0.0308038i \(0.00980670\pi\)
−0.790527 + 0.612427i \(0.790193\pi\)
\(492\) 0 0
\(493\) −2.35452 1.71066i −0.106042 0.0770442i
\(494\) 0 0
\(495\) 14.1365 + 20.0719i 0.635386 + 0.902164i
\(496\) 0 0
\(497\) −9.33352 6.78120i −0.418666 0.304178i
\(498\) 0 0
\(499\) 6.64060 + 20.4377i 0.297274 + 0.914916i 0.982448 + 0.186537i \(0.0597263\pi\)
−0.685174 + 0.728380i \(0.740274\pi\)
\(500\) 0 0
\(501\) −15.4166 25.0466i −0.688765 1.11900i
\(502\) 0 0
\(503\) −5.10961 + 15.7258i −0.227826 + 0.701177i 0.770166 + 0.637843i \(0.220173\pi\)
−0.997992 + 0.0633335i \(0.979827\pi\)
\(504\) 0 0
\(505\) 8.92553i 0.397181i
\(506\) 0 0
\(507\) 0.285778 3.72509i 0.0126918 0.165437i
\(508\) 0 0
\(509\) −9.86951 3.20680i −0.437459 0.142139i 0.0820042 0.996632i \(-0.473868\pi\)
−0.519463 + 0.854493i \(0.673868\pi\)
\(510\) 0 0
\(511\) −15.1917 + 11.0374i −0.672039 + 0.488265i
\(512\) 0 0
\(513\) −2.31936 27.3964i −0.102402 1.20958i
\(514\) 0 0
\(515\) 7.84251 10.7943i 0.345582 0.475653i
\(516\) 0 0
\(517\) −17.7932 + 8.65170i −0.782546 + 0.380501i
\(518\) 0 0
\(519\) −9.17187 + 10.7819i −0.402600 + 0.473272i
\(520\) 0 0
\(521\) −8.01021 + 2.60268i −0.350934 + 0.114025i −0.479179 0.877717i \(-0.659066\pi\)
0.128245 + 0.991742i \(0.459066\pi\)
\(522\) 0 0
\(523\) 7.81238 + 10.7528i 0.341612 + 0.470188i 0.944911 0.327327i \(-0.106148\pi\)
−0.603300 + 0.797515i \(0.706148\pi\)
\(524\) 0 0
\(525\) −2.57085 + 6.24137i −0.112201 + 0.272396i
\(526\) 0 0
\(527\) 5.85304 0.254962
\(528\) 0 0
\(529\) −27.6026 −1.20011
\(530\) 0 0
\(531\) 33.0118 + 16.6566i 1.43259 + 0.722837i
\(532\) 0 0
\(533\) −25.7741 35.4749i −1.11640 1.53659i
\(534\) 0 0
\(535\) −23.0664 + 7.49473i −0.997248 + 0.324026i
\(536\) 0 0
\(537\) −27.0786 23.0351i −1.16853 0.994036i
\(538\) 0 0
\(539\) −3.37987 + 19.0334i −0.145581 + 0.819828i
\(540\) 0 0
\(541\) 4.63993 6.38631i 0.199486 0.274569i −0.697541 0.716545i \(-0.745722\pi\)
0.897027 + 0.441976i \(0.145722\pi\)
\(542\) 0 0
\(543\) 8.55509 2.07175i 0.367134 0.0889075i
\(544\) 0 0
\(545\) −34.4000 + 24.9930i −1.47353 + 1.07058i
\(546\) 0 0
\(547\) 12.8970 + 4.19049i 0.551436 + 0.179172i 0.571464 0.820627i \(-0.306376\pi\)
−0.0200283 + 0.999799i \(0.506376\pi\)
\(548\) 0 0
\(549\) −3.63979 + 23.5826i −0.155343 + 1.00648i
\(550\) 0 0
\(551\) 13.2782i 0.565671i
\(552\) 0 0
\(553\) 16.2511 50.0157i 0.691067 2.12689i
\(554\) 0 0
\(555\) −1.45519 + 0.895693i −0.0617693 + 0.0380201i
\(556\) 0 0
\(557\) 4.96236 + 15.2726i 0.210262 + 0.647119i 0.999456 + 0.0329757i \(0.0104984\pi\)
−0.789194 + 0.614143i \(0.789502\pi\)
\(558\) 0 0
\(559\) −4.13582 3.00485i −0.174927 0.127092i
\(560\) 0 0
\(561\) 3.57537 5.62166i 0.150952 0.237346i
\(562\) 0 0
\(563\) −25.0393 18.1921i −1.05528 0.766707i −0.0820716 0.996626i \(-0.526154\pi\)
−0.973210 + 0.229920i \(0.926154\pi\)
\(564\) 0 0
\(565\) −9.49460 29.2214i −0.399441 1.22935i
\(566\) 0 0
\(567\) 10.2029 + 30.5780i 0.428480 + 1.28416i
\(568\) 0 0
\(569\) 11.2044 34.4836i 0.469713 1.44563i −0.383245 0.923647i \(-0.625193\pi\)
0.852957 0.521980i \(-0.174807\pi\)
\(570\) 0 0
\(571\) 4.13275i 0.172950i 0.996254 + 0.0864752i \(0.0275603\pi\)
−0.996254 + 0.0864752i \(0.972440\pi\)
\(572\) 0 0
\(573\) −0.806601 0.0618801i −0.0336962 0.00258508i
\(574\) 0 0
\(575\) 7.36128 + 2.39183i 0.306987 + 0.0997460i
\(576\) 0 0
\(577\) 8.40294 6.10509i 0.349819 0.254158i −0.398974 0.916962i \(-0.630634\pi\)
0.748793 + 0.662804i \(0.230634\pi\)
\(578\) 0 0
\(579\) 9.38878 + 38.7700i 0.390184 + 1.61123i
\(580\) 0 0
\(581\) −7.61556 + 10.4819i −0.315946 + 0.434863i
\(582\) 0 0
\(583\) 1.22321 + 8.78071i 0.0506603 + 0.363660i
\(584\) 0 0
\(585\) 20.4578 + 20.2970i 0.845828 + 0.839180i
\(586\) 0 0
\(587\) −21.9463 + 7.13078i −0.905821 + 0.294319i −0.724637 0.689130i \(-0.757993\pi\)
−0.181183 + 0.983449i \(0.557993\pi\)
\(588\) 0 0
\(589\) 15.6962 + 21.6040i 0.646751 + 0.890176i
\(590\) 0 0
\(591\) −25.3844 10.4559i −1.04418 0.430100i
\(592\) 0 0
\(593\) 35.0442 1.43909 0.719546 0.694445i \(-0.244350\pi\)
0.719546 + 0.694445i \(0.244350\pi\)
\(594\) 0 0
\(595\) 10.2494 0.420183
\(596\) 0 0
\(597\) 19.7758 + 8.14574i 0.809370 + 0.333383i
\(598\) 0 0
\(599\) −9.40748 12.9483i −0.384379 0.529053i 0.572359 0.820003i \(-0.306028\pi\)
−0.956738 + 0.290951i \(0.906028\pi\)
\(600\) 0 0
\(601\) −1.24254 + 0.403725i −0.0506841 + 0.0164683i −0.334249 0.942485i \(-0.608483\pi\)
0.283565 + 0.958953i \(0.408483\pi\)
\(602\) 0 0
\(603\) −8.25323 8.18836i −0.336098 0.333456i
\(604\) 0 0
\(605\) −22.5379 + 15.1228i −0.916298 + 0.614829i
\(606\) 0 0
\(607\) 19.2742 26.5287i 0.782318 1.07677i −0.212705 0.977117i \(-0.568227\pi\)
0.995022 0.0996514i \(-0.0317727\pi\)
\(608\) 0 0
\(609\) 3.66409 + 15.1305i 0.148476 + 0.613117i
\(610\) 0 0
\(611\) −18.7891 + 13.6511i −0.760127 + 0.552265i
\(612\) 0 0
\(613\) 25.6908 + 8.34745i 1.03764 + 0.337150i 0.777807 0.628503i \(-0.216332\pi\)
0.259835 + 0.965653i \(0.416332\pi\)
\(614\) 0 0
\(615\) 47.9937 + 3.68193i 1.93529 + 0.148470i
\(616\) 0 0
\(617\) 39.1068i 1.57438i −0.616711 0.787190i \(-0.711535\pi\)
0.616711 0.787190i \(-0.288465\pi\)
\(618\) 0 0
\(619\) −5.63561 + 17.3446i −0.226514 + 0.697139i 0.771620 + 0.636083i \(0.219447\pi\)
−0.998134 + 0.0610553i \(0.980553\pi\)
\(620\) 0 0
\(621\) 34.0651 14.3470i 1.36699 0.575726i
\(622\) 0 0
\(623\) −13.4931 41.5275i −0.540589 1.66376i
\(624\) 0 0
\(625\) 23.6690 + 17.1965i 0.946760 + 0.687861i
\(626\) 0 0
\(627\) 30.3381 1.87877i 1.21159 0.0750308i
\(628\) 0 0
\(629\) 0.375149 + 0.272561i 0.0149582 + 0.0108677i
\(630\) 0 0
\(631\) −4.06842 12.5213i −0.161961 0.498466i 0.836838 0.547450i \(-0.184402\pi\)
−0.998800 + 0.0489844i \(0.984402\pi\)
\(632\) 0 0
\(633\) 5.81420 3.57874i 0.231094 0.142242i
\(634\) 0 0
\(635\) 3.49463 10.7554i 0.138680 0.426813i
\(636\) 0 0
\(637\) 22.6918i 0.899082i
\(638\) 0 0
\(639\) 1.47399 9.55010i 0.0583100 0.377796i
\(640\) 0 0
\(641\) 14.8644 + 4.82975i 0.587110 + 0.190764i 0.587483 0.809236i \(-0.300119\pi\)
−0.000372988 1.00000i \(0.500119\pi\)
\(642\) 0 0
\(643\) 31.3232 22.7576i 1.23527 0.897473i 0.237992 0.971267i \(-0.423511\pi\)
0.997273 + 0.0737942i \(0.0235108\pi\)
\(644\) 0 0
\(645\) 5.45410 1.32080i 0.214755 0.0520064i
\(646\) 0 0
\(647\) −10.1349 + 13.9495i −0.398444 + 0.548411i −0.960353 0.278788i \(-0.910067\pi\)
0.561909 + 0.827199i \(0.310067\pi\)
\(648\) 0 0
\(649\) −19.2350 + 36.0703i −0.755039 + 1.41588i
\(650\) 0 0
\(651\) −23.8473 20.2863i −0.934650 0.795083i
\(652\) 0 0
\(653\) 9.51038 3.09011i 0.372170 0.120925i −0.116959 0.993137i \(-0.537315\pi\)
0.489129 + 0.872211i \(0.337315\pi\)
\(654\) 0 0
\(655\) −14.1807 19.5180i −0.554084 0.762632i
\(656\) 0 0
\(657\) −14.0420 7.08512i −0.547831 0.276417i
\(658\) 0 0
\(659\) 28.8109 1.12231 0.561157 0.827710i \(-0.310357\pi\)
0.561157 + 0.827710i \(0.310357\pi\)
\(660\) 0 0
\(661\) 45.7955 1.78124 0.890620 0.454748i \(-0.150271\pi\)
0.890620 + 0.454748i \(0.150271\pi\)
\(662\) 0 0
\(663\) 2.97852 7.23109i 0.115676 0.280832i
\(664\) 0 0
\(665\) 27.4859 + 37.8311i 1.06586 + 1.46703i
\(666\) 0 0
\(667\) 16.9774 5.51628i 0.657366 0.213591i
\(668\) 0 0
\(669\) 0.128838 0.151454i 0.00498118 0.00585556i
\(670\) 0 0
\(671\) −25.9739 4.61232i −1.00271 0.178057i
\(672\) 0 0
\(673\) −13.2517 + 18.2394i −0.510817 + 0.703079i −0.984057 0.177854i \(-0.943084\pi\)
0.473240 + 0.880934i \(0.343084\pi\)
\(674\) 0 0
\(675\) −5.63368 + 0.476943i −0.216840 + 0.0183576i
\(676\) 0 0
\(677\) −4.23918 + 3.07995i −0.162925 + 0.118372i −0.666260 0.745719i \(-0.732106\pi\)
0.503335 + 0.864091i \(0.332106\pi\)
\(678\) 0 0
\(679\) −10.5192 3.41791i −0.403691 0.131167i
\(680\) 0 0
\(681\) −0.849505 + 11.0732i −0.0325531 + 0.424327i
\(682\) 0 0
\(683\) 13.6438i 0.522067i −0.965330 0.261034i \(-0.915937\pi\)
0.965330 0.261034i \(-0.0840633\pi\)
\(684\) 0 0
\(685\) 7.55889 23.2639i 0.288810 0.888867i
\(686\) 0 0
\(687\) −17.1420 27.8497i −0.654008 1.06253i
\(688\) 0 0
\(689\) 3.21585 + 9.89738i 0.122514 + 0.377060i
\(690\) 0 0
\(691\) −15.7684 11.4564i −0.599858 0.435822i 0.245971 0.969277i \(-0.420893\pi\)
−0.845828 + 0.533455i \(0.820893\pi\)
\(692\) 0 0
\(693\) −34.0517 + 10.5126i −1.29352 + 0.399339i
\(694\) 0 0
\(695\) −21.1326 15.3537i −0.801605 0.582400i
\(696\) 0 0
\(697\) −4.03652 12.4231i −0.152894 0.470560i
\(698\) 0 0
\(699\) 18.2328 + 29.6219i 0.689629 + 1.12040i
\(700\) 0 0
\(701\) −11.2791 + 34.7135i −0.426006 + 1.31111i 0.476022 + 0.879433i \(0.342078\pi\)
−0.902028 + 0.431678i \(0.857922\pi\)
\(702\) 0 0
\(703\) 2.11563i 0.0797926i
\(704\) 0 0
\(705\) 1.95012 25.4196i 0.0734457 0.957358i
\(706\) 0 0
\(707\) 12.3222 + 4.00373i 0.463425 + 0.150576i
\(708\) 0 0
\(709\) −22.4559 + 16.3152i −0.843351 + 0.612730i −0.923305 0.384068i \(-0.874523\pi\)
0.0799540 + 0.996799i \(0.474523\pi\)
\(710\) 0 0
\(711\) 43.4788 7.06232i 1.63058 0.264858i
\(712\) 0 0
\(713\) −21.1018 + 29.0441i −0.790268 + 1.08771i
\(714\) 0 0
\(715\) −22.9448 + 22.1039i −0.858087 + 0.826640i
\(716\) 0 0
\(717\) 18.1898 21.3828i 0.679310 0.798554i
\(718\) 0 0
\(719\) −7.12008 + 2.31345i −0.265534 + 0.0862773i −0.438758 0.898605i \(-0.644582\pi\)
0.173224 + 0.984882i \(0.444582\pi\)
\(720\) 0 0
\(721\) 11.3842 + 15.6691i 0.423971 + 0.583546i
\(722\) 0 0
\(723\) −12.0053 + 29.1459i −0.446482 + 1.08395i
\(724\) 0 0
\(725\) −2.73047 −0.101407
\(726\) 0 0
\(727\) 22.9120 0.849758 0.424879 0.905250i \(-0.360317\pi\)
0.424879 + 0.905250i \(0.360317\pi\)
\(728\) 0 0
\(729\) −18.8646 + 19.3165i −0.698688 + 0.715427i
\(730\) 0 0
\(731\) −0.895125 1.23203i −0.0331074 0.0455684i
\(732\) 0 0
\(733\) −18.4596 + 5.99790i −0.681822 + 0.221537i −0.629393 0.777087i \(-0.716696\pi\)
−0.0524291 + 0.998625i \(0.516696\pi\)
\(734\) 0 0
\(735\) −18.9731 16.1400i −0.699834 0.595331i
\(736\) 0 0
\(737\) 9.25654 8.91731i 0.340969 0.328473i
\(738\) 0 0
\(739\) −17.6574 + 24.3034i −0.649540 + 0.894014i −0.999079 0.0429071i \(-0.986338\pi\)
0.349540 + 0.936922i \(0.386338\pi\)
\(740\) 0 0
\(741\) 34.6780 8.39784i 1.27393 0.308502i
\(742\) 0 0
\(743\) 21.2863 15.4654i 0.780917 0.567369i −0.124337 0.992240i \(-0.539680\pi\)
0.905254 + 0.424871i \(0.139680\pi\)
\(744\) 0 0
\(745\) 18.7380 + 6.08836i 0.686509 + 0.223060i
\(746\) 0 0
\(747\) −10.7251 1.65534i −0.392412 0.0605659i
\(748\) 0 0
\(749\) 35.2065i 1.28642i
\(750\) 0 0
\(751\) 1.03232 3.17716i 0.0376699 0.115936i −0.930453 0.366411i \(-0.880587\pi\)
0.968123 + 0.250474i \(0.0805866\pi\)
\(752\) 0 0
\(753\) −4.07288 + 2.50693i −0.148424 + 0.0913575i
\(754\) 0 0
\(755\) 6.42302 + 19.7680i 0.233758 + 0.719432i
\(756\) 0 0
\(757\) 8.85889 + 6.43636i 0.321982 + 0.233933i 0.737021 0.675870i \(-0.236232\pi\)
−0.415039 + 0.909804i \(0.636232\pi\)
\(758\) 0 0
\(759\) 15.0058 + 38.0094i 0.544675 + 1.37965i
\(760\) 0 0
\(761\) −42.2752 30.7148i −1.53248 1.11341i −0.954842 0.297114i \(-0.903976\pi\)
−0.577634 0.816296i \(-0.696024\pi\)
\(762\) 0 0
\(763\) −19.0736 58.7024i −0.690509 2.12517i
\(764\) 0 0
\(765\) 3.92755 + 7.63365i 0.142001 + 0.275995i
\(766\) 0 0
\(767\) −14.8282 + 45.6364i −0.535414 + 1.64784i
\(768\) 0 0
\(769\) 27.2199i 0.981576i −0.871279 0.490788i \(-0.836709\pi\)
0.871279 0.490788i \(-0.163291\pi\)
\(770\) 0 0
\(771\) −43.8436 3.36355i −1.57899 0.121135i
\(772\) 0 0
\(773\) 47.2966 + 15.3676i 1.70114 + 0.552734i 0.988819 0.149119i \(-0.0476437\pi\)
0.712322 + 0.701853i \(0.247644\pi\)
\(774\) 0 0
\(775\) 4.44255 3.22770i 0.159581 0.115942i
\(776\) 0 0
\(777\) −0.583804 2.41076i −0.0209438 0.0864854i
\(778\) 0 0
\(779\) 35.0298 48.2144i 1.25507 1.72746i
\(780\) 0 0
\(781\) 10.5185 + 1.86782i 0.376381 + 0.0668360i
\(782\) 0 0
\(783\) −9.86498 + 8.52698i −0.352546 + 0.304729i
\(784\) 0 0
\(785\) 33.3489 10.8357i 1.19027 0.386743i
\(786\) 0 0
\(787\) −29.3174 40.3519i −1.04505 1.43839i −0.893021 0.450016i \(-0.851418\pi\)
−0.152032 0.988376i \(-0.548582\pi\)
\(788\) 0 0
\(789\) −34.4358 14.1843i −1.22595 0.504973i
\(790\) 0 0
\(791\) 44.6009 1.58582
\(792\) 0 0
\(793\) −30.9663 −1.09964
\(794\) 0 0
\(795\) −10.5628 4.35084i −0.374622 0.154309i
\(796\) 0 0
\(797\) −4.27271 5.88088i −0.151347 0.208311i 0.726611 0.687049i \(-0.241094\pi\)
−0.877958 + 0.478738i \(0.841094\pi\)
\(798\) 0 0
\(799\) −6.57985 + 2.13792i −0.232778 + 0.0756343i
\(800\) 0 0
\(801\) 25.7588 25.9629i 0.910143 0.917354i
\(802\) 0 0
\(803\) 8.18184 15.3430i 0.288731 0.541442i
\(804\) 0 0
\(805\) −36.9517 + 50.8597i −1.30238 + 1.79257i
\(806\) 0 0
\(807\) −6.89588 28.4758i −0.242746 1.00240i
\(808\) 0 0
\(809\) −42.3362 + 30.7591i −1.48846 + 1.08143i −0.513757 + 0.857936i \(0.671747\pi\)
−0.974705 + 0.223495i \(0.928253\pi\)
\(810\) 0 0
\(811\) −21.4029 6.95422i −0.751557 0.244196i −0.0919057 0.995768i \(-0.529296\pi\)
−0.659651 + 0.751572i \(0.729296\pi\)
\(812\) 0 0
\(813\) −43.1492 3.31028i −1.51331 0.116097i
\(814\) 0 0
\(815\) 20.8988i 0.732052i
\(816\) 0 0
\(817\) 2.14705 6.60794i 0.0751157 0.231182i
\(818\) 0 0
\(819\) −37.1981 + 19.1386i −1.29981 + 0.668757i
\(820\) 0 0
\(821\) 9.74448 + 29.9904i 0.340085 + 1.04667i 0.964163 + 0.265311i \(0.0854747\pi\)
−0.624078 + 0.781362i \(0.714525\pi\)
\(822\) 0 0
\(823\) 24.6626 + 17.9184i 0.859683 + 0.624596i 0.927799 0.373081i \(-0.121699\pi\)
−0.0681155 + 0.997677i \(0.521699\pi\)
\(824\) 0 0
\(825\) −0.386342 6.23859i −0.0134507 0.217200i
\(826\) 0 0
\(827\) 26.5754 + 19.3082i 0.924118 + 0.671411i 0.944546 0.328380i \(-0.106503\pi\)
−0.0204274 + 0.999791i \(0.506503\pi\)
\(828\) 0 0
\(829\) 11.1158 + 34.2108i 0.386066 + 1.18819i 0.935704 + 0.352786i \(0.114766\pi\)
−0.549638 + 0.835403i \(0.685234\pi\)
\(830\) 0 0
\(831\) −6.97664 + 4.29424i −0.242017 + 0.148966i
\(832\) 0 0
\(833\) −2.08887 + 6.42889i −0.0723752 + 0.222748i
\(834\) 0 0
\(835\) 41.8976i 1.44993i
\(836\) 0 0
\(837\) 5.97081 25.5350i 0.206382 0.882620i
\(838\) 0 0
\(839\) −18.1168 5.88650i −0.625460 0.203224i −0.0208973 0.999782i \(-0.506652\pi\)
−0.604563 + 0.796557i \(0.706652\pi\)
\(840\) 0 0
\(841\) 18.3669 13.3443i 0.633340 0.460149i
\(842\) 0 0
\(843\) 27.1432 6.57316i 0.934860 0.226391i
\(844\) 0 0
\(845\) −3.12831 + 4.30574i −0.107617 + 0.148122i
\(846\) 0 0
\(847\) −10.7680 37.8986i −0.369994 1.30221i
\(848\) 0 0
\(849\) −31.7865 27.0400i −1.09091 0.928010i
\(850\) 0 0
\(851\) −2.70503 + 0.878916i −0.0927271 + 0.0301288i
\(852\) 0 0
\(853\) −23.9395 32.9499i −0.819672 1.12818i −0.989758 0.142753i \(-0.954405\pi\)
0.170086 0.985429i \(-0.445595\pi\)
\(854\) 0 0
\(855\) −17.6437 + 34.9682i −0.603403 + 1.19589i
\(856\) 0 0
\(857\) 26.3250 0.899245 0.449622 0.893219i \(-0.351559\pi\)
0.449622 + 0.893219i \(0.351559\pi\)
\(858\) 0 0
\(859\) 24.9252 0.850436 0.425218 0.905091i \(-0.360197\pi\)
0.425218 + 0.905091i \(0.360197\pi\)
\(860\) 0 0
\(861\) −26.6117 + 64.6065i −0.906925 + 2.20179i
\(862\) 0 0
\(863\) 23.4553 + 32.2834i 0.798427 + 1.09894i 0.993007 + 0.118054i \(0.0376657\pi\)
−0.194580 + 0.980887i \(0.562334\pi\)
\(864\) 0 0
\(865\) 19.1780 6.23132i 0.652073 0.211871i
\(866\) 0 0
\(867\) −17.5692 + 20.6533i −0.596681 + 0.701421i
\(868\) 0 0
\(869\) 6.71902 + 48.2318i 0.227927 + 1.63615i
\(870\) 0 0
\(871\) 8.86822 12.2061i 0.300488 0.413586i
\(872\) 0 0
\(873\) −1.48534 9.14439i −0.0502710 0.309491i
\(874\) 0 0
\(875\) −27.9690 + 20.3207i −0.945525 + 0.686964i
\(876\) 0 0
\(877\) −21.9967 7.14717i −0.742776 0.241343i −0.0869063 0.996216i \(-0.527698\pi\)
−0.655870 + 0.754874i \(0.727698\pi\)
\(878\) 0 0
\(879\) 1.97573 25.7535i 0.0666399 0.868645i
\(880\) 0 0
\(881\) 18.7662i 0.632249i 0.948718 + 0.316124i \(0.102382\pi\)
−0.948718 + 0.316124i \(0.897618\pi\)
\(882\) 0 0
\(883\) 13.9546 42.9478i 0.469609 1.44531i −0.383483 0.923548i \(-0.625275\pi\)
0.853092 0.521761i \(-0.174725\pi\)
\(884\) 0 0
\(885\) −27.6108 44.8579i −0.928128 1.50788i
\(886\) 0 0
\(887\) −12.2860 37.8123i −0.412522 1.26961i −0.914449 0.404702i \(-0.867375\pi\)
0.501927 0.864910i \(-0.332625\pi\)
\(888\) 0 0
\(889\) 13.2808 + 9.64909i 0.445425 + 0.323620i
\(890\) 0 0
\(891\) −20.8783 21.3330i −0.699448 0.714683i
\(892\) 0 0
\(893\) −25.5365 18.5534i −0.854548 0.620865i
\(894\) 0 0
\(895\) 15.6499 + 48.1655i 0.523119 + 1.60999i
\(896\) 0 0
\(897\) 25.1440 + 40.8501i 0.839533 + 1.36395i
\(898\) 0 0
\(899\) 3.91358 12.0447i 0.130525 0.401715i
\(900\) 0 0
\(901\) 3.10009i 0.103279i
\(902\) 0 0
\(903\) −0.623111 + 8.12219i −0.0207358 + 0.270290i
\(904\) 0 0
\(905\) −11.9258 3.87491i −0.396425 0.128806i
\(906\) 0 0
\(907\) −39.1405 + 28.4372i −1.29964 + 0.944243i −0.999952 0.00979529i \(-0.996882\pi\)
−0.299686 + 0.954038i \(0.596882\pi\)
\(908\) 0 0
\(909\) 1.73992 + 10.7117i 0.0577096 + 0.355286i
\(910\) 0 0
\(911\) 4.26247 5.86679i 0.141222 0.194375i −0.732547 0.680716i \(-0.761669\pi\)
0.873769 + 0.486341i \(0.161669\pi\)
\(912\) 0 0
\(913\) 2.09764 11.8127i 0.0694218 0.390943i
\(914\) 0 0
\(915\) 22.0253 25.8916i 0.728135 0.855949i
\(916\) 0 0
\(917\) 33.3068 10.8220i 1.09989 0.357375i
\(918\) 0 0
\(919\) −19.5709 26.9371i −0.645585 0.888572i 0.353313 0.935505i \(-0.385055\pi\)
−0.998898 + 0.0469333i \(0.985055\pi\)
\(920\) 0 0
\(921\) 5.18827 12.5958i 0.170959 0.415046i
\(922\) 0 0
\(923\) 12.5402 0.412767
\(924\) 0 0
\(925\) 0.435050 0.0143044
\(926\) 0 0
\(927\) −7.30777 + 14.4833i −0.240019 + 0.475693i
\(928\) 0 0
\(929\) 28.3716 + 39.0502i 0.930842 + 1.28119i 0.959530 + 0.281606i \(0.0908670\pi\)
−0.0286883 + 0.999588i \(0.509133\pi\)
\(930\) 0 0
\(931\) −29.3313 + 9.53030i −0.961293 + 0.312343i
\(932\) 0 0
\(933\) 12.7590 + 10.8537i 0.417710 + 0.355336i
\(934\) 0 0
\(935\) −8.53532 + 4.15017i −0.279135 + 0.135725i
\(936\) 0 0
\(937\) −23.0348 + 31.7047i −0.752516 + 1.03575i 0.245284 + 0.969451i \(0.421119\pi\)
−0.997800 + 0.0662978i \(0.978881\pi\)
\(938\) 0 0
\(939\) −15.2445 + 3.69169i −0.497484 + 0.120474i
\(940\) 0 0
\(941\) 31.1422 22.6261i 1.01521 0.737590i 0.0499114 0.998754i \(-0.484106\pi\)
0.965295 + 0.261163i \(0.0841061\pi\)
\(942\) 0 0
\(943\) 76.1992 + 24.7586i 2.48139 + 0.806251i
\(944\) 0 0
\(945\) 10.4556 44.7149i 0.340121 1.45457i
\(946\) 0 0
\(947\) 38.1571i 1.23994i −0.784626 0.619970i \(-0.787145\pi\)
0.784626 0.619970i \(-0.212855\pi\)
\(948\) 0 0
\(949\) 6.30736 19.4120i 0.204745 0.630142i
\(950\) 0 0
\(951\) 6.23234 3.83611i 0.202097 0.124395i
\(952\) 0 0
\(953\) 3.62424 + 11.1543i 0.117401 + 0.361322i 0.992440 0.122729i \(-0.0391647\pi\)
−0.875039 + 0.484052i \(0.839165\pi\)
\(954\) 0 0
\(955\) 0.932331 + 0.677378i 0.0301695 + 0.0219194i
\(956\) 0 0
\(957\) −9.17796 11.1165i −0.296681 0.359345i
\(958\) 0 0
\(959\) 28.7265 + 20.8710i 0.927627 + 0.673960i
\(960\) 0 0
\(961\) −1.70888 5.25939i −0.0551252 0.169658i
\(962\) 0 0
\(963\) 26.2216 13.4911i 0.844978 0.434745i
\(964\) 0 0
\(965\) 17.5603 54.0451i 0.565287 1.73977i
\(966\) 0 0
\(967\) 17.9596i 0.577543i −0.957398 0.288771i \(-0.906753\pi\)
0.957398 0.288771i \(-0.0932467\pi\)
\(968\) 0 0
\(969\) 10.5978 + 0.813032i 0.340450 + 0.0261184i
\(970\) 0 0
\(971\) 31.7800 + 10.3259i 1.01987 + 0.331375i 0.770777 0.637105i \(-0.219868\pi\)
0.249091 + 0.968480i \(0.419868\pi\)
\(972\) 0 0
\(973\) 30.6762 22.2876i 0.983435 0.714507i
\(974\) 0 0
\(975\) −1.72690 7.13104i −0.0553050 0.228376i
\(976\) 0 0
\(977\) −24.4286 + 33.6231i −0.781541 + 1.07570i 0.213570 + 0.976928i \(0.431491\pi\)
−0.995110 + 0.0987706i \(0.968509\pi\)
\(978\) 0 0
\(979\) 28.0519 + 29.1191i 0.896543 + 0.930649i
\(980\) 0 0
\(981\) 36.4121 36.7006i 1.16255 1.17176i
\(982\) 0 0
\(983\) −34.0812 + 11.0737i −1.08702 + 0.353195i −0.797095 0.603854i \(-0.793631\pi\)
−0.289927 + 0.957049i \(0.593631\pi\)
\(984\) 0 0
\(985\) 22.9877 + 31.6399i 0.732450 + 1.00813i
\(986\) 0 0
\(987\) 34.2185 + 14.0948i 1.08919 + 0.448641i
\(988\) 0 0
\(989\) 9.34080 0.297020
\(990\) 0 0
\(991\) 17.1209 0.543863 0.271931 0.962317i \(-0.412338\pi\)
0.271931 + 0.962317i \(0.412338\pi\)
\(992\) 0 0
\(993\) 39.3441 + 16.2060i 1.24855 + 0.514282i
\(994\) 0 0
\(995\) −17.9087 24.6492i −0.567743 0.781431i
\(996\) 0 0
\(997\) 7.93613 2.57860i 0.251340 0.0816652i −0.180638 0.983550i \(-0.557816\pi\)
0.431977 + 0.901885i \(0.357816\pi\)
\(998\) 0 0
\(999\) 1.57180 1.35861i 0.0497296 0.0429847i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 132.2.p.a.29.4 yes 16
3.2 odd 2 inner 132.2.p.a.29.1 16
4.3 odd 2 528.2.bn.d.161.1 16
11.5 even 5 1452.2.b.e.725.7 16
11.6 odd 10 1452.2.b.e.725.8 16
11.8 odd 10 inner 132.2.p.a.41.1 yes 16
12.11 even 2 528.2.bn.d.161.4 16
33.5 odd 10 1452.2.b.e.725.5 16
33.8 even 10 inner 132.2.p.a.41.4 yes 16
33.17 even 10 1452.2.b.e.725.6 16
44.19 even 10 528.2.bn.d.305.4 16
132.107 odd 10 528.2.bn.d.305.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.p.a.29.1 16 3.2 odd 2 inner
132.2.p.a.29.4 yes 16 1.1 even 1 trivial
132.2.p.a.41.1 yes 16 11.8 odd 10 inner
132.2.p.a.41.4 yes 16 33.8 even 10 inner
528.2.bn.d.161.1 16 4.3 odd 2
528.2.bn.d.161.4 16 12.11 even 2
528.2.bn.d.305.1 16 132.107 odd 10
528.2.bn.d.305.4 16 44.19 even 10
1452.2.b.e.725.5 16 33.5 odd 10
1452.2.b.e.725.6 16 33.17 even 10
1452.2.b.e.725.7 16 11.5 even 5
1452.2.b.e.725.8 16 11.6 odd 10