Properties

Label 1305.2.r
Level $1305$
Weight $2$
Character orbit 1305.r
Rep. character $\chi_{1305}(476,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $80$
Newform subspaces $4$
Sturm bound $360$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.r (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 87 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(360\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 376 80 296
Cusp forms 344 80 264
Eisenstein series 32 0 32

Trace form

\( 80 q - 48 q^{16} + 80 q^{25} + 16 q^{37} + 48 q^{43} - 96 q^{46} + 144 q^{49} + 80 q^{52} - 16 q^{55} + 48 q^{58} + 48 q^{61} + 48 q^{70} - 64 q^{76} - 32 q^{79} - 128 q^{82} + 64 q^{88} - 176 q^{94} - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1305.2.r.a 1305.r 87.f $8$ $10.420$ 8.0.\(\cdots\).11 None 1305.2.r.a \(0\) \(0\) \(-8\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}-\beta _{4}q^{4}-q^{5}+(-1+\beta _{3}+\cdots)q^{7}+\cdots\)
1305.2.r.b 1305.r 87.f $8$ $10.420$ 8.0.\(\cdots\).11 None 1305.2.r.a \(0\) \(0\) \(8\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{1}q^{2}-\beta _{4}q^{4}+q^{5}+(-1-\beta _{3}+\cdots)q^{7}+\cdots\)
1305.2.r.c 1305.r 87.f $32$ $10.420$ None 1305.2.r.c \(0\) \(0\) \(-32\) \(8\) $\mathrm{SU}(2)[C_{4}]$
1305.2.r.d 1305.r 87.f $32$ $10.420$ None 1305.2.r.c \(0\) \(0\) \(32\) \(8\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)