Defining parameters
Level: | \( N \) | \(=\) | \( 1305 = 3^{2} \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1305.r (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 87 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 376 | 80 | 296 |
Cusp forms | 344 | 80 | 264 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1305.2.r.a | $8$ | $10.420$ | 8.0.\(\cdots\).11 | None | \(0\) | \(0\) | \(-8\) | \(-8\) | \(q+\beta _{1}q^{2}-\beta _{4}q^{4}-q^{5}+(-1+\beta _{3}+\cdots)q^{7}+\cdots\) |
1305.2.r.b | $8$ | $10.420$ | 8.0.\(\cdots\).11 | None | \(0\) | \(0\) | \(8\) | \(-8\) | \(q-\beta _{1}q^{2}-\beta _{4}q^{4}+q^{5}+(-1-\beta _{3}+\cdots)q^{7}+\cdots\) |
1305.2.r.c | $32$ | $10.420$ | None | \(0\) | \(0\) | \(-32\) | \(8\) | ||
1305.2.r.d | $32$ | $10.420$ | None | \(0\) | \(0\) | \(32\) | \(8\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)