Properties

Label 130.8.a.j
Level $130$
Weight $8$
Character orbit 130.a
Self dual yes
Analytic conductor $40.610$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,8,Mod(1,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 130.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,32,60,256,500,480,616] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.6100533129\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7066x^{2} - 15288x + 8343477 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + (\beta_1 + 15) q^{3} + 64 q^{4} + 125 q^{5} + (8 \beta_1 + 120) q^{6} + ( - \beta_{2} - 3 \beta_1 + 154) q^{7} + 512 q^{8} + (\beta_{3} + 33 \beta_1 + 1571) q^{9} + 1000 q^{10} + ( - \beta_{3} + \beta_{2} + \cdots + 2529) q^{11}+ \cdots + (873 \beta_{3} - 2691 \beta_{2} + \cdots - 792117) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} + 60 q^{3} + 256 q^{4} + 500 q^{5} + 480 q^{6} + 616 q^{7} + 2048 q^{8} + 6284 q^{9} + 4000 q^{10} + 10116 q^{11} + 3840 q^{12} - 8788 q^{13} + 4928 q^{14} + 7500 q^{15} + 16384 q^{16} - 21136 q^{17}+ \cdots - 3168468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 7066x^{2} - 15288x + 8343477 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 21\nu^{2} - 4645\nu + 62727 ) / 90 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 3\nu - 3533 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3\beta _1 + 3533 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 21\beta_{3} + 90\beta_{2} + 4708\beta _1 + 11466 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−72.6171
−40.7169
36.9363
76.3977
8.00000 −57.6171 64.0000 125.000 −460.937 1412.21 512.000 1132.73 1000.00
1.2 8.00000 −25.7169 64.0000 125.000 −205.735 −1385.39 512.000 −1525.64 1000.00
1.3 8.00000 51.9363 64.0000 125.000 415.491 1010.97 512.000 510.382 1000.00
1.4 8.00000 91.3977 64.0000 125.000 731.181 −421.792 512.000 6166.53 1000.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 130.8.a.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.8.a.j 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 60T_{3}^{3} - 5716T_{3}^{2} + 183192T_{3} + 7033572 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(130))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 60 T^{3} + \cdots + 7033572 \) Copy content Toggle raw display
$5$ \( (T - 125)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 834275027664 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 6547102671564 \) Copy content Toggle raw display
$13$ \( (T + 2197)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 24\!\cdots\!52 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 18\!\cdots\!96 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 92\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 71\!\cdots\!52 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 97\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 64\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 94\!\cdots\!80 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 44\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 34\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 30\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 43\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 14\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 42\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 46\!\cdots\!68 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 95\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 17\!\cdots\!44 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
show more
show less