Properties

Label 130.8.a.j.1.2
Level $130$
Weight $8$
Character 130.1
Self dual yes
Analytic conductor $40.610$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,8,Mod(1,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 130.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,32,60,256,500,480,616] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.6100533129\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7066x^{2} - 15288x + 8343477 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-40.7169\) of defining polynomial
Character \(\chi\) \(=\) 130.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} -25.7169 q^{3} +64.0000 q^{4} +125.000 q^{5} -205.735 q^{6} -1385.39 q^{7} +512.000 q^{8} -1525.64 q^{9} +1000.00 q^{10} +5984.24 q^{11} -1645.88 q^{12} -2197.00 q^{13} -11083.1 q^{14} -3214.61 q^{15} +4096.00 q^{16} +19887.1 q^{17} -12205.1 q^{18} +14264.7 q^{19} +8000.00 q^{20} +35627.9 q^{21} +47873.9 q^{22} +25147.6 q^{23} -13167.0 q^{24} +15625.0 q^{25} -17576.0 q^{26} +95477.6 q^{27} -88665.0 q^{28} -28976.9 q^{29} -25716.9 q^{30} -113213. q^{31} +32768.0 q^{32} -153896. q^{33} +159097. q^{34} -173174. q^{35} -97641.1 q^{36} +272600. q^{37} +114118. q^{38} +56500.0 q^{39} +64000.0 q^{40} +107960. q^{41} +285023. q^{42} +786402. q^{43} +382992. q^{44} -190705. q^{45} +201181. q^{46} +882239. q^{47} -105336. q^{48} +1.09576e6 q^{49} +125000. q^{50} -511434. q^{51} -140608. q^{52} +562825. q^{53} +763821. q^{54} +748030. q^{55} -709320. q^{56} -366845. q^{57} -231815. q^{58} -247924. q^{59} -205735. q^{60} +1.51269e6 q^{61} -905706. q^{62} +2.11361e6 q^{63} +262144. q^{64} -274625. q^{65} -1.23117e6 q^{66} +1.65807e6 q^{67} +1.27277e6 q^{68} -646717. q^{69} -1.38539e6 q^{70} -1.05278e6 q^{71} -781129. q^{72} +5.61859e6 q^{73} +2.18080e6 q^{74} -401826. q^{75} +912943. q^{76} -8.29051e6 q^{77} +452000. q^{78} -6.77442e6 q^{79} +512000. q^{80} +881193. q^{81} +863676. q^{82} -6.82922e6 q^{83} +2.28019e6 q^{84} +2.48588e6 q^{85} +6.29122e6 q^{86} +745195. q^{87} +3.06393e6 q^{88} -5.36760e6 q^{89} -1.52564e6 q^{90} +3.04370e6 q^{91} +1.60945e6 q^{92} +2.91149e6 q^{93} +7.05791e6 q^{94} +1.78309e6 q^{95} -842691. q^{96} +1.67079e7 q^{97} +8.76611e6 q^{98} -9.12981e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} + 60 q^{3} + 256 q^{4} + 500 q^{5} + 480 q^{6} + 616 q^{7} + 2048 q^{8} + 6284 q^{9} + 4000 q^{10} + 10116 q^{11} + 3840 q^{12} - 8788 q^{13} + 4928 q^{14} + 7500 q^{15} + 16384 q^{16} - 21136 q^{17}+ \cdots - 3168468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) −25.7169 −0.549913 −0.274956 0.961457i \(-0.588663\pi\)
−0.274956 + 0.961457i \(0.588663\pi\)
\(4\) 64.0000 0.500000
\(5\) 125.000 0.447214
\(6\) −205.735 −0.388847
\(7\) −1385.39 −1.52661 −0.763307 0.646036i \(-0.776425\pi\)
−0.763307 + 0.646036i \(0.776425\pi\)
\(8\) 512.000 0.353553
\(9\) −1525.64 −0.697596
\(10\) 1000.00 0.316228
\(11\) 5984.24 1.35561 0.677805 0.735242i \(-0.262931\pi\)
0.677805 + 0.735242i \(0.262931\pi\)
\(12\) −1645.88 −0.274956
\(13\) −2197.00 −0.277350
\(14\) −11083.1 −1.07948
\(15\) −3214.61 −0.245929
\(16\) 4096.00 0.250000
\(17\) 19887.1 0.981747 0.490874 0.871231i \(-0.336678\pi\)
0.490874 + 0.871231i \(0.336678\pi\)
\(18\) −12205.1 −0.493275
\(19\) 14264.7 0.477118 0.238559 0.971128i \(-0.423325\pi\)
0.238559 + 0.971128i \(0.423325\pi\)
\(20\) 8000.00 0.223607
\(21\) 35627.9 0.839504
\(22\) 47873.9 0.958561
\(23\) 25147.6 0.430972 0.215486 0.976507i \(-0.430866\pi\)
0.215486 + 0.976507i \(0.430866\pi\)
\(24\) −13167.0 −0.194424
\(25\) 15625.0 0.200000
\(26\) −17576.0 −0.196116
\(27\) 95477.6 0.933530
\(28\) −88665.0 −0.763307
\(29\) −28976.9 −0.220627 −0.110314 0.993897i \(-0.535185\pi\)
−0.110314 + 0.993897i \(0.535185\pi\)
\(30\) −25716.9 −0.173898
\(31\) −113213. −0.682545 −0.341273 0.939964i \(-0.610858\pi\)
−0.341273 + 0.939964i \(0.610858\pi\)
\(32\) 32768.0 0.176777
\(33\) −153896. −0.745468
\(34\) 159097. 0.694200
\(35\) −173174. −0.682722
\(36\) −97641.1 −0.348798
\(37\) 272600. 0.884748 0.442374 0.896831i \(-0.354136\pi\)
0.442374 + 0.896831i \(0.354136\pi\)
\(38\) 114118. 0.337374
\(39\) 56500.0 0.152518
\(40\) 64000.0 0.158114
\(41\) 107960. 0.244634 0.122317 0.992491i \(-0.460967\pi\)
0.122317 + 0.992491i \(0.460967\pi\)
\(42\) 285023. 0.593619
\(43\) 786402. 1.50836 0.754180 0.656668i \(-0.228035\pi\)
0.754180 + 0.656668i \(0.228035\pi\)
\(44\) 382992. 0.677805
\(45\) −190705. −0.311974
\(46\) 201181. 0.304743
\(47\) 882239. 1.23949 0.619746 0.784802i \(-0.287236\pi\)
0.619746 + 0.784802i \(0.287236\pi\)
\(48\) −105336. −0.137478
\(49\) 1.09576e6 1.33055
\(50\) 125000. 0.141421
\(51\) −511434. −0.539876
\(52\) −140608. −0.138675
\(53\) 562825. 0.519287 0.259644 0.965705i \(-0.416395\pi\)
0.259644 + 0.965705i \(0.416395\pi\)
\(54\) 763821. 0.660105
\(55\) 748030. 0.606247
\(56\) −709320. −0.539739
\(57\) −366845. −0.262374
\(58\) −231815. −0.156007
\(59\) −247924. −0.157158 −0.0785789 0.996908i \(-0.525038\pi\)
−0.0785789 + 0.996908i \(0.525038\pi\)
\(60\) −205735. −0.122964
\(61\) 1.51269e6 0.853287 0.426644 0.904420i \(-0.359696\pi\)
0.426644 + 0.904420i \(0.359696\pi\)
\(62\) −905706. −0.482632
\(63\) 2.11361e6 1.06496
\(64\) 262144. 0.125000
\(65\) −274625. −0.124035
\(66\) −1.23117e6 −0.527125
\(67\) 1.65807e6 0.673504 0.336752 0.941593i \(-0.390672\pi\)
0.336752 + 0.941593i \(0.390672\pi\)
\(68\) 1.27277e6 0.490874
\(69\) −646717. −0.236997
\(70\) −1.38539e6 −0.482757
\(71\) −1.05278e6 −0.349087 −0.174544 0.984649i \(-0.555845\pi\)
−0.174544 + 0.984649i \(0.555845\pi\)
\(72\) −781129. −0.246637
\(73\) 5.61859e6 1.69043 0.845215 0.534426i \(-0.179472\pi\)
0.845215 + 0.534426i \(0.179472\pi\)
\(74\) 2.18080e6 0.625612
\(75\) −401826. −0.109983
\(76\) 912943. 0.238559
\(77\) −8.29051e6 −2.06949
\(78\) 452000. 0.107847
\(79\) −6.77442e6 −1.54588 −0.772942 0.634476i \(-0.781216\pi\)
−0.772942 + 0.634476i \(0.781216\pi\)
\(80\) 512000. 0.111803
\(81\) 881193. 0.184235
\(82\) 863676. 0.172983
\(83\) −6.82922e6 −1.31098 −0.655492 0.755202i \(-0.727539\pi\)
−0.655492 + 0.755202i \(0.727539\pi\)
\(84\) 2.28019e6 0.419752
\(85\) 2.48588e6 0.439051
\(86\) 6.29122e6 1.06657
\(87\) 745195. 0.121326
\(88\) 3.06393e6 0.479281
\(89\) −5.36760e6 −0.807077 −0.403539 0.914963i \(-0.632220\pi\)
−0.403539 + 0.914963i \(0.632220\pi\)
\(90\) −1.52564e6 −0.220599
\(91\) 3.04370e6 0.423406
\(92\) 1.60945e6 0.215486
\(93\) 2.91149e6 0.375340
\(94\) 7.05791e6 0.876454
\(95\) 1.78309e6 0.213374
\(96\) −842691. −0.0972118
\(97\) 1.67079e7 1.85875 0.929375 0.369137i \(-0.120347\pi\)
0.929375 + 0.369137i \(0.120347\pi\)
\(98\) 8.76611e6 0.940839
\(99\) −9.12981e6 −0.945668
\(100\) 1.00000e6 0.100000
\(101\) 9.24298e6 0.892662 0.446331 0.894868i \(-0.352730\pi\)
0.446331 + 0.894868i \(0.352730\pi\)
\(102\) −4.09147e6 −0.381750
\(103\) −1.23098e7 −1.10999 −0.554995 0.831854i \(-0.687280\pi\)
−0.554995 + 0.831854i \(0.687280\pi\)
\(104\) −1.12486e6 −0.0980581
\(105\) 4.45349e6 0.375438
\(106\) 4.50260e6 0.367191
\(107\) −1.37221e7 −1.08288 −0.541438 0.840741i \(-0.682120\pi\)
−0.541438 + 0.840741i \(0.682120\pi\)
\(108\) 6.11057e6 0.466765
\(109\) −1.13000e7 −0.835766 −0.417883 0.908501i \(-0.637228\pi\)
−0.417883 + 0.908501i \(0.637228\pi\)
\(110\) 5.98424e6 0.428682
\(111\) −7.01042e6 −0.486535
\(112\) −5.67456e6 −0.381653
\(113\) 1.78396e7 1.16308 0.581542 0.813517i \(-0.302450\pi\)
0.581542 + 0.813517i \(0.302450\pi\)
\(114\) −2.93476e6 −0.185526
\(115\) 3.14345e6 0.192736
\(116\) −1.85452e6 −0.110314
\(117\) 3.35184e6 0.193478
\(118\) −1.98339e6 −0.111127
\(119\) −2.75514e7 −1.49875
\(120\) −1.64588e6 −0.0869489
\(121\) 1.63240e7 0.837679
\(122\) 1.21015e7 0.603365
\(123\) −2.77638e6 −0.134528
\(124\) −7.24565e6 −0.341273
\(125\) 1.95312e6 0.0894427
\(126\) 1.69089e7 0.753040
\(127\) 5.06683e6 0.219494 0.109747 0.993960i \(-0.464996\pi\)
0.109747 + 0.993960i \(0.464996\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) −2.02238e7 −0.829467
\(130\) −2.19700e6 −0.0877058
\(131\) −4.03617e6 −0.156863 −0.0784313 0.996920i \(-0.524991\pi\)
−0.0784313 + 0.996920i \(0.524991\pi\)
\(132\) −9.84935e6 −0.372734
\(133\) −1.97622e7 −0.728375
\(134\) 1.32645e7 0.476239
\(135\) 1.19347e7 0.417487
\(136\) 1.01822e7 0.347100
\(137\) −2.08510e7 −0.692794 −0.346397 0.938088i \(-0.612595\pi\)
−0.346397 + 0.938088i \(0.612595\pi\)
\(138\) −5.17374e6 −0.167582
\(139\) 2.71927e7 0.858816 0.429408 0.903111i \(-0.358722\pi\)
0.429408 + 0.903111i \(0.358722\pi\)
\(140\) −1.10831e7 −0.341361
\(141\) −2.26884e7 −0.681613
\(142\) −8.42226e6 −0.246842
\(143\) −1.31474e7 −0.375979
\(144\) −6.24903e6 −0.174399
\(145\) −3.62211e6 −0.0986674
\(146\) 4.49487e7 1.19531
\(147\) −2.81796e7 −0.731685
\(148\) 1.74464e7 0.442374
\(149\) −8.50536e6 −0.210640 −0.105320 0.994438i \(-0.533587\pi\)
−0.105320 + 0.994438i \(0.533587\pi\)
\(150\) −3.21461e6 −0.0777694
\(151\) −6.31447e6 −0.149251 −0.0746256 0.997212i \(-0.523776\pi\)
−0.0746256 + 0.997212i \(0.523776\pi\)
\(152\) 7.30354e6 0.168687
\(153\) −3.03406e7 −0.684863
\(154\) −6.63241e7 −1.46335
\(155\) −1.41517e7 −0.305244
\(156\) 3.61600e6 0.0762592
\(157\) −3.55725e7 −0.733611 −0.366806 0.930298i \(-0.619549\pi\)
−0.366806 + 0.930298i \(0.619549\pi\)
\(158\) −5.41953e7 −1.09311
\(159\) −1.44741e7 −0.285563
\(160\) 4.09600e6 0.0790569
\(161\) −3.48392e7 −0.657927
\(162\) 7.04954e6 0.130274
\(163\) −6.46035e7 −1.16842 −0.584211 0.811602i \(-0.698596\pi\)
−0.584211 + 0.811602i \(0.698596\pi\)
\(164\) 6.90941e6 0.122317
\(165\) −1.92370e7 −0.333383
\(166\) −5.46337e7 −0.927006
\(167\) −3.37958e7 −0.561507 −0.280753 0.959780i \(-0.590584\pi\)
−0.280753 + 0.959780i \(0.590584\pi\)
\(168\) 1.82415e7 0.296810
\(169\) 4.82681e6 0.0769231
\(170\) 1.98871e7 0.310456
\(171\) −2.17629e7 −0.332836
\(172\) 5.03297e7 0.754180
\(173\) −8.03428e6 −0.117974 −0.0589869 0.998259i \(-0.518787\pi\)
−0.0589869 + 0.998259i \(0.518787\pi\)
\(174\) 5.96156e6 0.0857902
\(175\) −2.16467e7 −0.305323
\(176\) 2.45115e7 0.338903
\(177\) 6.37583e6 0.0864232
\(178\) −4.29408e7 −0.570690
\(179\) 3.09151e7 0.402889 0.201445 0.979500i \(-0.435436\pi\)
0.201445 + 0.979500i \(0.435436\pi\)
\(180\) −1.22051e7 −0.155987
\(181\) −9.55699e7 −1.19797 −0.598985 0.800760i \(-0.704429\pi\)
−0.598985 + 0.800760i \(0.704429\pi\)
\(182\) 2.43496e7 0.299393
\(183\) −3.89017e7 −0.469234
\(184\) 1.28756e7 0.152372
\(185\) 3.40750e7 0.395672
\(186\) 2.32919e7 0.265406
\(187\) 1.19009e8 1.33087
\(188\) 5.64633e7 0.619746
\(189\) −1.32274e8 −1.42514
\(190\) 1.42647e7 0.150878
\(191\) 1.74551e8 1.81262 0.906310 0.422614i \(-0.138887\pi\)
0.906310 + 0.422614i \(0.138887\pi\)
\(192\) −6.74153e6 −0.0687391
\(193\) 1.82983e8 1.83215 0.916074 0.401010i \(-0.131341\pi\)
0.916074 + 0.401010i \(0.131341\pi\)
\(194\) 1.33663e8 1.31433
\(195\) 7.06250e6 0.0682083
\(196\) 7.01288e7 0.665274
\(197\) −3.86648e7 −0.360316 −0.180158 0.983638i \(-0.557661\pi\)
−0.180158 + 0.983638i \(0.557661\pi\)
\(198\) −7.30385e7 −0.668688
\(199\) −1.14685e8 −1.03162 −0.515811 0.856703i \(-0.672509\pi\)
−0.515811 + 0.856703i \(0.672509\pi\)
\(200\) 8.00000e6 0.0707107
\(201\) −4.26403e7 −0.370368
\(202\) 7.39438e7 0.631208
\(203\) 4.01443e7 0.336812
\(204\) −3.27318e7 −0.269938
\(205\) 1.34949e7 0.109404
\(206\) −9.84780e7 −0.784881
\(207\) −3.83662e7 −0.300644
\(208\) −8.99891e6 −0.0693375
\(209\) 8.53636e7 0.646786
\(210\) 3.56279e7 0.265475
\(211\) 9.52133e7 0.697765 0.348882 0.937167i \(-0.386561\pi\)
0.348882 + 0.937167i \(0.386561\pi\)
\(212\) 3.60208e7 0.259644
\(213\) 2.70743e7 0.191968
\(214\) −1.09777e8 −0.765709
\(215\) 9.83002e7 0.674559
\(216\) 4.88845e7 0.330053
\(217\) 1.56845e8 1.04198
\(218\) −9.03998e7 −0.590976
\(219\) −1.44493e8 −0.929590
\(220\) 4.78739e7 0.303124
\(221\) −4.36919e7 −0.272288
\(222\) −5.60834e7 −0.344032
\(223\) 4.19120e7 0.253088 0.126544 0.991961i \(-0.459611\pi\)
0.126544 + 0.991961i \(0.459611\pi\)
\(224\) −4.53965e7 −0.269870
\(225\) −2.38382e7 −0.139519
\(226\) 1.42717e8 0.822424
\(227\) −1.78109e8 −1.01064 −0.505318 0.862933i \(-0.668625\pi\)
−0.505318 + 0.862933i \(0.668625\pi\)
\(228\) −2.34781e7 −0.131187
\(229\) 2.41493e7 0.132886 0.0664431 0.997790i \(-0.478835\pi\)
0.0664431 + 0.997790i \(0.478835\pi\)
\(230\) 2.51476e7 0.136285
\(231\) 2.13206e8 1.13804
\(232\) −1.48362e7 −0.0780034
\(233\) 1.66011e8 0.859787 0.429894 0.902879i \(-0.358551\pi\)
0.429894 + 0.902879i \(0.358551\pi\)
\(234\) 2.68147e7 0.136810
\(235\) 1.10280e8 0.554318
\(236\) −1.58671e7 −0.0785789
\(237\) 1.74217e8 0.850102
\(238\) −2.20411e8 −1.05978
\(239\) 2.11511e8 1.00217 0.501083 0.865399i \(-0.332935\pi\)
0.501083 + 0.865399i \(0.332935\pi\)
\(240\) −1.31670e7 −0.0614821
\(241\) 3.43807e8 1.58218 0.791088 0.611703i \(-0.209515\pi\)
0.791088 + 0.611703i \(0.209515\pi\)
\(242\) 1.30592e8 0.592328
\(243\) −2.31471e8 −1.03484
\(244\) 9.68121e7 0.426644
\(245\) 1.36970e8 0.595039
\(246\) −2.22111e7 −0.0951254
\(247\) −3.13396e7 −0.132329
\(248\) −5.79652e7 −0.241316
\(249\) 1.75626e8 0.720927
\(250\) 1.56250e7 0.0632456
\(251\) −1.16659e8 −0.465651 −0.232825 0.972519i \(-0.574797\pi\)
−0.232825 + 0.972519i \(0.574797\pi\)
\(252\) 1.35271e8 0.532479
\(253\) 1.50489e8 0.584230
\(254\) 4.05346e7 0.155206
\(255\) −6.39292e7 −0.241440
\(256\) 1.67772e7 0.0625000
\(257\) 2.01467e8 0.740350 0.370175 0.928962i \(-0.379298\pi\)
0.370175 + 0.928962i \(0.379298\pi\)
\(258\) −1.61790e8 −0.586522
\(259\) −3.77657e8 −1.35067
\(260\) −1.75760e7 −0.0620174
\(261\) 4.42083e7 0.153908
\(262\) −3.22893e7 −0.110919
\(263\) −3.35455e8 −1.13708 −0.568538 0.822657i \(-0.692491\pi\)
−0.568538 + 0.822657i \(0.692491\pi\)
\(264\) −7.87948e7 −0.263563
\(265\) 7.03531e7 0.232232
\(266\) −1.58098e8 −0.515039
\(267\) 1.38038e8 0.443822
\(268\) 1.06116e8 0.336752
\(269\) −1.84300e8 −0.577289 −0.288644 0.957436i \(-0.593205\pi\)
−0.288644 + 0.957436i \(0.593205\pi\)
\(270\) 9.54776e7 0.295208
\(271\) 5.91915e8 1.80662 0.903309 0.428990i \(-0.141130\pi\)
0.903309 + 0.428990i \(0.141130\pi\)
\(272\) 8.14575e7 0.245437
\(273\) −7.82745e7 −0.232837
\(274\) −1.66808e8 −0.489879
\(275\) 9.35038e7 0.271122
\(276\) −4.13899e7 −0.118498
\(277\) −1.45729e8 −0.411970 −0.205985 0.978555i \(-0.566040\pi\)
−0.205985 + 0.978555i \(0.566040\pi\)
\(278\) 2.17541e8 0.607274
\(279\) 1.72723e8 0.476141
\(280\) −8.86650e7 −0.241379
\(281\) −3.11664e8 −0.837944 −0.418972 0.907999i \(-0.637609\pi\)
−0.418972 + 0.907999i \(0.637609\pi\)
\(282\) −1.81508e8 −0.481973
\(283\) −3.94385e8 −1.03435 −0.517175 0.855879i \(-0.673016\pi\)
−0.517175 + 0.855879i \(0.673016\pi\)
\(284\) −6.73780e7 −0.174544
\(285\) −4.58556e7 −0.117337
\(286\) −1.05179e8 −0.265857
\(287\) −1.49566e8 −0.373462
\(288\) −4.99922e7 −0.123319
\(289\) −1.48429e7 −0.0361722
\(290\) −2.89769e7 −0.0697684
\(291\) −4.29675e8 −1.02215
\(292\) 3.59590e8 0.845215
\(293\) 6.61653e8 1.53672 0.768358 0.640020i \(-0.221074\pi\)
0.768358 + 0.640020i \(0.221074\pi\)
\(294\) −2.25437e8 −0.517380
\(295\) −3.09905e7 −0.0702831
\(296\) 1.39571e8 0.312806
\(297\) 5.71361e8 1.26550
\(298\) −6.80429e7 −0.148945
\(299\) −5.52492e7 −0.119530
\(300\) −2.57169e7 −0.0549913
\(301\) −1.08947e9 −2.30268
\(302\) −5.05158e7 −0.105537
\(303\) −2.37701e8 −0.490887
\(304\) 5.84284e7 0.119280
\(305\) 1.89086e8 0.381602
\(306\) −2.42724e8 −0.484271
\(307\) 8.19225e8 1.61592 0.807958 0.589240i \(-0.200573\pi\)
0.807958 + 0.589240i \(0.200573\pi\)
\(308\) −5.30593e8 −1.03475
\(309\) 3.16569e8 0.610398
\(310\) −1.13213e8 −0.215840
\(311\) −5.41501e8 −1.02079 −0.510397 0.859939i \(-0.670501\pi\)
−0.510397 + 0.859939i \(0.670501\pi\)
\(312\) 2.89280e7 0.0539234
\(313\) 7.38093e8 1.36052 0.680261 0.732970i \(-0.261866\pi\)
0.680261 + 0.732970i \(0.261866\pi\)
\(314\) −2.84580e8 −0.518741
\(315\) 2.64201e8 0.476264
\(316\) −4.33563e8 −0.772942
\(317\) 4.00476e8 0.706106 0.353053 0.935603i \(-0.385144\pi\)
0.353053 + 0.935603i \(0.385144\pi\)
\(318\) −1.15793e8 −0.201923
\(319\) −1.73405e8 −0.299084
\(320\) 3.27680e7 0.0559017
\(321\) 3.52891e8 0.595488
\(322\) −2.78714e8 −0.465225
\(323\) 2.83684e8 0.468410
\(324\) 5.63963e7 0.0921177
\(325\) −3.43281e7 −0.0554700
\(326\) −5.16828e8 −0.826199
\(327\) 2.90600e8 0.459599
\(328\) 5.52753e7 0.0864913
\(329\) −1.22225e9 −1.89223
\(330\) −1.53896e8 −0.235738
\(331\) −1.06548e8 −0.161490 −0.0807450 0.996735i \(-0.525730\pi\)
−0.0807450 + 0.996735i \(0.525730\pi\)
\(332\) −4.37070e8 −0.655492
\(333\) −4.15890e8 −0.617197
\(334\) −2.70366e8 −0.397045
\(335\) 2.07258e8 0.301200
\(336\) 1.45932e8 0.209876
\(337\) 1.37689e9 1.95972 0.979859 0.199690i \(-0.0639934\pi\)
0.979859 + 0.199690i \(0.0639934\pi\)
\(338\) 3.86145e7 0.0543928
\(339\) −4.58779e8 −0.639595
\(340\) 1.59097e8 0.219525
\(341\) −6.77496e8 −0.925265
\(342\) −1.74103e8 −0.235350
\(343\) −3.77131e8 −0.504618
\(344\) 4.02638e8 0.533286
\(345\) −8.08397e7 −0.105988
\(346\) −6.42742e7 −0.0834201
\(347\) 4.65761e8 0.598425 0.299212 0.954187i \(-0.403276\pi\)
0.299212 + 0.954187i \(0.403276\pi\)
\(348\) 4.76925e7 0.0606628
\(349\) −9.79780e8 −1.23378 −0.616892 0.787048i \(-0.711609\pi\)
−0.616892 + 0.787048i \(0.711609\pi\)
\(350\) −1.73174e8 −0.215896
\(351\) −2.09764e8 −0.258915
\(352\) 1.96092e8 0.239640
\(353\) −1.01470e9 −1.22779 −0.613896 0.789387i \(-0.710399\pi\)
−0.613896 + 0.789387i \(0.710399\pi\)
\(354\) 5.10066e7 0.0611104
\(355\) −1.31598e8 −0.156117
\(356\) −3.43526e8 −0.403539
\(357\) 7.08535e8 0.824181
\(358\) 2.47321e8 0.284886
\(359\) −1.08685e9 −1.23976 −0.619879 0.784697i \(-0.712819\pi\)
−0.619879 + 0.784697i \(0.712819\pi\)
\(360\) −9.76411e7 −0.110300
\(361\) −6.90389e8 −0.772358
\(362\) −7.64559e8 −0.847093
\(363\) −4.19802e8 −0.460650
\(364\) 1.94797e8 0.211703
\(365\) 7.02324e8 0.755983
\(366\) −3.11213e8 −0.331798
\(367\) 1.34094e9 1.41604 0.708022 0.706190i \(-0.249588\pi\)
0.708022 + 0.706190i \(0.249588\pi\)
\(368\) 1.03004e8 0.107743
\(369\) −1.64708e8 −0.170656
\(370\) 2.72600e8 0.279782
\(371\) −7.79732e8 −0.792750
\(372\) 1.86336e8 0.187670
\(373\) −4.81624e8 −0.480538 −0.240269 0.970706i \(-0.577236\pi\)
−0.240269 + 0.970706i \(0.577236\pi\)
\(374\) 9.52073e8 0.941065
\(375\) −5.02283e7 −0.0491857
\(376\) 4.51707e8 0.438227
\(377\) 6.36622e7 0.0611909
\(378\) −1.05819e9 −1.00773
\(379\) −1.27201e9 −1.20020 −0.600098 0.799926i \(-0.704872\pi\)
−0.600098 + 0.799926i \(0.704872\pi\)
\(380\) 1.14118e8 0.106687
\(381\) −1.30303e8 −0.120703
\(382\) 1.39641e9 1.28172
\(383\) 2.01846e9 1.83580 0.917899 0.396814i \(-0.129884\pi\)
0.917899 + 0.396814i \(0.129884\pi\)
\(384\) −5.39322e7 −0.0486059
\(385\) −1.03631e9 −0.925505
\(386\) 1.46386e9 1.29552
\(387\) −1.19977e9 −1.05223
\(388\) 1.06931e9 0.929375
\(389\) −7.76726e8 −0.669028 −0.334514 0.942391i \(-0.608572\pi\)
−0.334514 + 0.942391i \(0.608572\pi\)
\(390\) 5.65000e7 0.0482306
\(391\) 5.00112e8 0.423105
\(392\) 5.61031e8 0.470420
\(393\) 1.03798e8 0.0862608
\(394\) −3.09318e8 −0.254782
\(395\) −8.46802e8 −0.691341
\(396\) −5.84308e8 −0.472834
\(397\) 1.60439e9 1.28689 0.643446 0.765491i \(-0.277504\pi\)
0.643446 + 0.765491i \(0.277504\pi\)
\(398\) −9.17479e8 −0.729467
\(399\) 5.08223e8 0.400543
\(400\) 6.40000e7 0.0500000
\(401\) 1.63363e9 1.26517 0.632584 0.774491i \(-0.281994\pi\)
0.632584 + 0.774491i \(0.281994\pi\)
\(402\) −3.41122e8 −0.261890
\(403\) 2.48730e8 0.189304
\(404\) 5.91551e8 0.446331
\(405\) 1.10149e8 0.0823926
\(406\) 3.21154e8 0.238162
\(407\) 1.63130e9 1.19937
\(408\) −2.61854e8 −0.190875
\(409\) 3.02999e8 0.218983 0.109491 0.993988i \(-0.465078\pi\)
0.109491 + 0.993988i \(0.465078\pi\)
\(410\) 1.07960e8 0.0773602
\(411\) 5.36222e8 0.380976
\(412\) −7.87824e8 −0.554995
\(413\) 3.43471e8 0.239919
\(414\) −3.06930e8 −0.212587
\(415\) −8.53652e8 −0.586290
\(416\) −7.19913e7 −0.0490290
\(417\) −6.99311e8 −0.472274
\(418\) 6.82909e8 0.457347
\(419\) 1.50517e9 0.999623 0.499812 0.866134i \(-0.333403\pi\)
0.499812 + 0.866134i \(0.333403\pi\)
\(420\) 2.85023e8 0.187719
\(421\) 2.34240e9 1.52994 0.764968 0.644069i \(-0.222755\pi\)
0.764968 + 0.644069i \(0.222755\pi\)
\(422\) 7.61706e8 0.493394
\(423\) −1.34598e9 −0.864665
\(424\) 2.88166e8 0.183596
\(425\) 3.10736e8 0.196349
\(426\) 2.16594e8 0.135742
\(427\) −2.09567e9 −1.30264
\(428\) −8.78217e8 −0.541438
\(429\) 3.38110e8 0.206756
\(430\) 7.86402e8 0.476985
\(431\) 7.56002e8 0.454834 0.227417 0.973797i \(-0.426972\pi\)
0.227417 + 0.973797i \(0.426972\pi\)
\(432\) 3.91076e8 0.233382
\(433\) 2.45123e9 1.45103 0.725515 0.688207i \(-0.241602\pi\)
0.725515 + 0.688207i \(0.241602\pi\)
\(434\) 1.25476e9 0.736793
\(435\) 9.31494e7 0.0542585
\(436\) −7.23198e8 −0.417883
\(437\) 3.58724e8 0.205625
\(438\) −1.15594e9 −0.657319
\(439\) −2.62694e9 −1.48192 −0.740959 0.671550i \(-0.765629\pi\)
−0.740959 + 0.671550i \(0.765629\pi\)
\(440\) 3.82992e8 0.214341
\(441\) −1.67174e9 −0.928184
\(442\) −3.49535e8 −0.192536
\(443\) −2.14963e9 −1.17476 −0.587381 0.809310i \(-0.699841\pi\)
−0.587381 + 0.809310i \(0.699841\pi\)
\(444\) −4.48667e8 −0.243267
\(445\) −6.70950e8 −0.360936
\(446\) 3.35296e8 0.178960
\(447\) 2.18731e8 0.115834
\(448\) −3.63172e8 −0.190827
\(449\) −2.77752e9 −1.44809 −0.724045 0.689753i \(-0.757719\pi\)
−0.724045 + 0.689753i \(0.757719\pi\)
\(450\) −1.90705e8 −0.0986549
\(451\) 6.46056e8 0.331629
\(452\) 1.14173e9 0.581542
\(453\) 1.62389e8 0.0820752
\(454\) −1.42487e9 −0.714627
\(455\) 3.80463e8 0.189353
\(456\) −1.87824e8 −0.0927631
\(457\) −3.87434e9 −1.89885 −0.949426 0.313990i \(-0.898334\pi\)
−0.949426 + 0.313990i \(0.898334\pi\)
\(458\) 1.93194e8 0.0939647
\(459\) 1.89877e9 0.916490
\(460\) 2.01181e8 0.0963682
\(461\) 1.46095e9 0.694514 0.347257 0.937770i \(-0.387113\pi\)
0.347257 + 0.937770i \(0.387113\pi\)
\(462\) 1.70565e9 0.804716
\(463\) −4.21691e9 −1.97452 −0.987259 0.159124i \(-0.949133\pi\)
−0.987259 + 0.159124i \(0.949133\pi\)
\(464\) −1.18689e8 −0.0551568
\(465\) 3.63937e8 0.167857
\(466\) 1.32809e9 0.607962
\(467\) 2.74327e9 1.24640 0.623202 0.782061i \(-0.285831\pi\)
0.623202 + 0.782061i \(0.285831\pi\)
\(468\) 2.14517e8 0.0967391
\(469\) −2.29707e9 −1.02818
\(470\) 8.82239e8 0.391962
\(471\) 9.14814e8 0.403422
\(472\) −1.26937e8 −0.0555637
\(473\) 4.70602e9 2.04475
\(474\) 1.39374e9 0.601113
\(475\) 2.22886e8 0.0954237
\(476\) −1.76329e9 −0.749374
\(477\) −8.58669e8 −0.362252
\(478\) 1.69209e9 0.708639
\(479\) −2.34714e9 −0.975810 −0.487905 0.872897i \(-0.662239\pi\)
−0.487905 + 0.872897i \(0.662239\pi\)
\(480\) −1.05336e8 −0.0434744
\(481\) −5.98902e8 −0.245385
\(482\) 2.75045e9 1.11877
\(483\) 8.95956e8 0.361803
\(484\) 1.04474e9 0.418839
\(485\) 2.08849e9 0.831258
\(486\) −1.85177e9 −0.731745
\(487\) 3.36131e9 1.31873 0.659367 0.751821i \(-0.270824\pi\)
0.659367 + 0.751821i \(0.270824\pi\)
\(488\) 7.74497e8 0.301683
\(489\) 1.66140e9 0.642530
\(490\) 1.09576e9 0.420756
\(491\) 2.56010e9 0.976051 0.488026 0.872829i \(-0.337717\pi\)
0.488026 + 0.872829i \(0.337717\pi\)
\(492\) −1.77689e8 −0.0672638
\(493\) −5.76266e8 −0.216600
\(494\) −2.50717e8 −0.0935706
\(495\) −1.14123e9 −0.422915
\(496\) −4.63722e8 −0.170636
\(497\) 1.45851e9 0.532921
\(498\) 1.40501e9 0.509773
\(499\) −2.46043e9 −0.886459 −0.443230 0.896408i \(-0.646167\pi\)
−0.443230 + 0.896408i \(0.646167\pi\)
\(500\) 1.25000e8 0.0447214
\(501\) 8.69123e8 0.308780
\(502\) −9.33272e8 −0.329265
\(503\) −2.00729e9 −0.703272 −0.351636 0.936137i \(-0.614374\pi\)
−0.351636 + 0.936137i \(0.614374\pi\)
\(504\) 1.08217e9 0.376520
\(505\) 1.15537e9 0.399211
\(506\) 1.20391e9 0.413113
\(507\) −1.24130e8 −0.0423010
\(508\) 3.24277e8 0.109747
\(509\) 3.74795e9 1.25974 0.629871 0.776700i \(-0.283108\pi\)
0.629871 + 0.776700i \(0.283108\pi\)
\(510\) −5.11434e8 −0.170724
\(511\) −7.78394e9 −2.58063
\(512\) 1.34218e8 0.0441942
\(513\) 1.36196e9 0.445404
\(514\) 1.61173e9 0.523506
\(515\) −1.53872e9 −0.496403
\(516\) −1.29432e9 −0.414733
\(517\) 5.27953e9 1.68027
\(518\) −3.02126e9 −0.955067
\(519\) 2.06617e8 0.0648753
\(520\) −1.40608e8 −0.0438529
\(521\) −4.62413e8 −0.143251 −0.0716256 0.997432i \(-0.522819\pi\)
−0.0716256 + 0.997432i \(0.522819\pi\)
\(522\) 3.53667e8 0.108830
\(523\) −5.16321e9 −1.57821 −0.789104 0.614260i \(-0.789455\pi\)
−0.789104 + 0.614260i \(0.789455\pi\)
\(524\) −2.58315e8 −0.0784313
\(525\) 5.56686e8 0.167901
\(526\) −2.68364e9 −0.804034
\(527\) −2.25148e9 −0.670087
\(528\) −6.30358e8 −0.186367
\(529\) −2.77242e9 −0.814263
\(530\) 5.62825e8 0.164213
\(531\) 3.78243e8 0.109633
\(532\) −1.26478e9 −0.364188
\(533\) −2.37187e8 −0.0678494
\(534\) 1.10430e9 0.313830
\(535\) −1.71527e9 −0.484277
\(536\) 8.48930e8 0.238120
\(537\) −7.95041e8 −0.221554
\(538\) −1.47440e9 −0.408205
\(539\) 6.55731e9 1.80370
\(540\) 7.63821e8 0.208744
\(541\) 1.14669e9 0.311354 0.155677 0.987808i \(-0.450244\pi\)
0.155677 + 0.987808i \(0.450244\pi\)
\(542\) 4.73532e9 1.27747
\(543\) 2.45776e9 0.658779
\(544\) 6.51660e8 0.173550
\(545\) −1.41250e9 −0.373766
\(546\) −6.26196e8 −0.164640
\(547\) −6.17772e9 −1.61388 −0.806942 0.590630i \(-0.798879\pi\)
−0.806942 + 0.590630i \(0.798879\pi\)
\(548\) −1.33446e9 −0.346397
\(549\) −2.30782e9 −0.595250
\(550\) 7.48030e8 0.191712
\(551\) −4.13348e8 −0.105265
\(552\) −3.31119e8 −0.0837911
\(553\) 9.38521e9 2.35997
\(554\) −1.16583e9 −0.291307
\(555\) −8.76303e8 −0.217585
\(556\) 1.74033e9 0.429408
\(557\) −4.19462e9 −1.02849 −0.514245 0.857643i \(-0.671928\pi\)
−0.514245 + 0.857643i \(0.671928\pi\)
\(558\) 1.38178e9 0.336682
\(559\) −1.72773e9 −0.418344
\(560\) −7.09320e8 −0.170681
\(561\) −3.06054e9 −0.731861
\(562\) −2.49331e9 −0.592516
\(563\) 1.54720e9 0.365398 0.182699 0.983169i \(-0.441517\pi\)
0.182699 + 0.983169i \(0.441517\pi\)
\(564\) −1.45206e9 −0.340807
\(565\) 2.22995e9 0.520147
\(566\) −3.15508e9 −0.731396
\(567\) −1.22080e9 −0.281256
\(568\) −5.39024e8 −0.123421
\(569\) 3.35925e9 0.764451 0.382225 0.924069i \(-0.375158\pi\)
0.382225 + 0.924069i \(0.375158\pi\)
\(570\) −3.66845e8 −0.0829698
\(571\) 3.67087e9 0.825168 0.412584 0.910920i \(-0.364626\pi\)
0.412584 + 0.910920i \(0.364626\pi\)
\(572\) −8.41432e8 −0.187989
\(573\) −4.48892e9 −0.996783
\(574\) −1.19653e9 −0.264078
\(575\) 3.92931e8 0.0861943
\(576\) −3.99938e8 −0.0871995
\(577\) 6.59453e7 0.0142912 0.00714559 0.999974i \(-0.497725\pi\)
0.00714559 + 0.999974i \(0.497725\pi\)
\(578\) −1.18743e8 −0.0255776
\(579\) −4.70576e9 −1.00752
\(580\) −2.31815e8 −0.0493337
\(581\) 9.46113e9 2.00137
\(582\) −3.43740e9 −0.722770
\(583\) 3.36808e9 0.703951
\(584\) 2.87672e9 0.597657
\(585\) 4.18979e8 0.0865261
\(586\) 5.29323e9 1.08662
\(587\) −2.53103e9 −0.516492 −0.258246 0.966079i \(-0.583145\pi\)
−0.258246 + 0.966079i \(0.583145\pi\)
\(588\) −1.80350e9 −0.365843
\(589\) −1.61496e9 −0.325655
\(590\) −2.47924e8 −0.0496977
\(591\) 9.94337e8 0.198142
\(592\) 1.11657e9 0.221187
\(593\) −6.42139e9 −1.26456 −0.632278 0.774742i \(-0.717880\pi\)
−0.632278 + 0.774742i \(0.717880\pi\)
\(594\) 4.57089e9 0.894845
\(595\) −3.44392e9 −0.670261
\(596\) −5.44343e8 −0.105320
\(597\) 2.94934e9 0.567302
\(598\) −4.41994e8 −0.0845205
\(599\) −2.91569e9 −0.554304 −0.277152 0.960826i \(-0.589391\pi\)
−0.277152 + 0.960826i \(0.589391\pi\)
\(600\) −2.05735e8 −0.0388847
\(601\) 1.81872e9 0.341747 0.170873 0.985293i \(-0.445341\pi\)
0.170873 + 0.985293i \(0.445341\pi\)
\(602\) −8.71579e9 −1.62824
\(603\) −2.52962e9 −0.469833
\(604\) −4.04126e8 −0.0746256
\(605\) 2.04050e9 0.374621
\(606\) −1.90161e9 −0.347109
\(607\) −6.76925e9 −1.22851 −0.614257 0.789106i \(-0.710544\pi\)
−0.614257 + 0.789106i \(0.710544\pi\)
\(608\) 4.67427e8 0.0843434
\(609\) −1.03239e9 −0.185217
\(610\) 1.51269e9 0.269833
\(611\) −1.93828e9 −0.343773
\(612\) −1.94180e9 −0.342431
\(613\) 4.63092e9 0.811999 0.405999 0.913873i \(-0.366923\pi\)
0.405999 + 0.913873i \(0.366923\pi\)
\(614\) 6.55380e9 1.14262
\(615\) −3.47048e8 −0.0601626
\(616\) −4.24474e9 −0.731676
\(617\) −4.85871e9 −0.832766 −0.416383 0.909189i \(-0.636702\pi\)
−0.416383 + 0.909189i \(0.636702\pi\)
\(618\) 2.53255e9 0.431617
\(619\) −1.01047e9 −0.171241 −0.0856203 0.996328i \(-0.527287\pi\)
−0.0856203 + 0.996328i \(0.527287\pi\)
\(620\) −9.05706e8 −0.152622
\(621\) 2.40103e9 0.402325
\(622\) −4.33201e9 −0.721810
\(623\) 7.43622e9 1.23209
\(624\) 2.31424e8 0.0381296
\(625\) 2.44141e8 0.0400000
\(626\) 5.90474e9 0.962035
\(627\) −2.19529e9 −0.355676
\(628\) −2.27664e9 −0.366806
\(629\) 5.42122e9 0.868599
\(630\) 2.11361e9 0.336770
\(631\) −3.64738e9 −0.577934 −0.288967 0.957339i \(-0.593312\pi\)
−0.288967 + 0.957339i \(0.593312\pi\)
\(632\) −3.46850e9 −0.546553
\(633\) −2.44859e9 −0.383710
\(634\) 3.20381e9 0.499292
\(635\) 6.33353e8 0.0981608
\(636\) −9.26342e8 −0.142781
\(637\) −2.40739e9 −0.369028
\(638\) −1.38724e9 −0.211484
\(639\) 1.60617e9 0.243522
\(640\) 2.62144e8 0.0395285
\(641\) −2.27639e9 −0.341384 −0.170692 0.985324i \(-0.554600\pi\)
−0.170692 + 0.985324i \(0.554600\pi\)
\(642\) 2.82313e9 0.421073
\(643\) −1.94818e9 −0.288995 −0.144498 0.989505i \(-0.546157\pi\)
−0.144498 + 0.989505i \(0.546157\pi\)
\(644\) −2.22971e9 −0.328964
\(645\) −2.52798e9 −0.370949
\(646\) 2.26947e9 0.331216
\(647\) −2.36358e9 −0.343088 −0.171544 0.985176i \(-0.554876\pi\)
−0.171544 + 0.985176i \(0.554876\pi\)
\(648\) 4.51171e8 0.0651371
\(649\) −1.48364e9 −0.213045
\(650\) −2.74625e8 −0.0392232
\(651\) −4.03355e9 −0.573000
\(652\) −4.13462e9 −0.584211
\(653\) −4.09914e9 −0.576098 −0.288049 0.957616i \(-0.593007\pi\)
−0.288049 + 0.957616i \(0.593007\pi\)
\(654\) 2.32480e9 0.324985
\(655\) −5.04521e8 −0.0701511
\(656\) 4.42202e8 0.0611586
\(657\) −8.57196e9 −1.17924
\(658\) −9.77797e9 −1.33801
\(659\) 4.89248e9 0.665932 0.332966 0.942939i \(-0.391951\pi\)
0.332966 + 0.942939i \(0.391951\pi\)
\(660\) −1.23117e9 −0.166692
\(661\) −2.62013e9 −0.352873 −0.176436 0.984312i \(-0.556457\pi\)
−0.176436 + 0.984312i \(0.556457\pi\)
\(662\) −8.52381e8 −0.114191
\(663\) 1.12362e9 0.149735
\(664\) −3.49656e9 −0.463503
\(665\) −2.47028e9 −0.325739
\(666\) −3.32712e9 −0.436424
\(667\) −7.28699e8 −0.0950840
\(668\) −2.16293e9 −0.280753
\(669\) −1.07785e9 −0.139176
\(670\) 1.65807e9 0.212981
\(671\) 9.05230e9 1.15673
\(672\) 1.16746e9 0.148405
\(673\) 7.23036e8 0.0914339 0.0457170 0.998954i \(-0.485443\pi\)
0.0457170 + 0.998954i \(0.485443\pi\)
\(674\) 1.10151e10 1.38573
\(675\) 1.49184e9 0.186706
\(676\) 3.08916e8 0.0384615
\(677\) 1.37778e10 1.70656 0.853279 0.521455i \(-0.174610\pi\)
0.853279 + 0.521455i \(0.174610\pi\)
\(678\) −3.67023e9 −0.452262
\(679\) −2.31470e10 −2.83759
\(680\) 1.27277e9 0.155228
\(681\) 4.58040e9 0.555761
\(682\) −5.41997e9 −0.654261
\(683\) 1.51093e10 1.81457 0.907283 0.420521i \(-0.138153\pi\)
0.907283 + 0.420521i \(0.138153\pi\)
\(684\) −1.39282e9 −0.166418
\(685\) −2.60637e9 −0.309827
\(686\) −3.01705e9 −0.356819
\(687\) −6.21044e8 −0.0730758
\(688\) 3.22110e9 0.377090
\(689\) −1.23653e9 −0.144024
\(690\) −6.46717e8 −0.0749450
\(691\) −9.03723e9 −1.04199 −0.520993 0.853561i \(-0.674438\pi\)
−0.520993 + 0.853561i \(0.674438\pi\)
\(692\) −5.14194e8 −0.0589869
\(693\) 1.26484e10 1.44367
\(694\) 3.72609e9 0.423150
\(695\) 3.39908e9 0.384074
\(696\) 3.81540e8 0.0428951
\(697\) 2.14700e9 0.240169
\(698\) −7.83824e9 −0.872417
\(699\) −4.26929e9 −0.472808
\(700\) −1.38539e9 −0.152661
\(701\) 1.39276e10 1.52709 0.763543 0.645757i \(-0.223458\pi\)
0.763543 + 0.645757i \(0.223458\pi\)
\(702\) −1.67811e9 −0.183080
\(703\) 3.88857e9 0.422130
\(704\) 1.56873e9 0.169451
\(705\) −2.83606e9 −0.304827
\(706\) −8.11758e9 −0.868180
\(707\) −1.28051e10 −1.36275
\(708\) 4.08053e8 0.0432116
\(709\) 4.70055e9 0.495321 0.247661 0.968847i \(-0.420338\pi\)
0.247661 + 0.968847i \(0.420338\pi\)
\(710\) −1.05278e9 −0.110391
\(711\) 1.03353e10 1.07840
\(712\) −2.74821e9 −0.285345
\(713\) −2.84704e9 −0.294158
\(714\) 5.66828e9 0.582784
\(715\) −1.64342e9 −0.168143
\(716\) 1.97857e9 0.201445
\(717\) −5.43940e9 −0.551104
\(718\) −8.69476e9 −0.876642
\(719\) 9.95369e9 0.998695 0.499347 0.866402i \(-0.333573\pi\)
0.499347 + 0.866402i \(0.333573\pi\)
\(720\) −7.81129e8 −0.0779936
\(721\) 1.70538e10 1.69453
\(722\) −5.52311e9 −0.546140
\(723\) −8.84164e9 −0.870059
\(724\) −6.11647e9 −0.598985
\(725\) −4.52764e8 −0.0441254
\(726\) −3.35842e9 −0.325729
\(727\) 8.37125e9 0.808016 0.404008 0.914755i \(-0.367617\pi\)
0.404008 + 0.914755i \(0.367617\pi\)
\(728\) 1.55838e9 0.149697
\(729\) 4.02554e9 0.384838
\(730\) 5.61859e9 0.534561
\(731\) 1.56392e10 1.48083
\(732\) −2.48971e9 −0.234617
\(733\) 6.45894e9 0.605756 0.302878 0.953029i \(-0.402053\pi\)
0.302878 + 0.953029i \(0.402053\pi\)
\(734\) 1.07275e10 1.00129
\(735\) −3.52245e9 −0.327220
\(736\) 8.24036e8 0.0761858
\(737\) 9.92227e9 0.913009
\(738\) −1.31766e9 −0.120672
\(739\) 4.58379e9 0.417801 0.208901 0.977937i \(-0.433012\pi\)
0.208901 + 0.977937i \(0.433012\pi\)
\(740\) 2.18080e9 0.197836
\(741\) 8.05957e8 0.0727693
\(742\) −6.23785e9 −0.560559
\(743\) 2.14306e10 1.91678 0.958392 0.285457i \(-0.0921454\pi\)
0.958392 + 0.285457i \(0.0921454\pi\)
\(744\) 1.49068e9 0.132703
\(745\) −1.06317e9 −0.0942011
\(746\) −3.85299e9 −0.339791
\(747\) 1.04189e10 0.914537
\(748\) 7.61658e9 0.665433
\(749\) 1.90105e10 1.65313
\(750\) −4.01826e8 −0.0347796
\(751\) −1.64491e9 −0.141711 −0.0708555 0.997487i \(-0.522573\pi\)
−0.0708555 + 0.997487i \(0.522573\pi\)
\(752\) 3.61365e9 0.309873
\(753\) 3.00011e9 0.256067
\(754\) 5.09298e8 0.0432685
\(755\) −7.89309e8 −0.0667472
\(756\) −8.46552e9 −0.712570
\(757\) 6.21258e9 0.520519 0.260260 0.965539i \(-0.416192\pi\)
0.260260 + 0.965539i \(0.416192\pi\)
\(758\) −1.01761e10 −0.848667
\(759\) −3.87011e9 −0.321275
\(760\) 9.12943e8 0.0754390
\(761\) −3.66858e9 −0.301753 −0.150877 0.988553i \(-0.548210\pi\)
−0.150877 + 0.988553i \(0.548210\pi\)
\(762\) −1.04242e9 −0.0853497
\(763\) 1.56549e10 1.27589
\(764\) 1.11713e10 0.906310
\(765\) −3.79257e9 −0.306280
\(766\) 1.61477e10 1.29811
\(767\) 5.44689e8 0.0435878
\(768\) −4.31458e8 −0.0343696
\(769\) −2.22396e10 −1.76354 −0.881770 0.471680i \(-0.843648\pi\)
−0.881770 + 0.471680i \(0.843648\pi\)
\(770\) −8.29051e9 −0.654431
\(771\) −5.18109e9 −0.407128
\(772\) 1.17109e10 0.916074
\(773\) 1.23669e10 0.963010 0.481505 0.876443i \(-0.340090\pi\)
0.481505 + 0.876443i \(0.340090\pi\)
\(774\) −9.59814e9 −0.744036
\(775\) −1.76896e9 −0.136509
\(776\) 8.55445e9 0.657167
\(777\) 9.71217e9 0.742750
\(778\) −6.21381e9 −0.473074
\(779\) 1.54001e9 0.116720
\(780\) 4.52000e8 0.0341042
\(781\) −6.30010e9 −0.473226
\(782\) 4.00089e9 0.299181
\(783\) −2.76664e9 −0.205962
\(784\) 4.48825e9 0.332637
\(785\) −4.44656e9 −0.328081
\(786\) 8.30381e8 0.0609956
\(787\) −2.43423e10 −1.78012 −0.890060 0.455843i \(-0.849338\pi\)
−0.890060 + 0.455843i \(0.849338\pi\)
\(788\) −2.47454e9 −0.180158
\(789\) 8.62686e9 0.625293
\(790\) −6.77442e9 −0.488852
\(791\) −2.47148e10 −1.77558
\(792\) −4.67446e9 −0.334344
\(793\) −3.32338e9 −0.236659
\(794\) 1.28351e10 0.909970
\(795\) −1.80926e9 −0.127708
\(796\) −7.33983e9 −0.515811
\(797\) 8.56180e9 0.599047 0.299524 0.954089i \(-0.403172\pi\)
0.299524 + 0.954089i \(0.403172\pi\)
\(798\) 4.06578e9 0.283227
\(799\) 1.75452e10 1.21687
\(800\) 5.12000e8 0.0353553
\(801\) 8.18903e9 0.563013
\(802\) 1.30690e10 0.894609
\(803\) 3.36230e10 2.29156
\(804\) −2.72898e9 −0.185184
\(805\) −4.35490e9 −0.294234
\(806\) 1.98984e9 0.133858
\(807\) 4.73963e9 0.317459
\(808\) 4.73241e9 0.315604
\(809\) 3.77273e9 0.250516 0.125258 0.992124i \(-0.460024\pi\)
0.125258 + 0.992124i \(0.460024\pi\)
\(810\) 8.81193e8 0.0582604
\(811\) −9.76912e9 −0.643106 −0.321553 0.946892i \(-0.604205\pi\)
−0.321553 + 0.946892i \(0.604205\pi\)
\(812\) 2.56923e9 0.168406
\(813\) −1.52222e10 −0.993483
\(814\) 1.30504e10 0.848085
\(815\) −8.07544e9 −0.522534
\(816\) −2.09483e9 −0.134969
\(817\) 1.12178e10 0.719666
\(818\) 2.42399e9 0.154844
\(819\) −4.64360e9 −0.295366
\(820\) 8.63676e8 0.0547019
\(821\) −2.91885e10 −1.84082 −0.920410 0.390955i \(-0.872145\pi\)
−0.920410 + 0.390955i \(0.872145\pi\)
\(822\) 4.28977e9 0.269391
\(823\) −3.16808e7 −0.00198106 −0.000990528 1.00000i \(-0.500315\pi\)
−0.000990528 1.00000i \(0.500315\pi\)
\(824\) −6.30259e9 −0.392441
\(825\) −2.40463e9 −0.149094
\(826\) 2.74777e9 0.169649
\(827\) −2.03440e10 −1.25074 −0.625369 0.780329i \(-0.715052\pi\)
−0.625369 + 0.780329i \(0.715052\pi\)
\(828\) −2.45544e9 −0.150322
\(829\) 2.23613e10 1.36319 0.681594 0.731731i \(-0.261287\pi\)
0.681594 + 0.731731i \(0.261287\pi\)
\(830\) −6.82922e9 −0.414570
\(831\) 3.74769e9 0.226548
\(832\) −5.75930e8 −0.0346688
\(833\) 2.17915e10 1.30626
\(834\) −5.59449e9 −0.333948
\(835\) −4.22447e9 −0.251113
\(836\) 5.46327e9 0.323393
\(837\) −1.08093e10 −0.637176
\(838\) 1.20414e10 0.706840
\(839\) −1.11761e10 −0.653319 −0.326659 0.945142i \(-0.605923\pi\)
−0.326659 + 0.945142i \(0.605923\pi\)
\(840\) 2.28019e9 0.132737
\(841\) −1.64102e10 −0.951324
\(842\) 1.87392e10 1.08183
\(843\) 8.01503e9 0.460796
\(844\) 6.09365e9 0.348882
\(845\) 6.03351e8 0.0344010
\(846\) −1.07679e10 −0.611410
\(847\) −2.26151e10 −1.27881
\(848\) 2.30533e9 0.129822
\(849\) 1.01424e10 0.568803
\(850\) 2.48588e9 0.138840
\(851\) 6.85523e9 0.381302
\(852\) 1.73275e9 0.0959839
\(853\) −1.57039e10 −0.866336 −0.433168 0.901313i \(-0.642604\pi\)
−0.433168 + 0.901313i \(0.642604\pi\)
\(854\) −1.67653e10 −0.921106
\(855\) −2.72036e9 −0.148849
\(856\) −7.02574e9 −0.382855
\(857\) −1.01560e10 −0.551174 −0.275587 0.961276i \(-0.588872\pi\)
−0.275587 + 0.961276i \(0.588872\pi\)
\(858\) 2.70488e9 0.146198
\(859\) 2.43067e10 1.30843 0.654214 0.756309i \(-0.272999\pi\)
0.654214 + 0.756309i \(0.272999\pi\)
\(860\) 6.29122e9 0.337280
\(861\) 3.84637e9 0.205372
\(862\) 6.04802e9 0.321616
\(863\) −2.95200e10 −1.56343 −0.781716 0.623634i \(-0.785656\pi\)
−0.781716 + 0.623634i \(0.785656\pi\)
\(864\) 3.12861e9 0.165026
\(865\) −1.00428e9 −0.0527595
\(866\) 1.96098e10 1.02603
\(867\) 3.81712e8 0.0198916
\(868\) 1.00381e10 0.520991
\(869\) −4.05398e10 −2.09562
\(870\) 7.45195e8 0.0383665
\(871\) −3.64277e9 −0.186796
\(872\) −5.78559e9 −0.295488
\(873\) −2.54903e10 −1.29666
\(874\) 2.86979e9 0.145398
\(875\) −2.70584e9 −0.136544
\(876\) −9.24753e9 −0.464795
\(877\) −3.08282e10 −1.54330 −0.771649 0.636048i \(-0.780568\pi\)
−0.771649 + 0.636048i \(0.780568\pi\)
\(878\) −2.10155e10 −1.04787
\(879\) −1.70157e10 −0.845060
\(880\) 3.06393e9 0.151562
\(881\) 2.07134e10 1.02055 0.510276 0.860011i \(-0.329543\pi\)
0.510276 + 0.860011i \(0.329543\pi\)
\(882\) −1.33739e10 −0.656325
\(883\) −2.02076e10 −0.987762 −0.493881 0.869529i \(-0.664422\pi\)
−0.493881 + 0.869529i \(0.664422\pi\)
\(884\) −2.79628e9 −0.136144
\(885\) 7.96978e8 0.0386496
\(886\) −1.71970e10 −0.830683
\(887\) −2.94541e10 −1.41714 −0.708569 0.705641i \(-0.750659\pi\)
−0.708569 + 0.705641i \(0.750659\pi\)
\(888\) −3.58934e9 −0.172016
\(889\) −7.01953e9 −0.335083
\(890\) −5.36760e9 −0.255220
\(891\) 5.27327e9 0.249751
\(892\) 2.68237e9 0.126544
\(893\) 1.25849e10 0.591385
\(894\) 1.74985e9 0.0819068
\(895\) 3.86439e9 0.180178
\(896\) −2.90537e9 −0.134935
\(897\) 1.42084e9 0.0657311
\(898\) −2.22202e10 −1.02395
\(899\) 3.28057e9 0.150588
\(900\) −1.52564e9 −0.0697596
\(901\) 1.11929e10 0.509809
\(902\) 5.16845e9 0.234497
\(903\) 2.80179e10 1.26627
\(904\) 9.13388e9 0.411212
\(905\) −1.19462e10 −0.535749
\(906\) 1.29911e9 0.0580359
\(907\) 5.11479e9 0.227616 0.113808 0.993503i \(-0.463695\pi\)
0.113808 + 0.993503i \(0.463695\pi\)
\(908\) −1.13990e10 −0.505318
\(909\) −1.41015e10 −0.622717
\(910\) 3.04370e9 0.133893
\(911\) −3.47003e10 −1.52061 −0.760307 0.649564i \(-0.774951\pi\)
−0.760307 + 0.649564i \(0.774951\pi\)
\(912\) −1.50260e9 −0.0655934
\(913\) −4.08677e10 −1.77718
\(914\) −3.09947e10 −1.34269
\(915\) −4.86271e9 −0.209848
\(916\) 1.54555e9 0.0664431
\(917\) 5.59167e9 0.239469
\(918\) 1.51902e10 0.648057
\(919\) 1.25541e10 0.533557 0.266779 0.963758i \(-0.414041\pi\)
0.266779 + 0.963758i \(0.414041\pi\)
\(920\) 1.60945e9 0.0681426
\(921\) −2.10679e10 −0.888613
\(922\) 1.16876e10 0.491096
\(923\) 2.31296e9 0.0968194
\(924\) 1.36452e10 0.569020
\(925\) 4.25937e9 0.176950
\(926\) −3.37353e10 −1.39619
\(927\) 1.87803e10 0.774324
\(928\) −9.49515e8 −0.0390017
\(929\) −1.78911e10 −0.732119 −0.366060 0.930591i \(-0.619293\pi\)
−0.366060 + 0.930591i \(0.619293\pi\)
\(930\) 2.91149e9 0.118693
\(931\) 1.56308e10 0.634829
\(932\) 1.06247e10 0.429894
\(933\) 1.39257e10 0.561347
\(934\) 2.19461e10 0.881341
\(935\) 1.48761e10 0.595182
\(936\) 1.71614e9 0.0684049
\(937\) 2.25955e10 0.897292 0.448646 0.893710i \(-0.351906\pi\)
0.448646 + 0.893710i \(0.351906\pi\)
\(938\) −1.83766e10 −0.727033
\(939\) −1.89814e10 −0.748169
\(940\) 7.05791e9 0.277159
\(941\) 5.23130e9 0.204666 0.102333 0.994750i \(-0.467369\pi\)
0.102333 + 0.994750i \(0.467369\pi\)
\(942\) 7.31852e9 0.285263
\(943\) 2.71492e9 0.105431
\(944\) −1.01550e9 −0.0392895
\(945\) −1.65342e10 −0.637342
\(946\) 3.76482e10 1.44586
\(947\) −2.22249e10 −0.850382 −0.425191 0.905104i \(-0.639793\pi\)
−0.425191 + 0.905104i \(0.639793\pi\)
\(948\) 1.11499e10 0.425051
\(949\) −1.23440e10 −0.468841
\(950\) 1.78309e9 0.0674747
\(951\) −1.02990e10 −0.388297
\(952\) −1.41063e10 −0.529888
\(953\) 4.07918e10 1.52668 0.763340 0.645997i \(-0.223558\pi\)
0.763340 + 0.645997i \(0.223558\pi\)
\(954\) −6.86935e9 −0.256151
\(955\) 2.18189e10 0.810628
\(956\) 1.35367e10 0.501083
\(957\) 4.45943e9 0.164470
\(958\) −1.87771e10 −0.690002
\(959\) 2.88867e10 1.05763
\(960\) −8.42691e8 −0.0307411
\(961\) −1.46954e10 −0.534132
\(962\) −4.79122e9 −0.173513
\(963\) 2.09351e10 0.755410
\(964\) 2.20036e10 0.791088
\(965\) 2.28729e10 0.819361
\(966\) 7.16765e9 0.255833
\(967\) −1.39014e10 −0.494384 −0.247192 0.968967i \(-0.579508\pi\)
−0.247192 + 0.968967i \(0.579508\pi\)
\(968\) 8.35788e9 0.296164
\(969\) −7.29547e9 −0.257585
\(970\) 1.67079e10 0.587788
\(971\) 3.68316e10 1.29108 0.645540 0.763726i \(-0.276632\pi\)
0.645540 + 0.763726i \(0.276632\pi\)
\(972\) −1.48141e10 −0.517422
\(973\) −3.76725e10 −1.31108
\(974\) 2.68905e10 0.932486
\(975\) 8.82812e8 0.0305037
\(976\) 6.19598e9 0.213322
\(977\) −5.04435e10 −1.73051 −0.865255 0.501331i \(-0.832844\pi\)
−0.865255 + 0.501331i \(0.832844\pi\)
\(978\) 1.32912e10 0.454337
\(979\) −3.21210e10 −1.09408
\(980\) 8.76611e9 0.297520
\(981\) 1.72397e10 0.583027
\(982\) 2.04808e10 0.690172
\(983\) 3.92636e9 0.131842 0.0659209 0.997825i \(-0.479001\pi\)
0.0659209 + 0.997825i \(0.479001\pi\)
\(984\) −1.42151e9 −0.0475627
\(985\) −4.83310e9 −0.161138
\(986\) −4.61012e9 −0.153159
\(987\) 3.14324e10 1.04056
\(988\) −2.00574e9 −0.0661644
\(989\) 1.97761e10 0.650061
\(990\) −9.12981e9 −0.299046
\(991\) −3.43878e10 −1.12240 −0.561199 0.827681i \(-0.689660\pi\)
−0.561199 + 0.827681i \(0.689660\pi\)
\(992\) −3.70977e9 −0.120658
\(993\) 2.74007e9 0.0888054
\(994\) 1.16681e10 0.376832
\(995\) −1.43356e10 −0.461355
\(996\) 1.12401e10 0.360464
\(997\) 1.18053e10 0.377264 0.188632 0.982048i \(-0.439595\pi\)
0.188632 + 0.982048i \(0.439595\pi\)
\(998\) −1.96834e10 −0.626821
\(999\) 2.60272e10 0.825939
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.8.a.j.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.8.a.j.1.2 4 1.1 even 1 trivial