Properties

Label 1305.2.r.c.476.10
Level $1305$
Weight $2$
Character 1305.476
Analytic conductor $10.420$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1305,2,Mod(476,1305)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1305.476"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1305, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.r (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 476.10
Character \(\chi\) \(=\) 1305.476
Dual form 1305.2.r.c.1061.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.251233 - 0.251233i) q^{2} +1.87376i q^{4} -1.00000 q^{5} -1.71619 q^{7} +(0.973218 + 0.973218i) q^{8} +(-0.251233 + 0.251233i) q^{10} +(-0.909719 + 0.909719i) q^{11} -7.03988i q^{13} +(-0.431163 + 0.431163i) q^{14} -3.25852 q^{16} +(-2.14351 + 2.14351i) q^{17} +(1.00494 + 1.00494i) q^{19} -1.87376i q^{20} +0.457103i q^{22} +4.56045i q^{23} +1.00000 q^{25} +(-1.76865 - 1.76865i) q^{26} -3.21573i q^{28} +(-5.36749 - 0.435991i) q^{29} +(-5.06890 - 5.06890i) q^{31} +(-2.76508 + 2.76508i) q^{32} +1.07704i q^{34} +1.71619 q^{35} +(5.64663 - 5.64663i) q^{37} +0.504949 q^{38} +(-0.973218 - 0.973218i) q^{40} +(-2.03006 - 2.03006i) q^{41} +(-1.91974 - 1.91974i) q^{43} +(-1.70460 - 1.70460i) q^{44} +(1.14574 + 1.14574i) q^{46} +(-3.96809 - 3.96809i) q^{47} -4.05470 q^{49} +(0.251233 - 0.251233i) q^{50} +13.1911 q^{52} -13.0642i q^{53} +(0.909719 - 0.909719i) q^{55} +(-1.67022 - 1.67022i) q^{56} +(-1.45803 + 1.23896i) q^{58} -4.81342i q^{59} +(2.58064 + 2.58064i) q^{61} -2.54695 q^{62} -5.12767i q^{64} +7.03988i q^{65} +3.31333i q^{67} +(-4.01643 - 4.01643i) q^{68} +(0.431163 - 0.431163i) q^{70} -5.50131 q^{71} +(5.58888 - 5.58888i) q^{73} -2.83724i q^{74} +(-1.88302 + 1.88302i) q^{76} +(1.56125 - 1.56125i) q^{77} +(-9.89566 - 9.89566i) q^{79} +3.25852 q^{80} -1.02004 q^{82} +5.54789i q^{83} +(2.14351 - 2.14351i) q^{85} -0.964604 q^{86} -1.77071 q^{88} +(-0.0286537 + 0.0286537i) q^{89} +12.0818i q^{91} -8.54520 q^{92} -1.99383 q^{94} +(-1.00494 - 1.00494i) q^{95} +(1.31577 - 1.31577i) q^{97} +(-1.01868 + 1.01868i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{5} + 8 q^{7} + 8 q^{11} - 24 q^{14} - 32 q^{16} + 16 q^{19} + 32 q^{25} - 8 q^{26} - 8 q^{29} - 8 q^{31} + 40 q^{32} - 8 q^{35} + 24 q^{37} - 24 q^{38} - 24 q^{41} + 16 q^{43} - 48 q^{44} - 64 q^{46}+ \cdots + 80 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.251233 0.251233i 0.177649 0.177649i −0.612681 0.790330i \(-0.709909\pi\)
0.790330 + 0.612681i \(0.209909\pi\)
\(3\) 0 0
\(4\) 1.87376i 0.936882i
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.71619 −0.648658 −0.324329 0.945944i \(-0.605138\pi\)
−0.324329 + 0.945944i \(0.605138\pi\)
\(8\) 0.973218 + 0.973218i 0.344085 + 0.344085i
\(9\) 0 0
\(10\) −0.251233 + 0.251233i −0.0794469 + 0.0794469i
\(11\) −0.909719 + 0.909719i −0.274291 + 0.274291i −0.830825 0.556534i \(-0.812131\pi\)
0.556534 + 0.830825i \(0.312131\pi\)
\(12\) 0 0
\(13\) 7.03988i 1.95251i −0.216620 0.976256i \(-0.569503\pi\)
0.216620 0.976256i \(-0.430497\pi\)
\(14\) −0.431163 + 0.431163i −0.115233 + 0.115233i
\(15\) 0 0
\(16\) −3.25852 −0.814629
\(17\) −2.14351 + 2.14351i −0.519877 + 0.519877i −0.917534 0.397657i \(-0.869823\pi\)
0.397657 + 0.917534i \(0.369823\pi\)
\(18\) 0 0
\(19\) 1.00494 + 1.00494i 0.230549 + 0.230549i 0.812922 0.582373i \(-0.197876\pi\)
−0.582373 + 0.812922i \(0.697876\pi\)
\(20\) 1.87376i 0.418986i
\(21\) 0 0
\(22\) 0.457103i 0.0974548i
\(23\) 4.56045i 0.950919i 0.879738 + 0.475459i \(0.157718\pi\)
−0.879738 + 0.475459i \(0.842282\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −1.76865 1.76865i −0.346861 0.346861i
\(27\) 0 0
\(28\) 3.21573i 0.607716i
\(29\) −5.36749 0.435991i −0.996717 0.0809615i
\(30\) 0 0
\(31\) −5.06890 5.06890i −0.910402 0.910402i 0.0859019 0.996304i \(-0.472623\pi\)
−0.996304 + 0.0859019i \(0.972623\pi\)
\(32\) −2.76508 + 2.76508i −0.488802 + 0.488802i
\(33\) 0 0
\(34\) 1.07704i 0.184711i
\(35\) 1.71619 0.290089
\(36\) 0 0
\(37\) 5.64663 5.64663i 0.928301 0.928301i −0.0692955 0.997596i \(-0.522075\pi\)
0.997596 + 0.0692955i \(0.0220751\pi\)
\(38\) 0.504949 0.0819136
\(39\) 0 0
\(40\) −0.973218 0.973218i −0.153879 0.153879i
\(41\) −2.03006 2.03006i −0.317042 0.317042i 0.530588 0.847630i \(-0.321971\pi\)
−0.847630 + 0.530588i \(0.821971\pi\)
\(42\) 0 0
\(43\) −1.91974 1.91974i −0.292757 0.292757i 0.545411 0.838169i \(-0.316374\pi\)
−0.838169 + 0.545411i \(0.816374\pi\)
\(44\) −1.70460 1.70460i −0.256978 0.256978i
\(45\) 0 0
\(46\) 1.14574 + 1.14574i 0.168929 + 0.168929i
\(47\) −3.96809 3.96809i −0.578805 0.578805i 0.355769 0.934574i \(-0.384219\pi\)
−0.934574 + 0.355769i \(0.884219\pi\)
\(48\) 0 0
\(49\) −4.05470 −0.579243
\(50\) 0.251233 0.251233i 0.0355297 0.0355297i
\(51\) 0 0
\(52\) 13.1911 1.82927
\(53\) 13.0642i 1.79450i −0.441519 0.897252i \(-0.645560\pi\)
0.441519 0.897252i \(-0.354440\pi\)
\(54\) 0 0
\(55\) 0.909719 0.909719i 0.122666 0.122666i
\(56\) −1.67022 1.67022i −0.223193 0.223193i
\(57\) 0 0
\(58\) −1.45803 + 1.23896i −0.191448 + 0.162683i
\(59\) 4.81342i 0.626654i −0.949645 0.313327i \(-0.898556\pi\)
0.949645 0.313327i \(-0.101444\pi\)
\(60\) 0 0
\(61\) 2.58064 + 2.58064i 0.330418 + 0.330418i 0.852745 0.522327i \(-0.174936\pi\)
−0.522327 + 0.852745i \(0.674936\pi\)
\(62\) −2.54695 −0.323463
\(63\) 0 0
\(64\) 5.12767i 0.640959i
\(65\) 7.03988i 0.873190i
\(66\) 0 0
\(67\) 3.31333i 0.404787i 0.979304 + 0.202394i \(0.0648721\pi\)
−0.979304 + 0.202394i \(0.935128\pi\)
\(68\) −4.01643 4.01643i −0.487064 0.487064i
\(69\) 0 0
\(70\) 0.431163 0.431163i 0.0515339 0.0515339i
\(71\) −5.50131 −0.652885 −0.326443 0.945217i \(-0.605850\pi\)
−0.326443 + 0.945217i \(0.605850\pi\)
\(72\) 0 0
\(73\) 5.58888 5.58888i 0.654128 0.654128i −0.299856 0.953984i \(-0.596939\pi\)
0.953984 + 0.299856i \(0.0969386\pi\)
\(74\) 2.83724i 0.329823i
\(75\) 0 0
\(76\) −1.88302 + 1.88302i −0.215998 + 0.215998i
\(77\) 1.56125 1.56125i 0.177921 0.177921i
\(78\) 0 0
\(79\) −9.89566 9.89566i −1.11335 1.11335i −0.992695 0.120654i \(-0.961501\pi\)
−0.120654 0.992695i \(-0.538499\pi\)
\(80\) 3.25852 0.364313
\(81\) 0 0
\(82\) −1.02004 −0.112644
\(83\) 5.54789i 0.608960i 0.952519 + 0.304480i \(0.0984827\pi\)
−0.952519 + 0.304480i \(0.901517\pi\)
\(84\) 0 0
\(85\) 2.14351 2.14351i 0.232496 0.232496i
\(86\) −0.964604 −0.104016
\(87\) 0 0
\(88\) −1.77071 −0.188758
\(89\) −0.0286537 + 0.0286537i −0.00303729 + 0.00303729i −0.708624 0.705587i \(-0.750684\pi\)
0.705587 + 0.708624i \(0.250684\pi\)
\(90\) 0 0
\(91\) 12.0818i 1.26651i
\(92\) −8.54520 −0.890898
\(93\) 0 0
\(94\) −1.99383 −0.205648
\(95\) −1.00494 1.00494i −0.103105 0.103105i
\(96\) 0 0
\(97\) 1.31577 1.31577i 0.133596 0.133596i −0.637146 0.770743i \(-0.719885\pi\)
0.770743 + 0.637146i \(0.219885\pi\)
\(98\) −1.01868 + 1.01868i −0.102902 + 0.102902i
\(99\) 0 0
\(100\) 1.87376i 0.187376i
\(101\) −7.63005 + 7.63005i −0.759218 + 0.759218i −0.976180 0.216962i \(-0.930385\pi\)
0.216962 + 0.976180i \(0.430385\pi\)
\(102\) 0 0
\(103\) −9.41157 −0.927349 −0.463675 0.886006i \(-0.653469\pi\)
−0.463675 + 0.886006i \(0.653469\pi\)
\(104\) 6.85134 6.85134i 0.671829 0.671829i
\(105\) 0 0
\(106\) −3.28216 3.28216i −0.318791 0.318791i
\(107\) 17.2703i 1.66958i 0.550570 + 0.834789i \(0.314411\pi\)
−0.550570 + 0.834789i \(0.685589\pi\)
\(108\) 0 0
\(109\) 0.692336i 0.0663137i 0.999450 + 0.0331569i \(0.0105561\pi\)
−0.999450 + 0.0331569i \(0.989444\pi\)
\(110\) 0.457103i 0.0435831i
\(111\) 0 0
\(112\) 5.59223 0.528416
\(113\) 1.36960 + 1.36960i 0.128841 + 0.128841i 0.768587 0.639746i \(-0.220960\pi\)
−0.639746 + 0.768587i \(0.720960\pi\)
\(114\) 0 0
\(115\) 4.56045i 0.425264i
\(116\) 0.816945 10.0574i 0.0758514 0.933806i
\(117\) 0 0
\(118\) −1.20929 1.20929i −0.111324 0.111324i
\(119\) 3.67866 3.67866i 0.337223 0.337223i
\(120\) 0 0
\(121\) 9.34482i 0.849529i
\(122\) 1.29669 0.117397
\(123\) 0 0
\(124\) 9.49793 9.49793i 0.852939 0.852939i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 11.2368 + 11.2368i 0.997108 + 0.997108i 0.999996 0.00288737i \(-0.000919079\pi\)
−0.00288737 + 0.999996i \(0.500919\pi\)
\(128\) −6.81841 6.81841i −0.602668 0.602668i
\(129\) 0 0
\(130\) 1.76865 + 1.76865i 0.155121 + 0.155121i
\(131\) 13.6435 + 13.6435i 1.19204 + 1.19204i 0.976494 + 0.215546i \(0.0691530\pi\)
0.215546 + 0.976494i \(0.430847\pi\)
\(132\) 0 0
\(133\) −1.72467 1.72467i −0.149548 0.149548i
\(134\) 0.832418 + 0.832418i 0.0719100 + 0.0719100i
\(135\) 0 0
\(136\) −4.17221 −0.357764
\(137\) 0.0372510 0.0372510i 0.00318257 0.00318257i −0.705514 0.708696i \(-0.749284\pi\)
0.708696 + 0.705514i \(0.249284\pi\)
\(138\) 0 0
\(139\) 8.16951 0.692929 0.346465 0.938063i \(-0.387382\pi\)
0.346465 + 0.938063i \(0.387382\pi\)
\(140\) 3.21573i 0.271779i
\(141\) 0 0
\(142\) −1.38211 + 1.38211i −0.115984 + 0.115984i
\(143\) 6.40431 + 6.40431i 0.535556 + 0.535556i
\(144\) 0 0
\(145\) 5.36749 + 0.435991i 0.445745 + 0.0362071i
\(146\) 2.80822i 0.232410i
\(147\) 0 0
\(148\) 10.5805 + 10.5805i 0.869708 + 0.869708i
\(149\) −14.5910 −1.19534 −0.597670 0.801743i \(-0.703907\pi\)
−0.597670 + 0.801743i \(0.703907\pi\)
\(150\) 0 0
\(151\) 8.63424i 0.702644i −0.936255 0.351322i \(-0.885732\pi\)
0.936255 0.351322i \(-0.114268\pi\)
\(152\) 1.95605i 0.158657i
\(153\) 0 0
\(154\) 0.784475i 0.0632148i
\(155\) 5.06890 + 5.06890i 0.407144 + 0.407144i
\(156\) 0 0
\(157\) 0.424954 0.424954i 0.0339150 0.0339150i −0.689946 0.723861i \(-0.742366\pi\)
0.723861 + 0.689946i \(0.242366\pi\)
\(158\) −4.97224 −0.395570
\(159\) 0 0
\(160\) 2.76508 2.76508i 0.218599 0.218599i
\(161\) 7.82658i 0.616821i
\(162\) 0 0
\(163\) −2.25740 + 2.25740i −0.176813 + 0.176813i −0.789965 0.613152i \(-0.789901\pi\)
0.613152 + 0.789965i \(0.289901\pi\)
\(164\) 3.80386 3.80386i 0.297031 0.297031i
\(165\) 0 0
\(166\) 1.39381 + 1.39381i 0.108181 + 0.108181i
\(167\) −9.73578 −0.753377 −0.376689 0.926340i \(-0.622937\pi\)
−0.376689 + 0.926340i \(0.622937\pi\)
\(168\) 0 0
\(169\) −36.5599 −2.81230
\(170\) 1.07704i 0.0826053i
\(171\) 0 0
\(172\) 3.59714 3.59714i 0.274279 0.274279i
\(173\) 2.05589 0.156306 0.0781531 0.996941i \(-0.475098\pi\)
0.0781531 + 0.996941i \(0.475098\pi\)
\(174\) 0 0
\(175\) −1.71619 −0.129732
\(176\) 2.96434 2.96434i 0.223445 0.223445i
\(177\) 0 0
\(178\) 0.0143975i 0.00107914i
\(179\) −0.506207 −0.0378357 −0.0189178 0.999821i \(-0.506022\pi\)
−0.0189178 + 0.999821i \(0.506022\pi\)
\(180\) 0 0
\(181\) 19.1979 1.42697 0.713484 0.700672i \(-0.247116\pi\)
0.713484 + 0.700672i \(0.247116\pi\)
\(182\) 3.03534 + 3.03534i 0.224994 + 0.224994i
\(183\) 0 0
\(184\) −4.43831 + 4.43831i −0.327196 + 0.327196i
\(185\) −5.64663 + 5.64663i −0.415149 + 0.415149i
\(186\) 0 0
\(187\) 3.89998i 0.285195i
\(188\) 7.43526 7.43526i 0.542272 0.542272i
\(189\) 0 0
\(190\) −0.504949 −0.0366329
\(191\) −16.1208 + 16.1208i −1.16646 + 1.16646i −0.183423 + 0.983034i \(0.558718\pi\)
−0.983034 + 0.183423i \(0.941282\pi\)
\(192\) 0 0
\(193\) −15.7585 15.7585i −1.13432 1.13432i −0.989450 0.144875i \(-0.953722\pi\)
−0.144875 0.989450i \(-0.546278\pi\)
\(194\) 0.661131i 0.0474664i
\(195\) 0 0
\(196\) 7.59755i 0.542682i
\(197\) 20.9990i 1.49612i 0.663634 + 0.748058i \(0.269013\pi\)
−0.663634 + 0.748058i \(0.730987\pi\)
\(198\) 0 0
\(199\) −4.81438 −0.341282 −0.170641 0.985333i \(-0.554584\pi\)
−0.170641 + 0.985333i \(0.554584\pi\)
\(200\) 0.973218 + 0.973218i 0.0688169 + 0.0688169i
\(201\) 0 0
\(202\) 3.83384i 0.269748i
\(203\) 9.21161 + 0.748243i 0.646528 + 0.0525163i
\(204\) 0 0
\(205\) 2.03006 + 2.03006i 0.141786 + 0.141786i
\(206\) −2.36450 + 2.36450i −0.164742 + 0.164742i
\(207\) 0 0
\(208\) 22.9396i 1.59057i
\(209\) −1.82843 −0.126475
\(210\) 0 0
\(211\) −17.6477 + 17.6477i −1.21492 + 1.21492i −0.245525 + 0.969390i \(0.578960\pi\)
−0.969390 + 0.245525i \(0.921040\pi\)
\(212\) 24.4792 1.68124
\(213\) 0 0
\(214\) 4.33886 + 4.33886i 0.296598 + 0.296598i
\(215\) 1.91974 + 1.91974i 0.130925 + 0.130925i
\(216\) 0 0
\(217\) 8.69919 + 8.69919i 0.590539 + 0.590539i
\(218\) 0.173938 + 0.173938i 0.0117806 + 0.0117806i
\(219\) 0 0
\(220\) 1.70460 + 1.70460i 0.114924 + 0.114924i
\(221\) 15.0901 + 15.0901i 1.01507 + 1.01507i
\(222\) 0 0
\(223\) 2.05201 0.137413 0.0687065 0.997637i \(-0.478113\pi\)
0.0687065 + 0.997637i \(0.478113\pi\)
\(224\) 4.74540 4.74540i 0.317066 0.317066i
\(225\) 0 0
\(226\) 0.688178 0.0457769
\(227\) 20.7569i 1.37768i −0.724913 0.688841i \(-0.758120\pi\)
0.724913 0.688841i \(-0.241880\pi\)
\(228\) 0 0
\(229\) −12.0703 + 12.0703i −0.797626 + 0.797626i −0.982721 0.185095i \(-0.940741\pi\)
0.185095 + 0.982721i \(0.440741\pi\)
\(230\) −1.14574 1.14574i −0.0755476 0.0755476i
\(231\) 0 0
\(232\) −4.79942 5.64805i −0.315097 0.370813i
\(233\) 8.71593i 0.570999i 0.958379 + 0.285500i \(0.0921596\pi\)
−0.958379 + 0.285500i \(0.907840\pi\)
\(234\) 0 0
\(235\) 3.96809 + 3.96809i 0.258849 + 0.258849i
\(236\) 9.01921 0.587101
\(237\) 0 0
\(238\) 1.84841i 0.119814i
\(239\) 8.12294i 0.525430i 0.964874 + 0.262715i \(0.0846178\pi\)
−0.964874 + 0.262715i \(0.915382\pi\)
\(240\) 0 0
\(241\) 18.2430i 1.17514i −0.809174 0.587569i \(-0.800085\pi\)
0.809174 0.587569i \(-0.199915\pi\)
\(242\) 2.34773 + 2.34773i 0.150918 + 0.150918i
\(243\) 0 0
\(244\) −4.83552 + 4.83552i −0.309562 + 0.309562i
\(245\) 4.05470 0.259045
\(246\) 0 0
\(247\) 7.07467 7.07467i 0.450151 0.450151i
\(248\) 9.86630i 0.626510i
\(249\) 0 0
\(250\) −0.251233 + 0.251233i −0.0158894 + 0.0158894i
\(251\) 15.9128 15.9128i 1.00440 1.00440i 0.00441463 0.999990i \(-0.498595\pi\)
0.999990 0.00441463i \(-0.00140523\pi\)
\(252\) 0 0
\(253\) −4.14872 4.14872i −0.260828 0.260828i
\(254\) 5.64614 0.354270
\(255\) 0 0
\(256\) 6.82932 0.426833
\(257\) 12.6836i 0.791183i 0.918426 + 0.395592i \(0.129460\pi\)
−0.918426 + 0.395592i \(0.870540\pi\)
\(258\) 0 0
\(259\) −9.69068 + 9.69068i −0.602150 + 0.602150i
\(260\) −13.1911 −0.818076
\(261\) 0 0
\(262\) 6.85541 0.423529
\(263\) 14.6840 14.6840i 0.905457 0.905457i −0.0904444 0.995902i \(-0.528829\pi\)
0.995902 + 0.0904444i \(0.0288287\pi\)
\(264\) 0 0
\(265\) 13.0642i 0.802527i
\(266\) −0.866588 −0.0531339
\(267\) 0 0
\(268\) −6.20839 −0.379238
\(269\) −18.1270 18.1270i −1.10522 1.10522i −0.993770 0.111450i \(-0.964450\pi\)
−0.111450 0.993770i \(-0.535550\pi\)
\(270\) 0 0
\(271\) −7.19575 + 7.19575i −0.437111 + 0.437111i −0.891038 0.453928i \(-0.850022\pi\)
0.453928 + 0.891038i \(0.350022\pi\)
\(272\) 6.98466 6.98466i 0.423508 0.423508i
\(273\) 0 0
\(274\) 0.0187174i 0.00113076i
\(275\) −0.909719 + 0.909719i −0.0548581 + 0.0548581i
\(276\) 0 0
\(277\) −5.35608 −0.321816 −0.160908 0.986969i \(-0.551442\pi\)
−0.160908 + 0.986969i \(0.551442\pi\)
\(278\) 2.05245 2.05245i 0.123098 0.123098i
\(279\) 0 0
\(280\) 1.67022 + 1.67022i 0.0998150 + 0.0998150i
\(281\) 6.71123i 0.400359i −0.979759 0.200179i \(-0.935848\pi\)
0.979759 0.200179i \(-0.0641525\pi\)
\(282\) 0 0
\(283\) 9.23985i 0.549252i 0.961551 + 0.274626i \(0.0885541\pi\)
−0.961551 + 0.274626i \(0.911446\pi\)
\(284\) 10.3081i 0.611676i
\(285\) 0 0
\(286\) 3.21795 0.190282
\(287\) 3.48397 + 3.48397i 0.205652 + 0.205652i
\(288\) 0 0
\(289\) 7.81073i 0.459455i
\(290\) 1.45803 1.23896i 0.0856183 0.0727540i
\(291\) 0 0
\(292\) 10.4722 + 10.4722i 0.612841 + 0.612841i
\(293\) 9.25343 9.25343i 0.540591 0.540591i −0.383111 0.923702i \(-0.625147\pi\)
0.923702 + 0.383111i \(0.125147\pi\)
\(294\) 0 0
\(295\) 4.81342i 0.280248i
\(296\) 10.9908 0.638828
\(297\) 0 0
\(298\) −3.66574 + 3.66574i −0.212350 + 0.212350i
\(299\) 32.1050 1.85668
\(300\) 0 0
\(301\) 3.29463 + 3.29463i 0.189899 + 0.189899i
\(302\) −2.16921 2.16921i −0.124824 0.124824i
\(303\) 0 0
\(304\) −3.27462 3.27462i −0.187812 0.187812i
\(305\) −2.58064 2.58064i −0.147767 0.147767i
\(306\) 0 0
\(307\) 10.3536 + 10.3536i 0.590911 + 0.590911i 0.937877 0.346967i \(-0.112788\pi\)
−0.346967 + 0.937877i \(0.612788\pi\)
\(308\) 2.92541 + 2.92541i 0.166691 + 0.166691i
\(309\) 0 0
\(310\) 2.54695 0.144657
\(311\) 19.1198 19.1198i 1.08418 1.08418i 0.0880705 0.996114i \(-0.471930\pi\)
0.996114 0.0880705i \(-0.0280701\pi\)
\(312\) 0 0
\(313\) 4.15465 0.234835 0.117417 0.993083i \(-0.462538\pi\)
0.117417 + 0.993083i \(0.462538\pi\)
\(314\) 0.213525i 0.0120499i
\(315\) 0 0
\(316\) 18.5421 18.5421i 1.04308 1.04308i
\(317\) 1.51248 + 1.51248i 0.0849492 + 0.0849492i 0.748305 0.663355i \(-0.230868\pi\)
−0.663355 + 0.748305i \(0.730868\pi\)
\(318\) 0 0
\(319\) 5.27953 4.48627i 0.295597 0.251183i
\(320\) 5.12767i 0.286646i
\(321\) 0 0
\(322\) −1.96630 1.96630i −0.109577 0.109577i
\(323\) −4.30820 −0.239715
\(324\) 0 0
\(325\) 7.03988i 0.390502i
\(326\) 1.13427i 0.0628212i
\(327\) 0 0
\(328\) 3.95139i 0.218179i
\(329\) 6.80998 + 6.80998i 0.375446 + 0.375446i
\(330\) 0 0
\(331\) −15.9336 + 15.9336i −0.875791 + 0.875791i −0.993096 0.117305i \(-0.962574\pi\)
0.117305 + 0.993096i \(0.462574\pi\)
\(332\) −10.3954 −0.570524
\(333\) 0 0
\(334\) −2.44595 + 2.44595i −0.133837 + 0.133837i
\(335\) 3.31333i 0.181026i
\(336\) 0 0
\(337\) 20.8284 20.8284i 1.13460 1.13460i 0.145192 0.989404i \(-0.453620\pi\)
0.989404 0.145192i \(-0.0463799\pi\)
\(338\) −9.18507 + 9.18507i −0.499602 + 0.499602i
\(339\) 0 0
\(340\) 4.01643 + 4.01643i 0.217822 + 0.217822i
\(341\) 9.22255 0.499429
\(342\) 0 0
\(343\) 18.9719 1.02439
\(344\) 3.73665i 0.201467i
\(345\) 0 0
\(346\) 0.516507 0.516507i 0.0277676 0.0277676i
\(347\) 14.8892 0.799292 0.399646 0.916670i \(-0.369133\pi\)
0.399646 + 0.916670i \(0.369133\pi\)
\(348\) 0 0
\(349\) −4.16209 −0.222792 −0.111396 0.993776i \(-0.535532\pi\)
−0.111396 + 0.993776i \(0.535532\pi\)
\(350\) −0.431163 + 0.431163i −0.0230466 + 0.0230466i
\(351\) 0 0
\(352\) 5.03090i 0.268148i
\(353\) −14.0711 −0.748931 −0.374466 0.927241i \(-0.622174\pi\)
−0.374466 + 0.927241i \(0.622174\pi\)
\(354\) 0 0
\(355\) 5.50131 0.291979
\(356\) −0.0536903 0.0536903i −0.00284558 0.00284558i
\(357\) 0 0
\(358\) −0.127176 + 0.127176i −0.00672146 + 0.00672146i
\(359\) 6.69033 6.69033i 0.353102 0.353102i −0.508160 0.861263i \(-0.669674\pi\)
0.861263 + 0.508160i \(0.169674\pi\)
\(360\) 0 0
\(361\) 16.9802i 0.893694i
\(362\) 4.82315 4.82315i 0.253499 0.253499i
\(363\) 0 0
\(364\) −22.6384 −1.18657
\(365\) −5.58888 + 5.58888i −0.292535 + 0.292535i
\(366\) 0 0
\(367\) 20.3434 + 20.3434i 1.06192 + 1.06192i 0.997952 + 0.0639658i \(0.0203749\pi\)
0.0639658 + 0.997952i \(0.479625\pi\)
\(368\) 14.8603i 0.774646i
\(369\) 0 0
\(370\) 2.83724i 0.147501i
\(371\) 22.4206i 1.16402i
\(372\) 0 0
\(373\) −24.8857 −1.28853 −0.644267 0.764801i \(-0.722837\pi\)
−0.644267 + 0.764801i \(0.722837\pi\)
\(374\) −0.979805 0.979805i −0.0506645 0.0506645i
\(375\) 0 0
\(376\) 7.72363i 0.398316i
\(377\) −3.06933 + 37.7865i −0.158078 + 1.94610i
\(378\) 0 0
\(379\) −7.70315 7.70315i −0.395684 0.395684i 0.481023 0.876708i \(-0.340265\pi\)
−0.876708 + 0.481023i \(0.840265\pi\)
\(380\) 1.88302 1.88302i 0.0965970 0.0965970i
\(381\) 0 0
\(382\) 8.10014i 0.414439i
\(383\) −1.66294 −0.0849723 −0.0424861 0.999097i \(-0.513528\pi\)
−0.0424861 + 0.999097i \(0.513528\pi\)
\(384\) 0 0
\(385\) −1.56125 + 1.56125i −0.0795686 + 0.0795686i
\(386\) −7.91814 −0.403023
\(387\) 0 0
\(388\) 2.46544 + 2.46544i 0.125164 + 0.125164i
\(389\) −3.72549 3.72549i −0.188890 0.188890i 0.606326 0.795216i \(-0.292643\pi\)
−0.795216 + 0.606326i \(0.792643\pi\)
\(390\) 0 0
\(391\) −9.77536 9.77536i −0.494361 0.494361i
\(392\) −3.94611 3.94611i −0.199309 0.199309i
\(393\) 0 0
\(394\) 5.27564 + 5.27564i 0.265783 + 0.265783i
\(395\) 9.89566 + 9.89566i 0.497905 + 0.497905i
\(396\) 0 0
\(397\) 20.4883 1.02828 0.514139 0.857707i \(-0.328112\pi\)
0.514139 + 0.857707i \(0.328112\pi\)
\(398\) −1.20953 + 1.20953i −0.0606284 + 0.0606284i
\(399\) 0 0
\(400\) −3.25852 −0.162926
\(401\) 30.1828i 1.50726i 0.657300 + 0.753629i \(0.271699\pi\)
−0.657300 + 0.753629i \(0.728301\pi\)
\(402\) 0 0
\(403\) −35.6845 + 35.6845i −1.77757 + 1.77757i
\(404\) −14.2969 14.2969i −0.711297 0.711297i
\(405\) 0 0
\(406\) 2.50225 2.12628i 0.124184 0.105525i
\(407\) 10.2737i 0.509248i
\(408\) 0 0
\(409\) 7.59438 + 7.59438i 0.375518 + 0.375518i 0.869482 0.493964i \(-0.164453\pi\)
−0.493964 + 0.869482i \(0.664453\pi\)
\(410\) 1.02004 0.0503761
\(411\) 0 0
\(412\) 17.6351i 0.868817i
\(413\) 8.26073i 0.406484i
\(414\) 0 0
\(415\) 5.54789i 0.272335i
\(416\) 19.4659 + 19.4659i 0.954393 + 0.954393i
\(417\) 0 0
\(418\) −0.459362 + 0.459362i −0.0224681 + 0.0224681i
\(419\) 18.0170 0.880187 0.440093 0.897952i \(-0.354945\pi\)
0.440093 + 0.897952i \(0.354945\pi\)
\(420\) 0 0
\(421\) −21.5614 + 21.5614i −1.05084 + 1.05084i −0.0522021 + 0.998637i \(0.516624\pi\)
−0.998637 + 0.0522021i \(0.983376\pi\)
\(422\) 8.86736i 0.431656i
\(423\) 0 0
\(424\) 12.7143 12.7143i 0.617461 0.617461i
\(425\) −2.14351 + 2.14351i −0.103975 + 0.103975i
\(426\) 0 0
\(427\) −4.42887 4.42887i −0.214328 0.214328i
\(428\) −32.3604 −1.56420
\(429\) 0 0
\(430\) 0.964604 0.0465174
\(431\) 39.6974i 1.91216i −0.293113 0.956078i \(-0.594691\pi\)
0.293113 0.956078i \(-0.405309\pi\)
\(432\) 0 0
\(433\) −4.10746 + 4.10746i −0.197392 + 0.197392i −0.798881 0.601489i \(-0.794574\pi\)
0.601489 + 0.798881i \(0.294574\pi\)
\(434\) 4.37105 0.209817
\(435\) 0 0
\(436\) −1.29727 −0.0621281
\(437\) −4.58298 + 4.58298i −0.219234 + 0.219234i
\(438\) 0 0
\(439\) 3.56192i 0.170001i −0.996381 0.0850006i \(-0.972911\pi\)
0.996381 0.0850006i \(-0.0270892\pi\)
\(440\) 1.77071 0.0844153
\(441\) 0 0
\(442\) 7.58225 0.360651
\(443\) 5.67336 + 5.67336i 0.269550 + 0.269550i 0.828919 0.559369i \(-0.188957\pi\)
−0.559369 + 0.828919i \(0.688957\pi\)
\(444\) 0 0
\(445\) 0.0286537 0.0286537i 0.00135832 0.00135832i
\(446\) 0.515534 0.515534i 0.0244113 0.0244113i
\(447\) 0 0
\(448\) 8.80005i 0.415763i
\(449\) 15.3009 15.3009i 0.722092 0.722092i −0.246939 0.969031i \(-0.579425\pi\)
0.969031 + 0.246939i \(0.0794247\pi\)
\(450\) 0 0
\(451\) 3.69357 0.173923
\(452\) −2.56630 + 2.56630i −0.120709 + 0.120709i
\(453\) 0 0
\(454\) −5.21481 5.21481i −0.244743 0.244743i
\(455\) 12.0818i 0.566402i
\(456\) 0 0
\(457\) 7.20400i 0.336989i 0.985703 + 0.168495i \(0.0538905\pi\)
−0.985703 + 0.168495i \(0.946109\pi\)
\(458\) 6.06490i 0.283394i
\(459\) 0 0
\(460\) 8.54520 0.398422
\(461\) −26.7798 26.7798i −1.24726 1.24726i −0.956924 0.290338i \(-0.906232\pi\)
−0.290338 0.956924i \(-0.593768\pi\)
\(462\) 0 0
\(463\) 6.58766i 0.306154i −0.988214 0.153077i \(-0.951082\pi\)
0.988214 0.153077i \(-0.0489183\pi\)
\(464\) 17.4901 + 1.42069i 0.811955 + 0.0659537i
\(465\) 0 0
\(466\) 2.18973 + 2.18973i 0.101437 + 0.101437i
\(467\) −26.4375 + 26.4375i −1.22338 + 1.22338i −0.256962 + 0.966422i \(0.582721\pi\)
−0.966422 + 0.256962i \(0.917279\pi\)
\(468\) 0 0
\(469\) 5.68629i 0.262569i
\(470\) 1.99383 0.0919685
\(471\) 0 0
\(472\) 4.68451 4.68451i 0.215622 0.215622i
\(473\) 3.49285 0.160601
\(474\) 0 0
\(475\) 1.00494 + 1.00494i 0.0461099 + 0.0461099i
\(476\) 6.89295 + 6.89295i 0.315938 + 0.315938i
\(477\) 0 0
\(478\) 2.04075 + 2.04075i 0.0933419 + 0.0933419i
\(479\) −7.22083 7.22083i −0.329928 0.329928i 0.522631 0.852559i \(-0.324951\pi\)
−0.852559 + 0.522631i \(0.824951\pi\)
\(480\) 0 0
\(481\) −39.7516 39.7516i −1.81252 1.81252i
\(482\) −4.58326 4.58326i −0.208762 0.208762i
\(483\) 0 0
\(484\) −17.5100 −0.795909
\(485\) −1.31577 + 1.31577i −0.0597461 + 0.0597461i
\(486\) 0 0
\(487\) 21.3440 0.967189 0.483595 0.875292i \(-0.339331\pi\)
0.483595 + 0.875292i \(0.339331\pi\)
\(488\) 5.02306i 0.227383i
\(489\) 0 0
\(490\) 1.01868 1.01868i 0.0460191 0.0460191i
\(491\) −14.3761 14.3761i −0.648786 0.648786i 0.303913 0.952700i \(-0.401707\pi\)
−0.952700 + 0.303913i \(0.901707\pi\)
\(492\) 0 0
\(493\) 12.4398 10.5707i 0.560261 0.476081i
\(494\) 3.55478i 0.159937i
\(495\) 0 0
\(496\) 16.5171 + 16.5171i 0.741640 + 0.741640i
\(497\) 9.44127 0.423499
\(498\) 0 0
\(499\) 38.6232i 1.72901i −0.502622 0.864506i \(-0.667631\pi\)
0.502622 0.864506i \(-0.332369\pi\)
\(500\) 1.87376i 0.0837973i
\(501\) 0 0
\(502\) 7.99563i 0.356862i
\(503\) −6.89899 6.89899i −0.307611 0.307611i 0.536371 0.843982i \(-0.319795\pi\)
−0.843982 + 0.536371i \(0.819795\pi\)
\(504\) 0 0
\(505\) 7.63005 7.63005i 0.339533 0.339533i
\(506\) −2.08459 −0.0926715
\(507\) 0 0
\(508\) −21.0552 + 21.0552i −0.934173 + 0.934173i
\(509\) 12.5298i 0.555376i −0.960671 0.277688i \(-0.910432\pi\)
0.960671 0.277688i \(-0.0895681\pi\)
\(510\) 0 0
\(511\) −9.59156 + 9.59156i −0.424306 + 0.424306i
\(512\) 15.3526 15.3526i 0.678494 0.678494i
\(513\) 0 0
\(514\) 3.18655 + 3.18655i 0.140553 + 0.140553i
\(515\) 9.41157 0.414723
\(516\) 0 0
\(517\) 7.21969 0.317521
\(518\) 4.86924i 0.213942i
\(519\) 0 0
\(520\) −6.85134 + 6.85134i −0.300451 + 0.300451i
\(521\) −34.7768 −1.52360 −0.761800 0.647813i \(-0.775684\pi\)
−0.761800 + 0.647813i \(0.775684\pi\)
\(522\) 0 0
\(523\) 8.80756 0.385128 0.192564 0.981284i \(-0.438320\pi\)
0.192564 + 0.981284i \(0.438320\pi\)
\(524\) −25.5647 + 25.5647i −1.11680 + 1.11680i
\(525\) 0 0
\(526\) 7.37824i 0.321707i
\(527\) 21.7305 0.946595
\(528\) 0 0
\(529\) 2.20234 0.0957539
\(530\) 3.28216 + 3.28216i 0.142568 + 0.142568i
\(531\) 0 0
\(532\) 3.23162 3.23162i 0.140109 0.140109i
\(533\) −14.2914 + 14.2914i −0.619029 + 0.619029i
\(534\) 0 0
\(535\) 17.2703i 0.746658i
\(536\) −3.22459 + 3.22459i −0.139281 + 0.139281i
\(537\) 0 0
\(538\) −9.10819 −0.392682
\(539\) 3.68864 3.68864i 0.158881 0.158881i
\(540\) 0 0
\(541\) −3.51456 3.51456i −0.151103 0.151103i 0.627508 0.778610i \(-0.284075\pi\)
−0.778610 + 0.627508i \(0.784075\pi\)
\(542\) 3.61562i 0.155304i
\(543\) 0 0
\(544\) 11.8540i 0.508235i
\(545\) 0.692336i 0.0296564i
\(546\) 0 0
\(547\) −33.8780 −1.44852 −0.724259 0.689528i \(-0.757818\pi\)
−0.724259 + 0.689528i \(0.757818\pi\)
\(548\) 0.0697996 + 0.0697996i 0.00298169 + 0.00298169i
\(549\) 0 0
\(550\) 0.457103i 0.0194910i
\(551\) −4.95586 5.83216i −0.211127 0.248458i
\(552\) 0 0
\(553\) 16.9828 + 16.9828i 0.722182 + 0.722182i
\(554\) −1.34563 + 1.34563i −0.0571701 + 0.0571701i
\(555\) 0 0
\(556\) 15.3077i 0.649193i
\(557\) −0.344915 −0.0146145 −0.00730725 0.999973i \(-0.502326\pi\)
−0.00730725 + 0.999973i \(0.502326\pi\)
\(558\) 0 0
\(559\) −13.5147 + 13.5147i −0.571612 + 0.571612i
\(560\) −5.59223 −0.236315
\(561\) 0 0
\(562\) −1.68608 1.68608i −0.0711232 0.0711232i
\(563\) −27.5224 27.5224i −1.15993 1.15993i −0.984490 0.175442i \(-0.943865\pi\)
−0.175442 0.984490i \(-0.556135\pi\)
\(564\) 0 0
\(565\) −1.36960 1.36960i −0.0576195 0.0576195i
\(566\) 2.32136 + 2.32136i 0.0975740 + 0.0975740i
\(567\) 0 0
\(568\) −5.35397 5.35397i −0.224648 0.224648i
\(569\) 8.98926 + 8.98926i 0.376849 + 0.376849i 0.869964 0.493115i \(-0.164142\pi\)
−0.493115 + 0.869964i \(0.664142\pi\)
\(570\) 0 0
\(571\) 38.9090 1.62829 0.814146 0.580660i \(-0.197205\pi\)
0.814146 + 0.580660i \(0.197205\pi\)
\(572\) −12.0002 + 12.0002i −0.501752 + 0.501752i
\(573\) 0 0
\(574\) 1.75058 0.0730676
\(575\) 4.56045i 0.190184i
\(576\) 0 0
\(577\) −24.5454 + 24.5454i −1.02184 + 1.02184i −0.0220806 + 0.999756i \(0.507029\pi\)
−0.999756 + 0.0220806i \(0.992971\pi\)
\(578\) 1.96232 + 1.96232i 0.0816216 + 0.0816216i
\(579\) 0 0
\(580\) −0.816945 + 10.0574i −0.0339218 + 0.417611i
\(581\) 9.52122i 0.395007i
\(582\) 0 0
\(583\) 11.8847 + 11.8847i 0.492216 + 0.492216i
\(584\) 10.8784 0.450151
\(585\) 0 0
\(586\) 4.64954i 0.192071i
\(587\) 39.4702i 1.62911i 0.580087 + 0.814554i \(0.303018\pi\)
−0.580087 + 0.814554i \(0.696982\pi\)
\(588\) 0 0
\(589\) 10.1879i 0.419785i
\(590\) 1.20929 + 1.20929i 0.0497857 + 0.0497857i
\(591\) 0 0
\(592\) −18.3997 + 18.3997i −0.756221 + 0.756221i
\(593\) 25.0604 1.02911 0.514553 0.857459i \(-0.327958\pi\)
0.514553 + 0.857459i \(0.327958\pi\)
\(594\) 0 0
\(595\) −3.67866 + 3.67866i −0.150811 + 0.150811i
\(596\) 27.3400i 1.11989i
\(597\) 0 0
\(598\) 8.06584 8.06584i 0.329837 0.329837i
\(599\) −27.5859 + 27.5859i −1.12713 + 1.12713i −0.136489 + 0.990642i \(0.543582\pi\)
−0.990642 + 0.136489i \(0.956418\pi\)
\(600\) 0 0
\(601\) 5.81843 + 5.81843i 0.237339 + 0.237339i 0.815747 0.578408i \(-0.196326\pi\)
−0.578408 + 0.815747i \(0.696326\pi\)
\(602\) 1.65544 0.0674708
\(603\) 0 0
\(604\) 16.1785 0.658295
\(605\) 9.34482i 0.379921i
\(606\) 0 0
\(607\) 6.17438 6.17438i 0.250610 0.250610i −0.570610 0.821221i \(-0.693293\pi\)
0.821221 + 0.570610i \(0.193293\pi\)
\(608\) −5.55750 −0.225386
\(609\) 0 0
\(610\) −1.29669 −0.0525013
\(611\) −27.9349 + 27.9349i −1.13012 + 1.13012i
\(612\) 0 0
\(613\) 35.9742i 1.45298i −0.687175 0.726492i \(-0.741150\pi\)
0.687175 0.726492i \(-0.258850\pi\)
\(614\) 5.20233 0.209949
\(615\) 0 0
\(616\) 3.03887 0.122440
\(617\) −25.9848 25.9848i −1.04611 1.04611i −0.998884 0.0472240i \(-0.984963\pi\)
−0.0472240 0.998884i \(-0.515037\pi\)
\(618\) 0 0
\(619\) −3.81348 + 3.81348i −0.153277 + 0.153277i −0.779580 0.626303i \(-0.784567\pi\)
0.626303 + 0.779580i \(0.284567\pi\)
\(620\) −9.49793 + 9.49793i −0.381446 + 0.381446i
\(621\) 0 0
\(622\) 9.60706i 0.385208i
\(623\) 0.0491751 0.0491751i 0.00197016 0.00197016i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 1.04379 1.04379i 0.0417181 0.0417181i
\(627\) 0 0
\(628\) 0.796264 + 0.796264i 0.0317744 + 0.0317744i
\(629\) 24.2072i 0.965205i
\(630\) 0 0
\(631\) 13.9362i 0.554791i 0.960756 + 0.277395i \(0.0894712\pi\)
−0.960756 + 0.277395i \(0.910529\pi\)
\(632\) 19.2613i 0.766172i
\(633\) 0 0
\(634\) 0.759969 0.0301822
\(635\) −11.2368 11.2368i −0.445920 0.445920i
\(636\) 0 0
\(637\) 28.5446i 1.13098i
\(638\) 0.199293 2.45350i 0.00789009 0.0971348i
\(639\) 0 0
\(640\) 6.81841 + 6.81841i 0.269521 + 0.269521i
\(641\) 14.2905 14.2905i 0.564442 0.564442i −0.366124 0.930566i \(-0.619315\pi\)
0.930566 + 0.366124i \(0.119315\pi\)
\(642\) 0 0
\(643\) 41.7056i 1.64471i −0.568976 0.822354i \(-0.692660\pi\)
0.568976 0.822354i \(-0.307340\pi\)
\(644\) 14.6652 0.577888
\(645\) 0 0
\(646\) −1.08236 + 1.08236i −0.0425850 + 0.0425850i
\(647\) 13.4004 0.526825 0.263413 0.964683i \(-0.415152\pi\)
0.263413 + 0.964683i \(0.415152\pi\)
\(648\) 0 0
\(649\) 4.37886 + 4.37886i 0.171885 + 0.171885i
\(650\) −1.76865 1.76865i −0.0693723 0.0693723i
\(651\) 0 0
\(652\) −4.22983 4.22983i −0.165653 0.165653i
\(653\) 9.60943 + 9.60943i 0.376046 + 0.376046i 0.869673 0.493628i \(-0.164329\pi\)
−0.493628 + 0.869673i \(0.664329\pi\)
\(654\) 0 0
\(655\) −13.6435 13.6435i −0.533096 0.533096i
\(656\) 6.61499 + 6.61499i 0.258272 + 0.258272i
\(657\) 0 0
\(658\) 3.42179 0.133395
\(659\) −16.1709 + 16.1709i −0.629927 + 0.629927i −0.948050 0.318122i \(-0.896948\pi\)
0.318122 + 0.948050i \(0.396948\pi\)
\(660\) 0 0
\(661\) 15.0331 0.584721 0.292360 0.956308i \(-0.405559\pi\)
0.292360 + 0.956308i \(0.405559\pi\)
\(662\) 8.00611i 0.311166i
\(663\) 0 0
\(664\) −5.39931 + 5.39931i −0.209534 + 0.209534i
\(665\) 1.72467 + 1.72467i 0.0668798 + 0.0668798i
\(666\) 0 0
\(667\) 1.98831 24.4781i 0.0769878 0.947797i
\(668\) 18.2426i 0.705826i
\(669\) 0 0
\(670\) −0.832418 0.832418i −0.0321591 0.0321591i
\(671\) −4.69532 −0.181261
\(672\) 0 0
\(673\) 44.6231i 1.72009i −0.510216 0.860046i \(-0.670434\pi\)
0.510216 0.860046i \(-0.329566\pi\)
\(674\) 10.4656i 0.403119i
\(675\) 0 0
\(676\) 68.5047i 2.63480i
\(677\) −27.0906 27.0906i −1.04118 1.04118i −0.999115 0.0420619i \(-0.986607\pi\)
−0.0420619 0.999115i \(-0.513393\pi\)
\(678\) 0 0
\(679\) −2.25811 + 2.25811i −0.0866583 + 0.0866583i
\(680\) 4.17221 0.159997
\(681\) 0 0
\(682\) 2.31701 2.31701i 0.0887230 0.0887230i
\(683\) 12.0492i 0.461050i −0.973066 0.230525i \(-0.925956\pi\)
0.973066 0.230525i \(-0.0740443\pi\)
\(684\) 0 0
\(685\) −0.0372510 + 0.0372510i −0.00142329 + 0.00142329i
\(686\) 4.76638 4.76638i 0.181981 0.181981i
\(687\) 0 0
\(688\) 6.25550 + 6.25550i 0.238489 + 0.238489i
\(689\) −91.9703 −3.50379
\(690\) 0 0
\(691\) 15.3361 0.583413 0.291706 0.956508i \(-0.405777\pi\)
0.291706 + 0.956508i \(0.405777\pi\)
\(692\) 3.85225i 0.146441i
\(693\) 0 0
\(694\) 3.74065 3.74065i 0.141993 0.141993i
\(695\) −8.16951 −0.309887
\(696\) 0 0
\(697\) 8.70291 0.329646
\(698\) −1.04566 + 1.04566i −0.0395786 + 0.0395786i
\(699\) 0 0
\(700\) 3.21573i 0.121543i
\(701\) −18.2230 −0.688275 −0.344137 0.938919i \(-0.611829\pi\)
−0.344137 + 0.938919i \(0.611829\pi\)
\(702\) 0 0
\(703\) 11.3491 0.428038
\(704\) 4.66474 + 4.66474i 0.175809 + 0.175809i
\(705\) 0 0
\(706\) −3.53514 + 3.53514i −0.133047 + 0.133047i
\(707\) 13.0946 13.0946i 0.492473 0.492473i
\(708\) 0 0
\(709\) 18.0128i 0.676486i −0.941059 0.338243i \(-0.890167\pi\)
0.941059 0.338243i \(-0.109833\pi\)
\(710\) 1.38211 1.38211i 0.0518697 0.0518697i
\(711\) 0 0
\(712\) −0.0557726 −0.00209017
\(713\) 23.1165 23.1165i 0.865718 0.865718i
\(714\) 0 0
\(715\) −6.40431 6.40431i −0.239508 0.239508i
\(716\) 0.948511i 0.0354475i
\(717\) 0 0
\(718\) 3.36167i 0.125456i
\(719\) 13.9256i 0.519337i −0.965698 0.259668i \(-0.916387\pi\)
0.965698 0.259668i \(-0.0836132\pi\)
\(720\) 0 0
\(721\) 16.1520 0.601533
\(722\) −4.26599 4.26599i −0.158764 0.158764i
\(723\) 0 0
\(724\) 35.9723i 1.33690i
\(725\) −5.36749 0.435991i −0.199343 0.0161923i
\(726\) 0 0
\(727\) −2.54046 2.54046i −0.0942206 0.0942206i 0.658425 0.752646i \(-0.271223\pi\)
−0.752646 + 0.658425i \(0.771223\pi\)
\(728\) −11.7582 + 11.7582i −0.435787 + 0.435787i
\(729\) 0 0
\(730\) 2.80822i 0.103937i
\(731\) 8.22996 0.304396
\(732\) 0 0
\(733\) 19.1911 19.1911i 0.708838 0.708838i −0.257453 0.966291i \(-0.582883\pi\)
0.966291 + 0.257453i \(0.0828833\pi\)
\(734\) 10.2219 0.377297
\(735\) 0 0
\(736\) −12.6100 12.6100i −0.464811 0.464811i
\(737\) −3.01420 3.01420i −0.111029 0.111029i
\(738\) 0 0
\(739\) 24.2130 + 24.2130i 0.890690 + 0.890690i 0.994588 0.103898i \(-0.0331316\pi\)
−0.103898 + 0.994588i \(0.533132\pi\)
\(740\) −10.5805 10.5805i −0.388945 0.388945i
\(741\) 0 0
\(742\) 5.63280 + 5.63280i 0.206787 + 0.206787i
\(743\) 18.3277 + 18.3277i 0.672379 + 0.672379i 0.958264 0.285885i \(-0.0922875\pi\)
−0.285885 + 0.958264i \(0.592288\pi\)
\(744\) 0 0
\(745\) 14.5910 0.534572
\(746\) −6.25212 + 6.25212i −0.228906 + 0.228906i
\(747\) 0 0
\(748\) 7.30765 0.267194
\(749\) 29.6390i 1.08299i
\(750\) 0 0
\(751\) −30.0805 + 30.0805i −1.09765 + 1.09765i −0.102967 + 0.994685i \(0.532834\pi\)
−0.994685 + 0.102967i \(0.967166\pi\)
\(752\) 12.9301 + 12.9301i 0.471511 + 0.471511i
\(753\) 0 0
\(754\) 8.72210 + 10.2643i 0.317640 + 0.373805i
\(755\) 8.63424i 0.314232i
\(756\) 0 0
\(757\) 3.90395 + 3.90395i 0.141892 + 0.141892i 0.774484 0.632593i \(-0.218009\pi\)
−0.632593 + 0.774484i \(0.718009\pi\)
\(758\) −3.87057 −0.140586
\(759\) 0 0
\(760\) 1.95605i 0.0709536i
\(761\) 26.9077i 0.975403i −0.873010 0.487702i \(-0.837835\pi\)
0.873010 0.487702i \(-0.162165\pi\)
\(762\) 0 0
\(763\) 1.18818i 0.0430149i
\(764\) −30.2065 30.2065i −1.09283 1.09283i
\(765\) 0 0
\(766\) −0.417786 + 0.417786i −0.0150952 + 0.0150952i
\(767\) −33.8859 −1.22355
\(768\) 0 0
\(769\) −16.9098 + 16.9098i −0.609783 + 0.609783i −0.942889 0.333106i \(-0.891903\pi\)
0.333106 + 0.942889i \(0.391903\pi\)
\(770\) 0.784475i 0.0282705i
\(771\) 0 0
\(772\) 29.5278 29.5278i 1.06273 1.06273i
\(773\) 13.3531 13.3531i 0.480277 0.480277i −0.424943 0.905220i \(-0.639706\pi\)
0.905220 + 0.424943i \(0.139706\pi\)
\(774\) 0 0
\(775\) −5.06890 5.06890i −0.182080 0.182080i
\(776\) 2.56106 0.0919368
\(777\) 0 0
\(778\) −1.87193 −0.0671121
\(779\) 4.08019i 0.146188i
\(780\) 0 0
\(781\) 5.00464 5.00464i 0.179080 0.179080i
\(782\) −4.91179 −0.175645
\(783\) 0 0
\(784\) 13.2123 0.471868
\(785\) −0.424954 + 0.424954i −0.0151673 + 0.0151673i
\(786\) 0 0
\(787\) 4.95273i 0.176546i −0.996096 0.0882730i \(-0.971865\pi\)
0.996096 0.0882730i \(-0.0281348\pi\)
\(788\) −39.3471 −1.40168
\(789\) 0 0
\(790\) 4.97224 0.176904
\(791\) −2.35049 2.35049i −0.0835738 0.0835738i
\(792\) 0 0
\(793\) 18.1674 18.1674i 0.645145 0.645145i
\(794\) 5.14734 5.14734i 0.182672 0.182672i
\(795\) 0 0
\(796\) 9.02101i 0.319741i
\(797\) 7.76711 7.76711i 0.275125 0.275125i −0.556034 0.831159i \(-0.687678\pi\)
0.831159 + 0.556034i \(0.187678\pi\)
\(798\) 0 0
\(799\) 17.0113 0.601815
\(800\) −2.76508 + 2.76508i −0.0977605 + 0.0977605i
\(801\) 0 0
\(802\) 7.58293 + 7.58293i 0.267763 + 0.267763i
\(803\) 10.1686i 0.358843i
\(804\) 0 0
\(805\) 7.82658i 0.275851i
\(806\) 17.9303i 0.631566i
\(807\) 0 0
\(808\) −14.8514 −0.522470
\(809\) −27.7876 27.7876i −0.976961 0.976961i 0.0227798 0.999741i \(-0.492748\pi\)
−0.999741 + 0.0227798i \(0.992748\pi\)
\(810\) 0 0
\(811\) 35.7322i 1.25473i 0.778727 + 0.627363i \(0.215866\pi\)
−0.778727 + 0.627363i \(0.784134\pi\)
\(812\) −1.40203 + 17.2604i −0.0492016 + 0.605721i
\(813\) 0 0
\(814\) 2.58109 + 2.58109i 0.0904673 + 0.0904673i
\(815\) 2.25740 2.25740i 0.0790731 0.0790731i
\(816\) 0 0
\(817\) 3.85845i 0.134990i
\(818\) 3.81592 0.133421
\(819\) 0 0
\(820\) −3.80386 + 3.80386i −0.132836 + 0.132836i
\(821\) −36.8720 −1.28684 −0.643421 0.765513i \(-0.722485\pi\)
−0.643421 + 0.765513i \(0.722485\pi\)
\(822\) 0 0
\(823\) −19.0901 19.0901i −0.665440 0.665440i 0.291217 0.956657i \(-0.405940\pi\)
−0.956657 + 0.291217i \(0.905940\pi\)
\(824\) −9.15951 9.15951i −0.319087 0.319087i
\(825\) 0 0
\(826\) 2.07537 + 2.07537i 0.0722114 + 0.0722114i
\(827\) −24.6938 24.6938i −0.858688 0.858688i 0.132496 0.991184i \(-0.457701\pi\)
−0.991184 + 0.132496i \(0.957701\pi\)
\(828\) 0 0
\(829\) 3.70573 + 3.70573i 0.128705 + 0.128705i 0.768525 0.639820i \(-0.220991\pi\)
−0.639820 + 0.768525i \(0.720991\pi\)
\(830\) −1.39381 1.39381i −0.0483800 0.0483800i
\(831\) 0 0
\(832\) −36.0982 −1.25148
\(833\) 8.69129 8.69129i 0.301135 0.301135i
\(834\) 0 0
\(835\) 9.73578 0.336921
\(836\) 3.42604i 0.118492i
\(837\) 0 0
\(838\) 4.52646 4.52646i 0.156364 0.156364i
\(839\) 38.6084 + 38.6084i 1.33291 + 1.33291i 0.902757 + 0.430152i \(0.141540\pi\)
0.430152 + 0.902757i \(0.358460\pi\)
\(840\) 0 0
\(841\) 28.6198 + 4.68035i 0.986890 + 0.161392i
\(842\) 10.8339i 0.373360i
\(843\) 0 0
\(844\) −33.0676 33.0676i −1.13823 1.13823i
\(845\) 36.5599 1.25770
\(846\) 0 0
\(847\) 16.0375i 0.551054i
\(848\) 42.5699i 1.46186i
\(849\) 0 0
\(850\) 1.07704i 0.0369422i
\(851\) 25.7512 + 25.7512i 0.882738 + 0.882738i
\(852\) 0 0
\(853\) −18.6713 + 18.6713i −0.639292 + 0.639292i −0.950381 0.311089i \(-0.899306\pi\)
0.311089 + 0.950381i \(0.399306\pi\)
\(854\) −2.22536 −0.0761502
\(855\) 0 0
\(856\) −16.8077 + 16.8077i −0.574476 + 0.574476i
\(857\) 18.2164i 0.622259i 0.950368 + 0.311129i \(0.100707\pi\)
−0.950368 + 0.311129i \(0.899293\pi\)
\(858\) 0 0
\(859\) −9.34433 + 9.34433i −0.318825 + 0.318825i −0.848316 0.529491i \(-0.822383\pi\)
0.529491 + 0.848316i \(0.322383\pi\)
\(860\) −3.59714 + 3.59714i −0.122661 + 0.122661i
\(861\) 0 0
\(862\) −9.97330 9.97330i −0.339692 0.339692i
\(863\) 53.4622 1.81987 0.909937 0.414745i \(-0.136129\pi\)
0.909937 + 0.414745i \(0.136129\pi\)
\(864\) 0 0
\(865\) −2.05589 −0.0699023
\(866\) 2.06386i 0.0701329i
\(867\) 0 0
\(868\) −16.3002 + 16.3002i −0.553266 + 0.553266i
\(869\) 18.0045 0.610762
\(870\) 0 0
\(871\) 23.3254 0.790352
\(872\) −0.673794 + 0.673794i −0.0228175 + 0.0228175i
\(873\) 0 0
\(874\) 2.30279i 0.0778932i
\(875\) 1.71619 0.0580177
\(876\) 0 0
\(877\) −33.6537 −1.13640 −0.568202 0.822889i \(-0.692361\pi\)
−0.568202 + 0.822889i \(0.692361\pi\)
\(878\) −0.894873 0.894873i −0.0302005 0.0302005i
\(879\) 0 0
\(880\) −2.96434 + 2.96434i −0.0999277 + 0.0999277i
\(881\) −28.8814 + 28.8814i −0.973041 + 0.973041i −0.999646 0.0266053i \(-0.991530\pi\)
0.0266053 + 0.999646i \(0.491530\pi\)
\(882\) 0 0
\(883\) 8.99954i 0.302859i 0.988468 + 0.151429i \(0.0483876\pi\)
−0.988468 + 0.151429i \(0.951612\pi\)
\(884\) −28.2752 + 28.2752i −0.950998 + 0.950998i
\(885\) 0 0
\(886\) 2.85068 0.0957703
\(887\) 27.9050 27.9050i 0.936957 0.936957i −0.0611708 0.998127i \(-0.519483\pi\)
0.998127 + 0.0611708i \(0.0194834\pi\)
\(888\) 0 0
\(889\) −19.2845 19.2845i −0.646782 0.646782i
\(890\) 0.0143975i 0.000482606i
\(891\) 0 0
\(892\) 3.84499i 0.128740i
\(893\) 7.97539i 0.266886i
\(894\) 0 0
\(895\) 0.506207 0.0169206
\(896\) 11.7017 + 11.7017i 0.390925 + 0.390925i
\(897\) 0 0
\(898\) 7.68817i 0.256558i
\(899\) 24.9973 + 29.4173i 0.833706 + 0.981121i
\(900\) 0 0
\(901\) 28.0032 + 28.0032i 0.932922 + 0.932922i
\(902\) 0.927948 0.927948i 0.0308973 0.0308973i
\(903\) 0 0
\(904\) 2.66584i 0.0886644i
\(905\) −19.1979 −0.638159
\(906\) 0 0
\(907\) −12.3263 + 12.3263i −0.409287 + 0.409287i −0.881490 0.472203i \(-0.843459\pi\)
0.472203 + 0.881490i \(0.343459\pi\)
\(908\) 38.8935 1.29072
\(909\) 0 0
\(910\) −3.03534 3.03534i −0.100621 0.100621i
\(911\) −3.22864 3.22864i −0.106970 0.106970i 0.651596 0.758566i \(-0.274100\pi\)
−0.758566 + 0.651596i \(0.774100\pi\)
\(912\) 0 0
\(913\) −5.04702 5.04702i −0.167032 0.167032i
\(914\) 1.80988 + 1.80988i 0.0598657 + 0.0598657i
\(915\) 0 0
\(916\) −22.6168 22.6168i −0.747281 0.747281i
\(917\) −23.4148 23.4148i −0.773226 0.773226i
\(918\) 0 0
\(919\) −9.19875 −0.303439 −0.151719 0.988424i \(-0.548481\pi\)
−0.151719 + 0.988424i \(0.548481\pi\)
\(920\) 4.43831 4.43831i 0.146327 0.146327i
\(921\) 0 0
\(922\) −13.4560 −0.443149
\(923\) 38.7286i 1.27477i
\(924\) 0 0
\(925\) 5.64663 5.64663i 0.185660 0.185660i
\(926\) −1.65504 1.65504i −0.0543879 0.0543879i
\(927\) 0 0
\(928\) 16.0471 13.6360i 0.526772 0.447624i
\(929\) 16.9275i 0.555373i 0.960672 + 0.277687i \(0.0895677\pi\)
−0.960672 + 0.277687i \(0.910432\pi\)
\(930\) 0 0
\(931\) −4.07474 4.07474i −0.133544 0.133544i
\(932\) −16.3316 −0.534959
\(933\) 0 0
\(934\) 13.2840i 0.434665i
\(935\) 3.89998i 0.127543i
\(936\) 0 0
\(937\) 3.96008i 0.129370i −0.997906 0.0646850i \(-0.979396\pi\)
0.997906 0.0646850i \(-0.0206043\pi\)
\(938\) −1.42859 1.42859i −0.0466450 0.0466450i
\(939\) 0 0
\(940\) −7.43526 + 7.43526i −0.242511 + 0.242511i
\(941\) 16.8068 0.547885 0.273942 0.961746i \(-0.411672\pi\)
0.273942 + 0.961746i \(0.411672\pi\)
\(942\) 0 0
\(943\) 9.25798 9.25798i 0.301481 0.301481i
\(944\) 15.6846i 0.510491i
\(945\) 0 0
\(946\) 0.877519 0.877519i 0.0285306 0.0285306i
\(947\) 39.1526 39.1526i 1.27229 1.27229i 0.327405 0.944884i \(-0.393826\pi\)
0.944884 0.327405i \(-0.106174\pi\)
\(948\) 0 0
\(949\) −39.3450 39.3450i −1.27719 1.27719i
\(950\) 0.504949 0.0163827
\(951\) 0 0
\(952\) 7.16029 0.232066
\(953\) 41.8117i 1.35441i −0.735793 0.677206i \(-0.763190\pi\)
0.735793 0.677206i \(-0.236810\pi\)
\(954\) 0 0
\(955\) 16.1208 16.1208i 0.521656 0.521656i
\(956\) −15.2205 −0.492265
\(957\) 0 0
\(958\) −3.62822 −0.117223
\(959\) −0.0639297 + 0.0639297i −0.00206440 + 0.00206440i
\(960\) 0 0
\(961\) 20.3875i 0.657663i
\(962\) −19.9739 −0.643983
\(963\) 0 0
\(964\) 34.1831 1.10096
\(965\) 15.7585 + 15.7585i 0.507285 + 0.507285i
\(966\) 0 0
\(967\) −16.5339 + 16.5339i −0.531694 + 0.531694i −0.921076 0.389382i \(-0.872689\pi\)
0.389382 + 0.921076i \(0.372689\pi\)
\(968\) −9.09455 + 9.09455i −0.292310 + 0.292310i
\(969\) 0 0
\(970\) 0.661131i 0.0212276i
\(971\) −20.2384 + 20.2384i −0.649480 + 0.649480i −0.952867 0.303387i \(-0.901882\pi\)
0.303387 + 0.952867i \(0.401882\pi\)
\(972\) 0 0
\(973\) −14.0204 −0.449474
\(974\) 5.36232 5.36232i 0.171820 0.171820i
\(975\) 0 0
\(976\) −8.40908 8.40908i −0.269168 0.269168i
\(977\) 5.07782i 0.162454i 0.996696 + 0.0812269i \(0.0258838\pi\)
−0.996696 + 0.0812269i \(0.974116\pi\)
\(978\) 0 0
\(979\) 0.0521336i 0.00166620i
\(980\) 7.59755i 0.242695i
\(981\) 0 0
\(982\) −7.22353 −0.230512
\(983\) 2.49804 + 2.49804i 0.0796751 + 0.0796751i 0.745821 0.666146i \(-0.232057\pi\)
−0.666146 + 0.745821i \(0.732057\pi\)
\(984\) 0 0
\(985\) 20.9990i 0.669083i
\(986\) 0.469581 5.78101i 0.0149545 0.184105i
\(987\) 0 0
\(988\) 13.2563 + 13.2563i 0.421738 + 0.421738i
\(989\) 8.75486 8.75486i 0.278388 0.278388i
\(990\) 0 0
\(991\) 2.70838i 0.0860345i 0.999074 + 0.0430173i \(0.0136970\pi\)
−0.999074 + 0.0430173i \(0.986303\pi\)
\(992\) 28.0319 0.890013
\(993\) 0 0
\(994\) 2.37196 2.37196i 0.0752341 0.0752341i
\(995\) 4.81438 0.152626
\(996\) 0 0
\(997\) −19.8721 19.8721i −0.629356 0.629356i 0.318550 0.947906i \(-0.396804\pi\)
−0.947906 + 0.318550i \(0.896804\pi\)
\(998\) −9.70344 9.70344i −0.307157 0.307157i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.r.c.476.10 32
3.2 odd 2 1305.2.r.d.476.7 yes 32
29.17 odd 4 1305.2.r.d.1061.7 yes 32
87.17 even 4 inner 1305.2.r.c.1061.10 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.r.c.476.10 32 1.1 even 1 trivial
1305.2.r.c.1061.10 yes 32 87.17 even 4 inner
1305.2.r.d.476.7 yes 32 3.2 odd 2
1305.2.r.d.1061.7 yes 32 29.17 odd 4