Properties

Label 130.4.n.a.9.7
Level $130$
Weight $4$
Character 130.9
Analytic conductor $7.670$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,4,Mod(9,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.9"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 130.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67024830075\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 9.7
Character \(\chi\) \(=\) 130.9
Dual form 130.4.n.a.29.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 - 1.00000i) q^{2} +(2.13838 + 1.23459i) q^{3} +(2.00000 + 3.46410i) q^{4} +(-10.7802 + 2.96444i) q^{5} +(-2.46918 - 4.27675i) q^{6} +(0.660166 - 0.381147i) q^{7} -8.00000i q^{8} +(-10.4516 - 18.1026i) q^{9} +(21.6362 + 5.64562i) q^{10} +(31.0198 - 53.7278i) q^{11} +9.87674i q^{12} +(30.9407 + 35.2090i) q^{13} -1.52459 q^{14} +(-26.7119 - 6.97004i) q^{15} +(-8.00000 + 13.8564i) q^{16} +(89.1952 - 51.4968i) q^{17} +41.8063i q^{18} +(-38.8754 - 67.3341i) q^{19} +(-31.8295 - 31.4147i) q^{20} +1.88224 q^{21} +(-107.456 + 62.0395i) q^{22} +(-0.835838 - 0.482571i) q^{23} +(9.87674 - 17.1070i) q^{24} +(107.424 - 63.9143i) q^{25} +(-18.3818 - 91.9245i) q^{26} -118.282i q^{27} +(2.64066 + 1.52459i) q^{28} +(52.8488 - 91.5368i) q^{29} +(39.2964 + 38.7844i) q^{30} -125.714 q^{31} +(27.7128 - 16.0000i) q^{32} +(132.664 - 76.5935i) q^{33} -205.987 q^{34} +(-5.98682 + 6.06585i) q^{35} +(41.8063 - 72.4106i) q^{36} +(-294.412 - 169.979i) q^{37} +155.501i q^{38} +(22.6941 + 113.489i) q^{39} +(23.7155 + 86.2414i) q^{40} +(83.9935 - 145.481i) q^{41} +(-3.26014 - 1.88224i) q^{42} +(126.469 - 73.0171i) q^{43} +248.158 q^{44} +(166.334 + 164.167i) q^{45} +(0.965143 + 1.67168i) q^{46} -73.0270i q^{47} +(-34.2140 + 19.7535i) q^{48} +(-171.209 + 296.543i) q^{49} +(-249.979 + 3.27849i) q^{50} +254.310 q^{51} +(-60.0862 + 177.600i) q^{52} +680.487i q^{53} +(-118.282 + 204.870i) q^{54} +(-175.126 + 671.151i) q^{55} +(-3.04917 - 5.28133i) q^{56} -191.981i q^{57} +(-183.074 + 105.698i) q^{58} +(329.694 + 571.047i) q^{59} +(-29.2790 - 106.473i) q^{60} +(-74.0351 - 128.233i) q^{61} +(217.743 + 125.714i) q^{62} +(-13.7995 - 7.96716i) q^{63} -64.0000 q^{64} +(-437.921 - 287.837i) q^{65} -306.374 q^{66} +(329.372 + 190.163i) q^{67} +(356.781 + 205.987i) q^{68} +(-1.19156 - 2.06384i) q^{69} +(16.4353 - 4.51954i) q^{70} +(-458.764 - 794.602i) q^{71} +(-144.821 + 83.6125i) q^{72} +92.0384i q^{73} +(339.958 + 588.824i) q^{74} +(308.622 - 4.04760i) q^{75} +(155.501 - 269.336i) q^{76} -47.2923i q^{77} +(74.1819 - 219.263i) q^{78} +422.098 q^{79} +(45.1650 - 173.090i) q^{80} +(-136.163 + 235.841i) q^{81} +(-290.962 + 167.987i) q^{82} -1236.65i q^{83} +(3.76449 + 6.52028i) q^{84} +(-808.880 + 819.558i) q^{85} -292.068 q^{86} +(226.021 - 130.493i) q^{87} +(-429.822 - 248.158i) q^{88} +(480.091 - 831.542i) q^{89} +(-123.932 - 450.679i) q^{90} +(33.8458 + 11.4508i) q^{91} -3.86057i q^{92} +(-268.824 - 155.206i) q^{93} +(-73.0270 + 126.486i) q^{94} +(618.691 + 610.630i) q^{95} +79.0139 q^{96} +(-110.626 + 63.8702i) q^{97} +(593.087 - 342.419i) q^{98} -1296.82 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 88 q^{4} - 12 q^{5} + 266 q^{9} + 28 q^{10} + 2 q^{11} - 216 q^{14} - 64 q^{15} - 352 q^{16} + 14 q^{19} - 24 q^{20} - 32 q^{21} + 504 q^{25} + 336 q^{26} + 308 q^{29} + 104 q^{30} + 792 q^{31} - 352 q^{34}+ \cdots + 2916 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 1.00000i −0.612372 0.353553i
\(3\) 2.13838 + 1.23459i 0.411531 + 0.237597i 0.691447 0.722427i \(-0.256973\pi\)
−0.279916 + 0.960024i \(0.590307\pi\)
\(4\) 2.00000 + 3.46410i 0.250000 + 0.433013i
\(5\) −10.7802 + 2.96444i −0.964208 + 0.265147i
\(6\) −2.46918 4.27675i −0.168007 0.290996i
\(7\) 0.660166 0.381147i 0.0356456 0.0205800i −0.482071 0.876132i \(-0.660115\pi\)
0.517717 + 0.855552i \(0.326782\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −10.4516 18.1026i −0.387095 0.670468i
\(10\) 21.6362 + 5.64562i 0.684198 + 0.178530i
\(11\) 31.0198 53.7278i 0.850255 1.47269i −0.0307226 0.999528i \(-0.509781\pi\)
0.880978 0.473157i \(-0.156886\pi\)
\(12\) 9.87674i 0.237597i
\(13\) 30.9407 + 35.2090i 0.660108 + 0.751171i
\(14\) −1.52459 −0.0291045
\(15\) −26.7119 6.97004i −0.459799 0.119977i
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) 89.1952 51.4968i 1.27253 0.734695i 0.297066 0.954857i \(-0.403992\pi\)
0.975463 + 0.220162i \(0.0706585\pi\)
\(18\) 41.8063i 0.547435i
\(19\) −38.8754 67.3341i −0.469401 0.813027i 0.529987 0.848006i \(-0.322197\pi\)
−0.999388 + 0.0349792i \(0.988863\pi\)
\(20\) −31.8295 31.4147i −0.355864 0.351227i
\(21\) 1.88224 0.0195590
\(22\) −107.456 + 62.0395i −1.04135 + 0.601221i
\(23\) −0.835838 0.482571i −0.00757758 0.00437492i 0.496206 0.868205i \(-0.334726\pi\)
−0.503784 + 0.863830i \(0.668059\pi\)
\(24\) 9.87674 17.1070i 0.0840034 0.145498i
\(25\) 107.424 63.9143i 0.859394 0.511314i
\(26\) −18.3818 91.9245i −0.138653 0.693380i
\(27\) 118.282i 0.843086i
\(28\) 2.64066 + 1.52459i 0.0178228 + 0.0102900i
\(29\) 52.8488 91.5368i 0.338406 0.586137i −0.645727 0.763568i \(-0.723446\pi\)
0.984133 + 0.177432i \(0.0567789\pi\)
\(30\) 39.2964 + 38.7844i 0.239150 + 0.236034i
\(31\) −125.714 −0.728353 −0.364176 0.931330i \(-0.618649\pi\)
−0.364176 + 0.931330i \(0.618649\pi\)
\(32\) 27.7128 16.0000i 0.153093 0.0883883i
\(33\) 132.664 76.5935i 0.699812 0.404037i
\(34\) −205.987 −1.03902
\(35\) −5.98682 + 6.06585i −0.0289130 + 0.0292947i
\(36\) 41.8063 72.4106i 0.193547 0.335234i
\(37\) −294.412 169.979i −1.30814 0.755253i −0.326351 0.945249i \(-0.605819\pi\)
−0.981785 + 0.189996i \(0.939152\pi\)
\(38\) 155.501i 0.663833i
\(39\) 22.6941 + 113.489i 0.0931785 + 0.465970i
\(40\) 23.7155 + 86.2414i 0.0937437 + 0.340899i
\(41\) 83.9935 145.481i 0.319941 0.554154i −0.660534 0.750796i \(-0.729670\pi\)
0.980475 + 0.196642i \(0.0630035\pi\)
\(42\) −3.26014 1.88224i −0.0119774 0.00691516i
\(43\) 126.469 73.0171i 0.448520 0.258953i −0.258685 0.965962i \(-0.583289\pi\)
0.707205 + 0.707008i \(0.249956\pi\)
\(44\) 248.158 0.850255
\(45\) 166.334 + 164.167i 0.551013 + 0.543834i
\(46\) 0.965143 + 1.67168i 0.00309353 + 0.00535816i
\(47\) 73.0270i 0.226640i −0.993559 0.113320i \(-0.963851\pi\)
0.993559 0.113320i \(-0.0361485\pi\)
\(48\) −34.2140 + 19.7535i −0.102883 + 0.0593993i
\(49\) −171.209 + 296.543i −0.499153 + 0.864558i
\(50\) −249.979 + 3.27849i −0.707046 + 0.00927298i
\(51\) 254.310 0.698247
\(52\) −60.0862 + 177.600i −0.160240 + 0.473628i
\(53\) 680.487i 1.76363i 0.471600 + 0.881813i \(0.343677\pi\)
−0.471600 + 0.881813i \(0.656323\pi\)
\(54\) −118.282 + 204.870i −0.298076 + 0.516282i
\(55\) −175.126 + 671.151i −0.429345 + 1.64542i
\(56\) −3.04917 5.28133i −0.00727613 0.0126026i
\(57\) 191.981i 0.446114i
\(58\) −183.074 + 105.698i −0.414461 + 0.239289i
\(59\) 329.694 + 571.047i 0.727500 + 1.26007i 0.957937 + 0.286980i \(0.0926513\pi\)
−0.230437 + 0.973087i \(0.574015\pi\)
\(60\) −29.2790 106.473i −0.0629983 0.229093i
\(61\) −74.0351 128.233i −0.155397 0.269156i 0.777806 0.628504i \(-0.216332\pi\)
−0.933204 + 0.359348i \(0.882999\pi\)
\(62\) 217.743 + 125.714i 0.446023 + 0.257512i
\(63\) −13.7995 7.96716i −0.0275965 0.0159328i
\(64\) −64.0000 −0.125000
\(65\) −437.921 287.837i −0.835652 0.549259i
\(66\) −306.374 −0.571394
\(67\) 329.372 + 190.163i 0.600586 + 0.346748i 0.769272 0.638921i \(-0.220619\pi\)
−0.168686 + 0.985670i \(0.553952\pi\)
\(68\) 356.781 + 205.987i 0.636265 + 0.367348i
\(69\) −1.19156 2.06384i −0.00207894 0.00360083i
\(70\) 16.4353 4.51954i 0.0280628 0.00771698i
\(71\) −458.764 794.602i −0.766834 1.32820i −0.939271 0.343176i \(-0.888497\pi\)
0.172437 0.985021i \(-0.444836\pi\)
\(72\) −144.821 + 83.6125i −0.237046 + 0.136859i
\(73\) 92.0384i 0.147566i 0.997274 + 0.0737828i \(0.0235071\pi\)
−0.997274 + 0.0737828i \(0.976493\pi\)
\(74\) 339.958 + 588.824i 0.534044 + 0.924992i
\(75\) 308.622 4.04760i 0.475154 0.00623169i
\(76\) 155.501 269.336i 0.234701 0.406513i
\(77\) 47.2923i 0.0699930i
\(78\) 74.1819 219.263i 0.107685 0.318291i
\(79\) 422.098 0.601135 0.300568 0.953760i \(-0.402824\pi\)
0.300568 + 0.953760i \(0.402824\pi\)
\(80\) 45.1650 173.090i 0.0631199 0.241901i
\(81\) −136.163 + 235.841i −0.186780 + 0.323512i
\(82\) −290.962 + 167.987i −0.391846 + 0.226233i
\(83\) 1236.65i 1.63542i −0.575627 0.817712i \(-0.695242\pi\)
0.575627 0.817712i \(-0.304758\pi\)
\(84\) 3.76449 + 6.52028i 0.00488975 + 0.00846930i
\(85\) −808.880 + 819.558i −1.03218 + 1.04581i
\(86\) −292.068 −0.366215
\(87\) 226.021 130.493i 0.278529 0.160809i
\(88\) −429.822 248.158i −0.520673 0.300611i
\(89\) 480.091 831.542i 0.571792 0.990373i −0.424590 0.905386i \(-0.639582\pi\)
0.996382 0.0849875i \(-0.0270850\pi\)
\(90\) −123.932 450.679i −0.145151 0.527841i
\(91\) 33.8458 + 11.4508i 0.0389890 + 0.0131909i
\(92\) 3.86057i 0.00437492i
\(93\) −268.824 155.206i −0.299740 0.173055i
\(94\) −73.0270 + 126.486i −0.0801293 + 0.138788i
\(95\) 618.691 + 610.630i 0.668172 + 0.659466i
\(96\) 79.0139 0.0840034
\(97\) −110.626 + 63.8702i −0.115798 + 0.0668560i −0.556780 0.830660i \(-0.687963\pi\)
0.440982 + 0.897516i \(0.354630\pi\)
\(98\) 593.087 342.419i 0.611335 0.352954i
\(99\) −1296.82 −1.31652
\(100\) 436.254 + 244.300i 0.436254 + 0.244300i
\(101\) 771.264 1335.87i 0.759838 1.31608i −0.183095 0.983095i \(-0.558611\pi\)
0.942933 0.332983i \(-0.108055\pi\)
\(102\) −440.479 254.310i −0.427587 0.246867i
\(103\) 1514.88i 1.44918i 0.689179 + 0.724591i \(0.257971\pi\)
−0.689179 + 0.724591i \(0.742029\pi\)
\(104\) 281.672 247.526i 0.265579 0.233383i
\(105\) −20.2909 + 5.57979i −0.0188590 + 0.00518602i
\(106\) 680.487 1178.64i 0.623536 1.08000i
\(107\) 213.462 + 123.242i 0.192861 + 0.111348i 0.593321 0.804966i \(-0.297816\pi\)
−0.400460 + 0.916314i \(0.631150\pi\)
\(108\) 409.740 236.563i 0.365067 0.210771i
\(109\) −660.193 −0.580138 −0.290069 0.957006i \(-0.593678\pi\)
−0.290069 + 0.957006i \(0.593678\pi\)
\(110\) 974.478 987.342i 0.844662 0.855812i
\(111\) −419.709 726.957i −0.358892 0.621619i
\(112\) 12.1967i 0.0102900i
\(113\) −1820.83 + 1051.26i −1.51583 + 0.875166i −0.516005 + 0.856586i \(0.672581\pi\)
−0.999827 + 0.0185806i \(0.994085\pi\)
\(114\) −191.981 + 332.521i −0.157725 + 0.273188i
\(115\) 10.4410 + 2.72441i 0.00846636 + 0.00220916i
\(116\) 422.790 0.338406
\(117\) 313.997 928.097i 0.248112 0.733356i
\(118\) 1318.78i 1.02884i
\(119\) 39.2557 67.9929i 0.0302401 0.0523773i
\(120\) −55.7603 + 213.695i −0.0424183 + 0.162564i
\(121\) −1258.95 2180.57i −0.945868 1.63829i
\(122\) 296.141i 0.219765i
\(123\) 359.220 207.395i 0.263331 0.152034i
\(124\) −251.428 435.487i −0.182088 0.315386i
\(125\) −968.582 + 1007.46i −0.693061 + 0.720879i
\(126\) 15.9343 + 27.5991i 0.0112662 + 0.0195136i
\(127\) 2211.50 + 1276.81i 1.54519 + 0.892114i 0.998499 + 0.0547778i \(0.0174451\pi\)
0.546688 + 0.837336i \(0.315888\pi\)
\(128\) 110.851 + 64.0000i 0.0765466 + 0.0441942i
\(129\) 360.585 0.246107
\(130\) 470.664 + 936.470i 0.317538 + 0.631799i
\(131\) 1281.48 0.854679 0.427340 0.904091i \(-0.359451\pi\)
0.427340 + 0.904091i \(0.359451\pi\)
\(132\) 530.655 + 306.374i 0.349906 + 0.202018i
\(133\) −51.3284 29.6345i −0.0334642 0.0193205i
\(134\) −380.327 658.745i −0.245188 0.424678i
\(135\) 350.638 + 1275.10i 0.223542 + 0.812910i
\(136\) −411.975 713.561i −0.259754 0.449907i
\(137\) −1055.49 + 609.388i −0.658224 + 0.380026i −0.791600 0.611040i \(-0.790752\pi\)
0.133376 + 0.991065i \(0.457418\pi\)
\(138\) 4.76623i 0.00294006i
\(139\) −160.848 278.596i −0.0981505 0.170002i 0.812769 0.582587i \(-0.197959\pi\)
−0.910919 + 0.412585i \(0.864626\pi\)
\(140\) −32.9863 8.60724i −0.0199132 0.00519603i
\(141\) 90.1585 156.159i 0.0538491 0.0932693i
\(142\) 1835.06i 1.08447i
\(143\) 2851.47 570.200i 1.66750 0.333444i
\(144\) 334.450 0.193547
\(145\) −298.364 + 1143.45i −0.170881 + 0.654885i
\(146\) 92.0384 159.415i 0.0521723 0.0903651i
\(147\) −732.221 + 422.748i −0.410834 + 0.237195i
\(148\) 1359.83i 0.755253i
\(149\) 921.755 + 1596.53i 0.506800 + 0.877803i 0.999969 + 0.00786939i \(0.00250493\pi\)
−0.493169 + 0.869933i \(0.664162\pi\)
\(150\) −538.596 301.611i −0.293174 0.164176i
\(151\) −527.652 −0.284369 −0.142184 0.989840i \(-0.545413\pi\)
−0.142184 + 0.989840i \(0.545413\pi\)
\(152\) −538.673 + 311.003i −0.287448 + 0.165958i
\(153\) −1864.46 1076.45i −0.985180 0.568794i
\(154\) −47.2923 + 81.9127i −0.0247463 + 0.0428618i
\(155\) 1355.22 372.672i 0.702284 0.193121i
\(156\) −347.750 + 305.593i −0.178476 + 0.156840i
\(157\) 3040.22i 1.54545i −0.634739 0.772726i \(-0.718893\pi\)
0.634739 0.772726i \(-0.281107\pi\)
\(158\) −731.094 422.098i −0.368119 0.212533i
\(159\) −840.124 + 1455.14i −0.419033 + 0.725786i
\(160\) −251.318 + 254.636i −0.124178 + 0.125817i
\(161\) −0.735722 −0.000360143
\(162\) 471.681 272.325i 0.228758 0.132073i
\(163\) −908.091 + 524.287i −0.436363 + 0.251934i −0.702054 0.712124i \(-0.747733\pi\)
0.265691 + 0.964058i \(0.414400\pi\)
\(164\) 671.948 0.319941
\(165\) −1203.08 + 1218.96i −0.567635 + 0.575129i
\(166\) −1236.65 + 2141.95i −0.578210 + 1.00149i
\(167\) −320.668 185.138i −0.148587 0.0857868i 0.423863 0.905726i \(-0.360674\pi\)
−0.572450 + 0.819939i \(0.694007\pi\)
\(168\) 15.0580i 0.00691516i
\(169\) −282.348 + 2178.78i −0.128515 + 0.991708i
\(170\) 2220.58 610.636i 1.00183 0.275492i
\(171\) −812.617 + 1407.49i −0.363406 + 0.629437i
\(172\) 505.877 + 292.068i 0.224260 + 0.129477i
\(173\) −1264.88 + 730.278i −0.555878 + 0.320936i −0.751489 0.659745i \(-0.770664\pi\)
0.195611 + 0.980681i \(0.437331\pi\)
\(174\) −521.974 −0.227418
\(175\) 46.5571 83.1384i 0.0201108 0.0359124i
\(176\) 496.316 + 859.645i 0.212564 + 0.368171i
\(177\) 1628.15i 0.691408i
\(178\) −1663.08 + 960.181i −0.700300 + 0.404318i
\(179\) 1847.53 3200.02i 0.771458 1.33620i −0.165306 0.986242i \(-0.552861\pi\)
0.936764 0.349962i \(-0.113806\pi\)
\(180\) −236.022 + 904.530i −0.0977337 + 0.374554i
\(181\) 192.170 0.0789166 0.0394583 0.999221i \(-0.487437\pi\)
0.0394583 + 0.999221i \(0.487437\pi\)
\(182\) −47.1718 53.6792i −0.0192121 0.0218625i
\(183\) 365.613i 0.147688i
\(184\) −3.86057 + 6.68670i −0.00154677 + 0.00267908i
\(185\) 3677.70 + 959.636i 1.46157 + 0.381372i
\(186\) 310.412 + 537.649i 0.122368 + 0.211948i
\(187\) 6389.68i 2.49871i
\(188\) 252.973 146.054i 0.0981380 0.0566600i
\(189\) −45.0827 78.0855i −0.0173507 0.0300523i
\(190\) −460.974 1676.33i −0.176014 0.640073i
\(191\) 402.994 + 698.007i 0.152668 + 0.264429i 0.932208 0.361924i \(-0.117880\pi\)
−0.779539 + 0.626353i \(0.784547\pi\)
\(192\) −136.856 79.0139i −0.0514413 0.0296997i
\(193\) −1045.92 603.865i −0.390090 0.225218i 0.292109 0.956385i \(-0.405643\pi\)
−0.682199 + 0.731167i \(0.738976\pi\)
\(194\) 255.481 0.0945487
\(195\) −581.078 1156.16i −0.213394 0.424586i
\(196\) −1369.68 −0.499153
\(197\) −395.873 228.558i −0.143172 0.0826602i 0.426703 0.904392i \(-0.359675\pi\)
−0.569875 + 0.821732i \(0.693008\pi\)
\(198\) 2246.16 + 1296.82i 0.806199 + 0.465459i
\(199\) 1060.43 + 1836.71i 0.377747 + 0.654277i 0.990734 0.135816i \(-0.0433656\pi\)
−0.612987 + 0.790093i \(0.710032\pi\)
\(200\) −511.314 859.394i −0.180777 0.303842i
\(201\) 469.548 + 813.281i 0.164773 + 0.285395i
\(202\) −2671.74 + 1542.53i −0.930608 + 0.537287i
\(203\) 80.5726i 0.0278576i
\(204\) 508.621 + 880.957i 0.174562 + 0.302350i
\(205\) −474.195 + 1817.30i −0.161557 + 0.619151i
\(206\) 1514.88 2623.85i 0.512363 0.887439i
\(207\) 20.1745i 0.00677403i
\(208\) −735.396 + 147.055i −0.245147 + 0.0490212i
\(209\) −4823.62 −1.59644
\(210\) 40.7247 + 10.6264i 0.0133822 + 0.00349187i
\(211\) −1747.28 + 3026.38i −0.570084 + 0.987414i 0.426473 + 0.904500i \(0.359756\pi\)
−0.996557 + 0.0829139i \(0.973577\pi\)
\(212\) −2357.28 + 1360.97i −0.763672 + 0.440906i
\(213\) 2265.54i 0.728791i
\(214\) −246.484 426.924i −0.0787352 0.136373i
\(215\) −1146.91 + 1162.05i −0.363806 + 0.368609i
\(216\) −946.253 −0.298076
\(217\) −82.9922 + 47.9156i −0.0259626 + 0.0149895i
\(218\) 1143.49 + 660.193i 0.355260 + 0.205110i
\(219\) −113.630 + 196.813i −0.0350612 + 0.0607278i
\(220\) −2675.19 + 735.649i −0.819823 + 0.225443i
\(221\) 4572.91 + 1547.12i 1.39189 + 0.470909i
\(222\) 1678.84i 0.507550i
\(223\) 3685.10 + 2127.60i 1.10660 + 0.638898i 0.937948 0.346776i \(-0.112724\pi\)
0.168657 + 0.985675i \(0.446057\pi\)
\(224\) 12.1967 21.1253i 0.00363806 0.00630131i
\(225\) −2279.77 1276.66i −0.675487 0.378269i
\(226\) 4205.02 1.23767
\(227\) 2663.55 1537.80i 0.778794 0.449637i −0.0572084 0.998362i \(-0.518220\pi\)
0.836003 + 0.548725i \(0.184887\pi\)
\(228\) 665.041 383.962i 0.193173 0.111528i
\(229\) 2227.59 0.642809 0.321405 0.946942i \(-0.395845\pi\)
0.321405 + 0.946942i \(0.395845\pi\)
\(230\) −15.3600 15.1599i −0.00440351 0.00434614i
\(231\) 58.3867 101.129i 0.0166302 0.0288043i
\(232\) −732.294 422.790i −0.207231 0.119645i
\(233\) 2100.43i 0.590575i −0.955408 0.295287i \(-0.904585\pi\)
0.955408 0.295287i \(-0.0954154\pi\)
\(234\) −1471.96 + 1293.51i −0.411217 + 0.361366i
\(235\) 216.484 + 787.243i 0.0600929 + 0.218528i
\(236\) −1318.78 + 2284.19i −0.363750 + 0.630034i
\(237\) 902.604 + 521.118i 0.247386 + 0.142828i
\(238\) −135.986 + 78.5115i −0.0370364 + 0.0213829i
\(239\) 2433.29 0.658563 0.329282 0.944232i \(-0.393193\pi\)
0.329282 + 0.944232i \(0.393193\pi\)
\(240\) 310.275 314.371i 0.0834507 0.0845524i
\(241\) 310.242 + 537.354i 0.0829229 + 0.143627i 0.904504 0.426465i \(-0.140241\pi\)
−0.821581 + 0.570091i \(0.806908\pi\)
\(242\) 5035.80i 1.33766i
\(243\) −3348.08 + 1933.01i −0.883865 + 0.510300i
\(244\) 296.141 512.930i 0.0776986 0.134578i
\(245\) 966.583 3704.33i 0.252052 0.965963i
\(246\) −829.582 −0.215009
\(247\) 1167.94 3452.13i 0.300866 0.889286i
\(248\) 1005.71i 0.257512i
\(249\) 1526.76 2644.43i 0.388573 0.673028i
\(250\) 2685.09 776.388i 0.679281 0.196412i
\(251\) −614.724 1064.73i −0.154586 0.267750i 0.778322 0.627865i \(-0.216071\pi\)
−0.932908 + 0.360115i \(0.882738\pi\)
\(252\) 63.7373i 0.0159328i
\(253\) −51.8550 + 29.9385i −0.0128858 + 0.00743959i
\(254\) −2553.62 4423.00i −0.630820 1.09261i
\(255\) −2741.51 + 753.887i −0.673255 + 0.185138i
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 2208.81 + 1275.26i 0.536117 + 0.309527i 0.743504 0.668732i \(-0.233163\pi\)
−0.207387 + 0.978259i \(0.566496\pi\)
\(258\) −624.552 360.585i −0.150709 0.0870118i
\(259\) −259.148 −0.0621724
\(260\) 121.257 2092.68i 0.0289231 0.499163i
\(261\) −2209.41 −0.523981
\(262\) −2219.58 1281.48i −0.523382 0.302175i
\(263\) 4873.96 + 2813.98i 1.14274 + 0.659762i 0.947108 0.320915i \(-0.103990\pi\)
0.195634 + 0.980677i \(0.437324\pi\)
\(264\) −612.748 1061.31i −0.142849 0.247421i
\(265\) −2017.26 7335.77i −0.467620 1.70050i
\(266\) 59.2689 + 102.657i 0.0136617 + 0.0236627i
\(267\) 2053.23 1185.43i 0.470620 0.271713i
\(268\) 1521.31i 0.346748i
\(269\) −2310.10 4001.20i −0.523602 0.906906i −0.999623 0.0274716i \(-0.991254\pi\)
0.476020 0.879434i \(-0.342079\pi\)
\(270\) 667.773 2559.17i 0.150516 0.576838i
\(271\) −2394.15 + 4146.79i −0.536658 + 0.929519i 0.462423 + 0.886659i \(0.346980\pi\)
−0.999081 + 0.0428597i \(0.986353\pi\)
\(272\) 1647.90i 0.367348i
\(273\) 58.2379 + 66.2719i 0.0129111 + 0.0146922i
\(274\) 2437.55 0.537437
\(275\) −101.698 7754.27i −0.0223004 1.70036i
\(276\) 4.76623 8.25535i 0.00103947 0.00180041i
\(277\) 3012.31 1739.16i 0.653401 0.377241i −0.136357 0.990660i \(-0.543539\pi\)
0.789758 + 0.613419i \(0.210206\pi\)
\(278\) 643.391i 0.138806i
\(279\) 1313.91 + 2275.76i 0.281942 + 0.488337i
\(280\) 48.5268 + 47.8945i 0.0103572 + 0.0102223i
\(281\) 2509.09 0.532668 0.266334 0.963881i \(-0.414188\pi\)
0.266334 + 0.963881i \(0.414188\pi\)
\(282\) −312.318 + 180.317i −0.0659514 + 0.0380770i
\(283\) 7120.68 + 4111.13i 1.49569 + 0.863538i 0.999988 0.00495406i \(-0.00157693\pi\)
0.495704 + 0.868492i \(0.334910\pi\)
\(284\) 1835.06 3178.41i 0.383417 0.664098i
\(285\) 569.115 + 2069.59i 0.118286 + 0.430147i
\(286\) −5509.10 1863.86i −1.13902 0.385358i
\(287\) 128.055i 0.0263375i
\(288\) −579.284 334.450i −0.118523 0.0684294i
\(289\) 2847.35 4931.76i 0.579554 1.00382i
\(290\) 1660.23 1682.15i 0.336180 0.340618i
\(291\) −315.414 −0.0635393
\(292\) −318.830 + 184.077i −0.0638978 + 0.0368914i
\(293\) −6861.45 + 3961.46i −1.36809 + 0.789867i −0.990684 0.136181i \(-0.956517\pi\)
−0.377406 + 0.926048i \(0.623184\pi\)
\(294\) 1690.99 0.335444
\(295\) −5246.99 5178.63i −1.03556 1.02207i
\(296\) −1359.83 + 2355.30i −0.267022 + 0.462496i
\(297\) −6355.01 3669.07i −1.24160 0.716838i
\(298\) 3687.02i 0.716723i
\(299\) −8.87055 44.3601i −0.00171571 0.00857997i
\(300\) 631.264 + 1061.00i 0.121487 + 0.204190i
\(301\) 55.6604 96.4067i 0.0106585 0.0184611i
\(302\) 913.920 + 527.652i 0.174140 + 0.100540i
\(303\) 3298.51 1904.39i 0.625394 0.361071i
\(304\) 1244.01 0.234701
\(305\) 1178.25 + 1162.90i 0.221201 + 0.218319i
\(306\) 2152.89 + 3728.92i 0.402198 + 0.696627i
\(307\) 929.515i 0.172802i 0.996260 + 0.0864010i \(0.0275366\pi\)
−0.996260 + 0.0864010i \(0.972463\pi\)
\(308\) 163.825 94.5847i 0.0303079 0.0174983i
\(309\) −1870.26 + 3239.39i −0.344322 + 0.596383i
\(310\) −2719.98 709.735i −0.498338 0.130033i
\(311\) −2559.71 −0.466713 −0.233356 0.972391i \(-0.574971\pi\)
−0.233356 + 0.972391i \(0.574971\pi\)
\(312\) 907.914 181.553i 0.164745 0.0329436i
\(313\) 2292.82i 0.414051i −0.978336 0.207025i \(-0.933622\pi\)
0.978336 0.207025i \(-0.0663783\pi\)
\(314\) −3040.22 + 5265.82i −0.546400 + 0.946392i
\(315\) 172.379 + 44.9796i 0.0308333 + 0.00804543i
\(316\) 844.195 + 1462.19i 0.150284 + 0.260299i
\(317\) 99.3043i 0.0175946i −0.999961 0.00879729i \(-0.997200\pi\)
0.999961 0.00879729i \(-0.00280030\pi\)
\(318\) 2910.28 1680.25i 0.513208 0.296301i
\(319\) −3278.71 5678.90i −0.575463 0.996731i
\(320\) 689.931 189.724i 0.120526 0.0331434i
\(321\) 304.308 + 527.077i 0.0529122 + 0.0916466i
\(322\) 1.27431 + 0.735722i 0.000220542 + 0.000127330i
\(323\) −6934.99 4003.92i −1.19465 0.689734i
\(324\) −1089.30 −0.186780
\(325\) 5574.14 + 1804.75i 0.951377 + 0.308029i
\(326\) 2097.15 0.356289
\(327\) −1411.74 815.069i −0.238744 0.137839i
\(328\) −1163.85 671.948i −0.195923 0.113116i
\(329\) −27.8340 48.2099i −0.00466425 0.00807872i
\(330\) 3302.76 908.226i 0.550943 0.151504i
\(331\) 4885.08 + 8461.20i 0.811203 + 1.40504i 0.912023 + 0.410140i \(0.134520\pi\)
−0.100820 + 0.994905i \(0.532147\pi\)
\(332\) 4283.89 2473.31i 0.708160 0.408856i
\(333\) 7106.18i 1.16942i
\(334\) 370.276 + 641.337i 0.0606605 + 0.105067i
\(335\) −4114.42 1073.59i −0.671029 0.175094i
\(336\) −15.0580 + 26.0811i −0.00244488 + 0.00423465i
\(337\) 7747.81i 1.25237i 0.779673 + 0.626187i \(0.215386\pi\)
−0.779673 + 0.626187i \(0.784614\pi\)
\(338\) 2667.82 3491.41i 0.429321 0.561857i
\(339\) −5191.49 −0.831749
\(340\) −4456.79 1162.93i −0.710893 0.185496i
\(341\) −3899.62 + 6754.35i −0.619286 + 1.07263i
\(342\) 2814.99 1625.23i 0.445079 0.256967i
\(343\) 522.491i 0.0822503i
\(344\) −584.136 1011.75i −0.0915538 0.158576i
\(345\) 18.9633 + 18.7162i 0.00295928 + 0.00292072i
\(346\) 2921.11 0.453872
\(347\) −8144.74 + 4702.37i −1.26004 + 0.727482i −0.973081 0.230462i \(-0.925976\pi\)
−0.286955 + 0.957944i \(0.592643\pi\)
\(348\) 904.085 + 521.974i 0.139265 + 0.0804044i
\(349\) 2620.03 4538.02i 0.401854 0.696031i −0.592096 0.805868i \(-0.701699\pi\)
0.993950 + 0.109836i \(0.0350327\pi\)
\(350\) −163.778 + 97.4429i −0.0250122 + 0.0148815i
\(351\) 4164.58 3659.72i 0.633301 0.556528i
\(352\) 1985.26i 0.300611i
\(353\) 5574.65 + 3218.53i 0.840535 + 0.485283i 0.857446 0.514574i \(-0.172050\pi\)
−0.0169111 + 0.999857i \(0.505383\pi\)
\(354\) 1628.15 2820.04i 0.244450 0.423400i
\(355\) 7301.10 + 7205.97i 1.09156 + 1.07733i
\(356\) 3840.73 0.571792
\(357\) 167.887 96.9296i 0.0248894 0.0143699i
\(358\) −6400.04 + 3695.06i −0.944839 + 0.545503i
\(359\) 2761.93 0.406042 0.203021 0.979174i \(-0.434924\pi\)
0.203021 + 0.979174i \(0.434924\pi\)
\(360\) 1313.33 1330.67i 0.192274 0.194812i
\(361\) 406.911 704.791i 0.0593252 0.102754i
\(362\) −332.849 192.170i −0.0483264 0.0279012i
\(363\) 6217.16i 0.898943i
\(364\) 28.0247 + 140.147i 0.00403543 + 0.0201805i
\(365\) −272.842 992.190i −0.0391266 0.142284i
\(366\) −365.613 + 633.260i −0.0522155 + 0.0904400i
\(367\) 4487.03 + 2590.59i 0.638205 + 0.368468i 0.783923 0.620858i \(-0.213216\pi\)
−0.145718 + 0.989326i \(0.546549\pi\)
\(368\) 13.3734 7.72114i 0.00189439 0.00109373i
\(369\) −3511.45 −0.495390
\(370\) −5410.33 5339.84i −0.760189 0.750284i
\(371\) 259.366 + 449.234i 0.0362954 + 0.0628655i
\(372\) 1241.65i 0.173055i
\(373\) −1999.94 + 1154.66i −0.277621 + 0.160285i −0.632346 0.774686i \(-0.717908\pi\)
0.354725 + 0.934971i \(0.384575\pi\)
\(374\) −6389.68 + 11067.2i −0.883429 + 1.53014i
\(375\) −3314.99 + 958.522i −0.456495 + 0.131994i
\(376\) −584.216 −0.0801293
\(377\) 4858.10 971.458i 0.663673 0.132713i
\(378\) 180.331i 0.0245376i
\(379\) −1596.02 + 2764.39i −0.216312 + 0.374663i −0.953678 0.300831i \(-0.902736\pi\)
0.737366 + 0.675494i \(0.236069\pi\)
\(380\) −877.902 + 3364.47i −0.118514 + 0.454194i
\(381\) 3152.68 + 5460.60i 0.423928 + 0.734265i
\(382\) 1611.98i 0.215906i
\(383\) −4540.19 + 2621.28i −0.605726 + 0.349716i −0.771291 0.636483i \(-0.780389\pi\)
0.165565 + 0.986199i \(0.447055\pi\)
\(384\) 158.028 + 273.712i 0.0210008 + 0.0363745i
\(385\) 140.195 + 509.819i 0.0185584 + 0.0674878i
\(386\) 1207.73 + 2091.85i 0.159253 + 0.275835i
\(387\) −2643.60 1526.28i −0.347240 0.200479i
\(388\) −442.506 255.481i −0.0578990 0.0334280i
\(389\) −9400.46 −1.22525 −0.612625 0.790374i \(-0.709886\pi\)
−0.612625 + 0.790374i \(0.709886\pi\)
\(390\) −149.702 + 2583.60i −0.0194371 + 0.335451i
\(391\) −99.4036 −0.0128569
\(392\) 2372.35 + 1369.68i 0.305667 + 0.176477i
\(393\) 2740.28 + 1582.10i 0.351727 + 0.203070i
\(394\) 457.115 + 791.747i 0.0584496 + 0.101238i
\(395\) −4550.28 + 1251.28i −0.579619 + 0.159389i
\(396\) −2593.64 4492.32i −0.329130 0.570069i
\(397\) 7347.44 4242.05i 0.928860 0.536277i 0.0424090 0.999100i \(-0.486497\pi\)
0.886451 + 0.462823i \(0.153163\pi\)
\(398\) 4241.71i 0.534215i
\(399\) −73.1729 126.739i −0.00918102 0.0159020i
\(400\) 26.2279 + 1999.83i 0.00327849 + 0.249979i
\(401\) −4851.80 + 8403.57i −0.604208 + 1.04652i 0.387968 + 0.921673i \(0.373177\pi\)
−0.992176 + 0.124846i \(0.960156\pi\)
\(402\) 1878.19i 0.233024i
\(403\) −3889.68 4426.27i −0.480791 0.547117i
\(404\) 6170.11 0.759838
\(405\) 768.722 2946.05i 0.0943163 0.361457i
\(406\) −80.5726 + 139.556i −0.00984914 + 0.0170592i
\(407\) −18265.2 + 10545.4i −2.22450 + 1.28431i
\(408\) 2034.48i 0.246867i
\(409\) 5340.83 + 9250.59i 0.645690 + 1.11837i 0.984142 + 0.177384i \(0.0567633\pi\)
−0.338452 + 0.940984i \(0.609903\pi\)
\(410\) 2638.63 2673.47i 0.317836 0.322032i
\(411\) −3009.38 −0.361172
\(412\) −5247.70 + 3029.76i −0.627514 + 0.362295i
\(413\) 435.305 + 251.324i 0.0518644 + 0.0299439i
\(414\) 20.1745 34.9433i 0.00239498 0.00414823i
\(415\) 3665.98 + 13331.3i 0.433628 + 1.57689i
\(416\) 1420.80 + 480.689i 0.167453 + 0.0566532i
\(417\) 794.325i 0.0932812i
\(418\) 8354.75 + 4823.62i 0.977618 + 0.564428i
\(419\) 1161.55 2011.86i 0.135430 0.234572i −0.790332 0.612679i \(-0.790092\pi\)
0.925762 + 0.378107i \(0.123425\pi\)
\(420\) −59.9108 59.1302i −0.00696035 0.00686966i
\(421\) 2908.50 0.336702 0.168351 0.985727i \(-0.446156\pi\)
0.168351 + 0.985727i \(0.446156\pi\)
\(422\) 6052.76 3494.56i 0.698207 0.403110i
\(423\) −1321.98 + 763.246i −0.151955 + 0.0877312i
\(424\) 5443.90 0.623536
\(425\) 6290.34 11232.9i 0.717944 1.28205i
\(426\) −2265.54 + 3924.04i −0.257667 + 0.446292i
\(427\) −97.7509 56.4365i −0.0110785 0.00639615i
\(428\) 985.938i 0.111348i
\(429\) 6801.49 + 2301.11i 0.765452 + 0.258971i
\(430\) 3148.55 865.817i 0.353108 0.0971010i
\(431\) −4989.31 + 8641.73i −0.557602 + 0.965795i 0.440094 + 0.897952i \(0.354945\pi\)
−0.997696 + 0.0678431i \(0.978388\pi\)
\(432\) 1638.96 + 946.253i 0.182533 + 0.105386i
\(433\) −2679.27 + 1546.88i −0.297362 + 0.171682i −0.641257 0.767326i \(-0.721587\pi\)
0.343895 + 0.939008i \(0.388253\pi\)
\(434\) 191.662 0.0211984
\(435\) −2049.71 + 2076.77i −0.225922 + 0.228904i
\(436\) −1320.39 2286.97i −0.145034 0.251207i
\(437\) 75.0406i 0.00821436i
\(438\) 393.626 227.260i 0.0429410 0.0247920i
\(439\) 6697.19 11599.9i 0.728108 1.26112i −0.229574 0.973291i \(-0.573733\pi\)
0.957682 0.287828i \(-0.0929333\pi\)
\(440\) 5369.21 + 1401.01i 0.581743 + 0.151796i
\(441\) 7157.63 0.772878
\(442\) −6373.39 7252.61i −0.685863 0.780478i
\(443\) 2578.96i 0.276592i −0.990391 0.138296i \(-0.955837\pi\)
0.990391 0.138296i \(-0.0441625\pi\)
\(444\) 1678.84 2907.83i 0.179446 0.310810i
\(445\) −2710.41 + 10387.4i −0.288732 + 1.10653i
\(446\) −4255.19 7370.21i −0.451769 0.782488i
\(447\) 4551.97i 0.481657i
\(448\) −42.2506 + 24.3934i −0.00445570 + 0.00257250i
\(449\) 6878.53 + 11914.0i 0.722980 + 1.25224i 0.959800 + 0.280684i \(0.0905614\pi\)
−0.236820 + 0.971553i \(0.576105\pi\)
\(450\) 2672.02 + 4491.01i 0.279911 + 0.470462i
\(451\) −5210.92 9025.57i −0.544063 0.942345i
\(452\) −7283.31 4205.02i −0.757916 0.437583i
\(453\) −1128.32 651.435i −0.117027 0.0675653i
\(454\) −6151.22 −0.635883
\(455\) −398.809 23.1083i −0.0410911 0.00238095i
\(456\) −1535.85 −0.157725
\(457\) 3256.72 + 1880.27i 0.333354 + 0.192462i 0.657329 0.753604i \(-0.271686\pi\)
−0.323975 + 0.946066i \(0.605019\pi\)
\(458\) −3858.30 2227.59i −0.393639 0.227267i
\(459\) −6091.13 10550.2i −0.619411 1.07285i
\(460\) 11.4444 + 41.6176i 0.00116000 + 0.00421833i
\(461\) −7148.97 12382.4i −0.722257 1.25099i −0.960093 0.279681i \(-0.909771\pi\)
0.237836 0.971305i \(-0.423562\pi\)
\(462\) −202.258 + 116.773i −0.0203677 + 0.0117593i
\(463\) 3597.59i 0.361110i −0.983565 0.180555i \(-0.942211\pi\)
0.983565 0.180555i \(-0.0577894\pi\)
\(464\) 845.581 + 1464.59i 0.0846015 + 0.146534i
\(465\) 3358.07 + 876.233i 0.334896 + 0.0873856i
\(466\) −2100.43 + 3638.06i −0.208800 + 0.361652i
\(467\) 2291.67i 0.227079i 0.993533 + 0.113539i \(0.0362188\pi\)
−0.993533 + 0.113539i \(0.963781\pi\)
\(468\) 3843.02 768.476i 0.379580 0.0759035i
\(469\) 289.921 0.0285443
\(470\) 412.282 1580.03i 0.0404621 0.155067i
\(471\) 3753.43 6501.14i 0.367195 0.636001i
\(472\) 4568.37 2637.55i 0.445501 0.257210i
\(473\) 9059.88i 0.880706i
\(474\) −1042.24 1805.21i −0.100995 0.174928i
\(475\) −8479.77 4748.63i −0.819112 0.458699i
\(476\) 314.046 0.0302401
\(477\) 12318.6 7112.16i 1.18245 0.682690i
\(478\) −4214.59 2433.29i −0.403286 0.232837i
\(479\) −4593.75 + 7956.60i −0.438191 + 0.758969i −0.997550 0.0699562i \(-0.977714\pi\)
0.559359 + 0.828926i \(0.311047\pi\)
\(480\) −851.784 + 234.232i −0.0809967 + 0.0222733i
\(481\) −3124.52 15625.2i −0.296187 1.48118i
\(482\) 1240.97i 0.117271i
\(483\) −1.57325 0.908317i −0.000148210 8.55691e-5i
\(484\) 5035.80 8722.26i 0.472934 0.819146i
\(485\) 1003.23 1016.48i 0.0939267 0.0951666i
\(486\) 7732.05 0.721673
\(487\) 5122.29 2957.35i 0.476618 0.275175i −0.242388 0.970179i \(-0.577931\pi\)
0.719006 + 0.695004i \(0.244597\pi\)
\(488\) −1025.86 + 592.281i −0.0951609 + 0.0549412i
\(489\) −2589.12 −0.239436
\(490\) −5378.50 + 5449.50i −0.495869 + 0.502415i
\(491\) 9188.91 15915.7i 0.844581 1.46286i −0.0414027 0.999143i \(-0.513183\pi\)
0.885984 0.463716i \(-0.153484\pi\)
\(492\) 1436.88 + 829.582i 0.131666 + 0.0760172i
\(493\) 10886.2i 0.994501i
\(494\) −5475.05 + 4811.32i −0.498652 + 0.438202i
\(495\) 13979.9 3844.34i 1.26940 0.349071i
\(496\) 1005.71 1741.95i 0.0910441 0.157693i
\(497\) −605.720 349.713i −0.0546685 0.0315629i
\(498\) −5288.86 + 3053.52i −0.475902 + 0.274762i
\(499\) 3123.66 0.280229 0.140115 0.990135i \(-0.455253\pi\)
0.140115 + 0.990135i \(0.455253\pi\)
\(500\) −5427.10 1340.35i −0.485415 0.119884i
\(501\) −457.140 791.789i −0.0407655 0.0706078i
\(502\) 2458.89i 0.218617i
\(503\) 9510.17 5490.70i 0.843017 0.486716i −0.0152718 0.999883i \(-0.504861\pi\)
0.858288 + 0.513167i \(0.171528\pi\)
\(504\) −63.7373 + 110.396i −0.00563310 + 0.00975682i
\(505\) −4354.26 + 16687.3i −0.383688 + 1.47044i
\(506\) 119.754 0.0105212
\(507\) −3293.67 + 4310.47i −0.288515 + 0.377583i
\(508\) 10214.5i 0.892114i
\(509\) 2680.91 4643.48i 0.233457 0.404359i −0.725366 0.688363i \(-0.758330\pi\)
0.958823 + 0.284004i \(0.0916630\pi\)
\(510\) 5502.32 + 1435.74i 0.477739 + 0.124658i
\(511\) 35.0802 + 60.7606i 0.00303690 + 0.00526006i
\(512\) 512.000i 0.0441942i
\(513\) −7964.39 + 4598.24i −0.685451 + 0.395745i
\(514\) −2550.52 4417.63i −0.218869 0.379092i
\(515\) −4490.77 16330.7i −0.384246 1.39731i
\(516\) 721.170 + 1249.10i 0.0615266 + 0.106567i
\(517\) −3923.58 2265.28i −0.333769 0.192702i
\(518\) 448.857 + 259.148i 0.0380727 + 0.0219813i
\(519\) −3606.38 −0.305014
\(520\) −2302.70 + 3503.37i −0.194192 + 0.295448i
\(521\) −2082.78 −0.175140 −0.0875701 0.996158i \(-0.527910\pi\)
−0.0875701 + 0.996158i \(0.527910\pi\)
\(522\) 3826.81 + 2209.41i 0.320872 + 0.185255i
\(523\) −13983.6 8073.43i −1.16914 0.675003i −0.215662 0.976468i \(-0.569191\pi\)
−0.953477 + 0.301466i \(0.902524\pi\)
\(524\) 2562.95 + 4439.16i 0.213670 + 0.370087i
\(525\) 202.199 120.302i 0.0168089 0.0100008i
\(526\) −5627.96 9747.92i −0.466522 0.808041i
\(527\) −11213.1 + 6473.89i −0.926851 + 0.535117i
\(528\) 2450.99i 0.202018i
\(529\) −6083.03 10536.1i −0.499962 0.865959i
\(530\) −3841.77 + 14723.2i −0.314860 + 1.20667i
\(531\) 6891.64 11936.7i 0.563223 0.975531i
\(532\) 237.076i 0.0193205i
\(533\) 7721.06 1543.96i 0.627460 0.125471i
\(534\) −4741.73 −0.384260
\(535\) −2666.50 695.779i −0.215482 0.0562264i
\(536\) 1521.31 2634.98i 0.122594 0.212339i
\(537\) 7901.44 4561.90i 0.634958 0.366593i
\(538\) 9240.38i 0.740486i
\(539\) 10621.8 + 18397.4i 0.848815 + 1.47019i
\(540\) −3715.79 + 3764.84i −0.296115 + 0.300024i
\(541\) 1521.93 0.120948 0.0604740 0.998170i \(-0.480739\pi\)
0.0604740 + 0.998170i \(0.480739\pi\)
\(542\) 8293.58 4788.30i 0.657269 0.379475i
\(543\) 410.933 + 237.252i 0.0324766 + 0.0187504i
\(544\) 1647.90 2854.25i 0.129877 0.224954i
\(545\) 7116.99 1957.10i 0.559373 0.153822i
\(546\) −34.5991 173.024i −0.00271191 0.0135618i
\(547\) 319.733i 0.0249923i 0.999922 + 0.0124961i \(0.00397775\pi\)
−0.999922 + 0.0124961i \(0.996022\pi\)
\(548\) −4221.96 2437.55i −0.329112 0.190013i
\(549\) −1547.57 + 2680.46i −0.120307 + 0.208378i
\(550\) −7578.13 + 13532.5i −0.587513 + 1.04914i
\(551\) −8218.07 −0.635393
\(552\) −16.5107 + 9.53246i −0.00127308 + 0.000735015i
\(553\) 278.654 160.881i 0.0214278 0.0123714i
\(554\) −6956.63 −0.533500
\(555\) 6679.55 + 6592.53i 0.510867 + 0.504211i
\(556\) 643.391 1114.39i 0.0490753 0.0850008i
\(557\) 5384.82 + 3108.93i 0.409627 + 0.236498i 0.690629 0.723209i \(-0.257334\pi\)
−0.281003 + 0.959707i \(0.590667\pi\)
\(558\) 5255.64i 0.398726i
\(559\) 6483.90 + 2193.66i 0.490590 + 0.165978i
\(560\) −36.1563 131.483i −0.00272836 0.00992170i
\(561\) 7888.65 13663.5i 0.593688 1.02830i
\(562\) −4345.87 2509.09i −0.326191 0.188327i
\(563\) 14730.5 8504.68i 1.10270 0.636642i 0.165768 0.986165i \(-0.446990\pi\)
0.936928 + 0.349523i \(0.113656\pi\)
\(564\) 721.268 0.0538491
\(565\) 16512.5 16730.4i 1.22953 1.24576i
\(566\) −8222.26 14241.4i −0.610613 1.05761i
\(567\) 207.592i 0.0153757i
\(568\) −6356.82 + 3670.11i −0.469588 + 0.271117i
\(569\) −1290.14 + 2234.59i −0.0950536 + 0.164638i −0.909631 0.415417i \(-0.863636\pi\)
0.814577 + 0.580055i \(0.196969\pi\)
\(570\) 1083.85 4153.75i 0.0796448 0.305230i
\(571\) −7562.68 −0.554270 −0.277135 0.960831i \(-0.589385\pi\)
−0.277135 + 0.960831i \(0.589385\pi\)
\(572\) 7678.18 + 8737.40i 0.561260 + 0.638687i
\(573\) 1990.13i 0.145094i
\(574\) −128.055 + 221.799i −0.00931173 + 0.0161284i
\(575\) −120.632 + 1.58211i −0.00874908 + 0.000114745i
\(576\) 668.900 + 1158.57i 0.0483869 + 0.0838085i
\(577\) 22883.2i 1.65102i 0.564385 + 0.825512i \(0.309113\pi\)
−0.564385 + 0.825512i \(0.690887\pi\)
\(578\) −9863.51 + 5694.70i −0.709806 + 0.409807i
\(579\) −1491.05 2582.58i −0.107023 0.185369i
\(580\) −4557.75 + 1253.33i −0.326294 + 0.0897274i
\(581\) −471.346 816.396i −0.0336570 0.0582957i
\(582\) 546.314 + 315.414i 0.0389097 + 0.0224645i
\(583\) 36561.1 + 21108.6i 2.59726 + 1.49953i
\(584\) 736.307 0.0521723
\(585\) −633.660 + 10935.9i −0.0447840 + 0.772894i
\(586\) 15845.8 1.11704
\(587\) −22919.3 13232.5i −1.61155 0.930430i −0.989011 0.147843i \(-0.952767\pi\)
−0.622541 0.782587i \(-0.713900\pi\)
\(588\) −2928.88 1690.99i −0.205417 0.118597i
\(589\) 4887.19 + 8464.85i 0.341890 + 0.592170i
\(590\) 3909.43 + 14216.6i 0.272794 + 0.992016i
\(591\) −564.351 977.485i −0.0392797 0.0680344i
\(592\) 4710.59 2719.66i 0.327034 0.188813i
\(593\) 6505.12i 0.450477i 0.974304 + 0.225239i \(0.0723162\pi\)
−0.974304 + 0.225239i \(0.927684\pi\)
\(594\) 7338.14 + 12710.0i 0.506881 + 0.877944i
\(595\) −221.623 + 849.346i −0.0152700 + 0.0585207i
\(596\) −3687.02 + 6386.11i −0.253400 + 0.438901i
\(597\) 5236.78i 0.359007i
\(598\) −28.9959 + 85.7045i −0.00198283 + 0.00586073i
\(599\) −23131.1 −1.57781 −0.788906 0.614514i \(-0.789352\pi\)
−0.788906 + 0.614514i \(0.789352\pi\)
\(600\) −32.3808 2468.97i −0.00220323 0.167992i
\(601\) −12953.5 + 22436.1i −0.879173 + 1.52277i −0.0269221 + 0.999638i \(0.508571\pi\)
−0.852250 + 0.523134i \(0.824763\pi\)
\(602\) −192.813 + 111.321i −0.0130540 + 0.00753671i
\(603\) 7950.01i 0.536898i
\(604\) −1055.30 1827.84i −0.0710922 0.123135i
\(605\) 20035.9 + 19774.8i 1.34640 + 1.32886i
\(606\) −7617.57 −0.510632
\(607\) −3001.39 + 1732.85i −0.200696 + 0.115872i −0.596980 0.802256i \(-0.703633\pi\)
0.396284 + 0.918128i \(0.370300\pi\)
\(608\) −2154.69 1244.01i −0.143724 0.0829792i
\(609\) 99.4743 172.295i 0.00661889 0.0114643i
\(610\) −877.889 3192.45i −0.0582700 0.211899i
\(611\) 2571.21 2259.50i 0.170245 0.149607i
\(612\) 8611.56i 0.568794i
\(613\) −4792.23 2766.80i −0.315753 0.182300i 0.333745 0.942663i \(-0.391687\pi\)
−0.649498 + 0.760363i \(0.725021\pi\)
\(614\) 929.515 1609.97i 0.0610947 0.105819i
\(615\) −3257.64 + 3300.64i −0.213595 + 0.216414i
\(616\) −378.339 −0.0247463
\(617\) −3063.88 + 1768.93i −0.199914 + 0.115420i −0.596615 0.802527i \(-0.703488\pi\)
0.396701 + 0.917948i \(0.370155\pi\)
\(618\) 6478.77 3740.52i 0.421706 0.243472i
\(619\) 24275.8 1.57629 0.788147 0.615487i \(-0.211041\pi\)
0.788147 + 0.615487i \(0.211041\pi\)
\(620\) 4001.41 + 3949.28i 0.259195 + 0.255818i
\(621\) −57.0793 + 98.8643i −0.00368843 + 0.00638855i
\(622\) 4433.54 + 2559.71i 0.285802 + 0.165008i
\(623\) 731.940i 0.0470699i
\(624\) −1754.11 593.455i −0.112533 0.0380725i
\(625\) 7454.94 13731.9i 0.477116 0.878840i
\(626\) −2292.82 + 3971.28i −0.146389 + 0.253553i
\(627\) −10314.7 5955.20i −0.656985 0.379311i
\(628\) 10531.6 6080.44i 0.669201 0.386363i
\(629\) −35013.5 −2.21952
\(630\) −253.590 250.286i −0.0160370 0.0158280i
\(631\) 9823.65 + 17015.1i 0.619768 + 1.07347i 0.989528 + 0.144342i \(0.0461066\pi\)
−0.369760 + 0.929127i \(0.620560\pi\)
\(632\) 3376.78i 0.212533i
\(633\) −7472.68 + 4314.36i −0.469214 + 0.270901i
\(634\) −99.3043 + 172.000i −0.00622063 + 0.0107744i
\(635\) −27625.3 7208.38i −1.72642 0.450482i
\(636\) −6721.00 −0.419033
\(637\) −15738.3 + 3147.15i −0.978926 + 0.195753i
\(638\) 13114.9i 0.813828i
\(639\) −9589.60 + 16609.7i −0.593675 + 1.02828i
\(640\) −1384.72 361.320i −0.0855248 0.0223163i
\(641\) −7447.06 12898.7i −0.458879 0.794801i 0.540023 0.841650i \(-0.318415\pi\)
−0.998902 + 0.0468488i \(0.985082\pi\)
\(642\) 1217.23i 0.0748291i
\(643\) −12712.3 + 7339.46i −0.779666 + 0.450140i −0.836312 0.548254i \(-0.815293\pi\)
0.0566462 + 0.998394i \(0.481959\pi\)
\(644\) −1.47144 2.54862i −9.00358e−5 0.000155947i
\(645\) −3887.17 + 1068.93i −0.237298 + 0.0652545i
\(646\) 8007.84 + 13870.0i 0.487715 + 0.844748i
\(647\) 23224.1 + 13408.4i 1.41118 + 0.814744i 0.995499 0.0947679i \(-0.0302109\pi\)
0.415678 + 0.909512i \(0.363544\pi\)
\(648\) 1886.72 + 1089.30i 0.114379 + 0.0660367i
\(649\) 40908.1 2.47424
\(650\) −7849.94 8700.05i −0.473692 0.524991i
\(651\) −236.625 −0.0142459
\(652\) −3632.36 2097.15i −0.218182 0.125967i
\(653\) −27706.6 15996.4i −1.66040 0.958634i −0.972522 0.232811i \(-0.925208\pi\)
−0.687881 0.725823i \(-0.741459\pi\)
\(654\) 1630.14 + 2823.48i 0.0974670 + 0.168818i
\(655\) −13814.5 + 3798.85i −0.824089 + 0.226616i
\(656\) 1343.90 + 2327.70i 0.0799853 + 0.138539i
\(657\) 1666.14 961.946i 0.0989380 0.0571219i
\(658\) 111.336i 0.00659624i
\(659\) 7455.05 + 12912.5i 0.440679 + 0.763279i 0.997740 0.0671928i \(-0.0214043\pi\)
−0.557061 + 0.830472i \(0.688071\pi\)
\(660\) −6628.78 1729.67i −0.390947 0.102011i
\(661\) 9348.15 16191.5i 0.550077 0.952761i −0.448192 0.893937i \(-0.647932\pi\)
0.998268 0.0588233i \(-0.0187349\pi\)
\(662\) 19540.3i 1.14721i
\(663\) 7868.54 + 8954.02i 0.460918 + 0.524503i
\(664\) −9893.22 −0.578210
\(665\) 641.178 + 167.305i 0.0373892 + 0.00975610i
\(666\) 7106.18 12308.3i 0.413452 0.716119i
\(667\) −88.3461 + 51.0066i −0.00512860 + 0.00296100i
\(668\) 1481.10i 0.0857868i
\(669\) 5253.43 + 9099.20i 0.303601 + 0.525853i
\(670\) 6052.79 + 5973.93i 0.349015 + 0.344467i
\(671\) −9186.21 −0.528509
\(672\) 52.1623 30.1159i 0.00299435 0.00172879i
\(673\) −19992.7 11542.8i −1.14512 0.661133i −0.197423 0.980318i \(-0.563257\pi\)
−0.947692 + 0.319186i \(0.896591\pi\)
\(674\) 7747.81 13419.6i 0.442781 0.766920i
\(675\) −7559.88 12706.3i −0.431082 0.724543i
\(676\) −8112.22 + 3379.48i −0.461551 + 0.192278i
\(677\) 19019.0i 1.07970i 0.841760 + 0.539852i \(0.181520\pi\)
−0.841760 + 0.539852i \(0.818480\pi\)
\(678\) 8991.92 + 5191.49i 0.509340 + 0.294068i
\(679\) −48.6878 + 84.3298i −0.00275179 + 0.00476625i
\(680\) 6556.47 + 6471.04i 0.369748 + 0.364931i
\(681\) 7594.24 0.427330
\(682\) 13508.7 7799.25i 0.758467 0.437901i
\(683\) 26578.9 15345.3i 1.48904 0.859696i 0.489115 0.872219i \(-0.337320\pi\)
0.999922 + 0.0125236i \(0.00398651\pi\)
\(684\) −6500.93 −0.363406
\(685\) 9571.88 9698.24i 0.533902 0.540950i
\(686\) 522.491 904.980i 0.0290799 0.0503678i
\(687\) 4763.43 + 2750.17i 0.264536 + 0.152730i
\(688\) 2336.55i 0.129477i
\(689\) −23959.3 + 21054.7i −1.32478 + 1.16418i
\(690\) −14.1292 51.3808i −0.000779549 0.00283483i
\(691\) 2798.97 4847.96i 0.154092 0.266896i −0.778636 0.627476i \(-0.784088\pi\)
0.932728 + 0.360580i \(0.117421\pi\)
\(692\) −5059.51 2921.11i −0.277939 0.160468i
\(693\) −856.116 + 494.279i −0.0469281 + 0.0270939i
\(694\) 18809.5 1.02881
\(695\) 2559.85 + 2526.49i 0.139713 + 0.137893i
\(696\) −1043.95 1808.17i −0.0568545 0.0984749i
\(697\) 17301.6i 0.940237i
\(698\) −9076.05 + 5240.06i −0.492168 + 0.284154i
\(699\) 2593.18 4491.52i 0.140319 0.243040i
\(700\) 381.114 4.99835i 0.0205782 0.000269885i
\(701\) 17788.7 0.958443 0.479222 0.877694i \(-0.340919\pi\)
0.479222 + 0.877694i \(0.340919\pi\)
\(702\) −10873.0 + 2174.23i −0.584579 + 0.116896i
\(703\) 26432.0i 1.41807i
\(704\) −1985.26 + 3438.58i −0.106282 + 0.184086i
\(705\) −509.001 + 1950.69i −0.0271916 + 0.104209i
\(706\) −6437.05 11149.3i −0.343147 0.594348i
\(707\) 1175.86i 0.0625499i
\(708\) −5640.08 + 3256.30i −0.299389 + 0.172852i
\(709\) −11150.3 19312.9i −0.590632 1.02300i −0.994147 0.108031i \(-0.965545\pi\)
0.403516 0.914973i \(-0.367788\pi\)
\(710\) −5439.90 19782.2i −0.287544 1.04565i
\(711\) −4411.58 7641.08i −0.232696 0.403042i
\(712\) −6652.33 3840.73i −0.350150 0.202159i
\(713\) 105.077 + 60.6661i 0.00551915 + 0.00318648i
\(714\) −387.719 −0.0203221
\(715\) −29049.1 + 14599.9i −1.51940 + 0.763642i
\(716\) 14780.3 0.771458
\(717\) 5203.29 + 3004.12i 0.271019 + 0.156473i
\(718\) −4783.80 2761.93i −0.248649 0.143557i
\(719\) −6284.12 10884.4i −0.325950 0.564562i 0.655754 0.754974i \(-0.272351\pi\)
−0.981704 + 0.190413i \(0.939017\pi\)
\(720\) −3605.43 + 991.456i −0.186620 + 0.0513186i
\(721\) 577.392 + 1000.07i 0.0298241 + 0.0516569i
\(722\) −1409.58 + 813.822i −0.0726582 + 0.0419492i
\(723\) 1532.09i 0.0788090i
\(724\) 384.341 + 665.698i 0.0197292 + 0.0341719i
\(725\) −173.264 13211.1i −0.00887569 0.676754i
\(726\) −6217.16 + 10768.4i −0.317824 + 0.550488i
\(727\) 533.809i 0.0272323i −0.999907 0.0136162i \(-0.995666\pi\)
0.999907 0.0136162i \(-0.00433429\pi\)
\(728\) 91.6066 270.766i 0.00466369 0.0137847i
\(729\) −2193.15 −0.111424
\(730\) −519.614 + 1991.37i −0.0263449 + 0.100964i
\(731\) 7520.30 13025.5i 0.380504 0.659052i
\(732\) 1266.52 731.226i 0.0639507 0.0369220i
\(733\) 5164.01i 0.260214i 0.991500 + 0.130107i \(0.0415321\pi\)
−0.991500 + 0.130107i \(0.958468\pi\)
\(734\) −5181.18 8974.07i −0.260546 0.451279i
\(735\) 6640.26 6727.91i 0.333237 0.337637i
\(736\) −30.8846 −0.00154677
\(737\) 20434.1 11797.6i 1.02130 0.589649i
\(738\) 6082.02 + 3511.45i 0.303363 + 0.175147i
\(739\) 5972.38 10344.5i 0.297290 0.514922i −0.678225 0.734854i \(-0.737250\pi\)
0.975515 + 0.219933i \(0.0705838\pi\)
\(740\) 4031.13 + 14659.2i 0.200253 + 0.728221i
\(741\) 6759.46 5940.02i 0.335108 0.294483i
\(742\) 1037.46i 0.0513294i
\(743\) 32254.5 + 18622.1i 1.59260 + 0.919489i 0.992859 + 0.119296i \(0.0380638\pi\)
0.599743 + 0.800193i \(0.295270\pi\)
\(744\) −1241.65 + 2150.59i −0.0611841 + 0.105974i
\(745\) −14669.5 14478.4i −0.721407 0.712008i
\(746\) 4618.65 0.226677
\(747\) −22386.7 + 12925.0i −1.09650 + 0.633065i
\(748\) 22134.5 12779.4i 1.08198 0.624679i
\(749\) 187.894 0.00916620
\(750\) 6700.26 + 1654.78i 0.326212 + 0.0805656i
\(751\) 2158.36 3738.39i 0.104873 0.181645i −0.808813 0.588066i \(-0.799890\pi\)
0.913686 + 0.406420i \(0.133223\pi\)
\(752\) 1011.89 + 584.216i 0.0490690 + 0.0283300i
\(753\) 3035.73i 0.146917i
\(754\) −9385.93 3175.48i −0.453336 0.153374i
\(755\) 5688.18 1564.19i 0.274191 0.0753996i
\(756\) 180.331 312.342i 0.00867535 0.0150261i
\(757\) 10998.7 + 6350.10i 0.528077 + 0.304886i 0.740233 0.672350i \(-0.234715\pi\)
−0.212156 + 0.977236i \(0.568048\pi\)
\(758\) 5528.78 3192.05i 0.264927 0.152956i
\(759\) −147.847 −0.00707051
\(760\) 4885.04 4949.53i 0.233157 0.236234i
\(761\) 9732.17 + 16856.6i 0.463588 + 0.802959i 0.999137 0.0415459i \(-0.0132283\pi\)
−0.535548 + 0.844505i \(0.679895\pi\)
\(762\) 12610.7i 0.599525i
\(763\) −435.837 + 251.630i −0.0206794 + 0.0119392i
\(764\) −1611.98 + 2792.03i −0.0763342 + 0.132215i
\(765\) 23290.2 + 6077.20i 1.10073 + 0.287218i
\(766\) 10485.1 0.494573
\(767\) −9905.03 + 29276.8i −0.466297 + 1.37826i
\(768\) 632.111i 0.0296997i
\(769\) 9041.43 15660.2i 0.423982 0.734358i −0.572343 0.820014i \(-0.693965\pi\)
0.996325 + 0.0856561i \(0.0272987\pi\)
\(770\) 266.995 1023.23i 0.0124959 0.0478891i
\(771\) 3148.85 + 5453.97i 0.147086 + 0.254760i
\(772\) 4830.92i 0.225218i
\(773\) −17404.4 + 10048.4i −0.809822 + 0.467551i −0.846894 0.531762i \(-0.821530\pi\)
0.0370721 + 0.999313i \(0.488197\pi\)
\(774\) 3052.57 + 5287.21i 0.141760 + 0.245536i
\(775\) −13504.8 + 8034.93i −0.625942 + 0.372417i
\(776\) 510.961 + 885.011i 0.0236372 + 0.0409408i
\(777\) −554.155 319.942i −0.0255858 0.0147720i
\(778\) 16282.1 + 9400.46i 0.750309 + 0.433191i
\(779\) −13061.1 −0.600723
\(780\) 2842.89 4325.23i 0.130503 0.198549i
\(781\) −56923.0 −2.60802
\(782\) 172.172 + 99.4036i 0.00787323 + 0.00454561i
\(783\) −10827.1 6251.04i −0.494163 0.285305i
\(784\) −2739.35 4744.70i −0.124788 0.216140i
\(785\) 9012.54 + 32774.1i 0.409772 + 1.49014i
\(786\) −3164.20 5480.55i −0.143592 0.248708i
\(787\) 10526.6 6077.55i 0.476790 0.275275i −0.242288 0.970204i \(-0.577898\pi\)
0.719078 + 0.694930i \(0.244564\pi\)
\(788\) 1828.46i 0.0826602i
\(789\) 6948.24 + 12034.7i 0.313516 + 0.543025i
\(790\) 9132.61 + 2383.00i 0.411296 + 0.107321i
\(791\) −801.365 + 1388.01i −0.0360218 + 0.0623916i
\(792\) 10374.6i 0.465459i
\(793\) 2224.24 6574.31i 0.0996031 0.294402i
\(794\) −16968.2 −0.758411
\(795\) 4743.02 18177.1i 0.211595 0.810914i
\(796\) −4241.71 + 7346.85i −0.188873 + 0.327138i
\(797\) −21798.0 + 12585.1i −0.968791 + 0.559332i −0.898867 0.438221i \(-0.855609\pi\)
−0.0699234 + 0.997552i \(0.522275\pi\)
\(798\) 292.692i 0.0129839i
\(799\) −3760.66 6513.65i −0.166511 0.288406i
\(800\) 1954.40 3490.03i 0.0863731 0.154239i
\(801\) −20070.8 −0.885352
\(802\) 16807.1 9703.60i 0.740001 0.427240i
\(803\) 4945.02 + 2855.01i 0.217318 + 0.125468i
\(804\) −1878.19 + 3253.13i −0.0823865 + 0.142698i
\(805\) 7.93121 2.18100i 0.000347253 9.54909e-5i
\(806\) 2310.86 + 11556.2i 0.100988 + 0.505025i
\(807\) 11408.1i 0.497626i
\(808\) −10687.0 6170.11i −0.465304 0.268643i
\(809\) 17666.9 30599.9i 0.767780 1.32983i −0.170984 0.985274i \(-0.554695\pi\)
0.938764 0.344561i \(-0.111972\pi\)
\(810\) −4277.51 + 4333.98i −0.185551 + 0.188001i
\(811\) −26854.0 −1.16273 −0.581363 0.813644i \(-0.697480\pi\)
−0.581363 + 0.813644i \(0.697480\pi\)
\(812\) 279.112 161.145i 0.0120627 0.00696440i
\(813\) −10239.2 + 5911.60i −0.441703 + 0.255017i
\(814\) 42181.6 1.81630
\(815\) 8235.16 8343.88i 0.353945 0.358617i
\(816\) −2034.48 + 3523.83i −0.0872808 + 0.151175i
\(817\) −9833.08 5677.13i −0.421072 0.243106i
\(818\) 21363.3i 0.913143i
\(819\) −146.451 732.377i −0.00624837 0.0312470i
\(820\) −7243.72 + 1991.95i −0.308490 + 0.0848315i
\(821\) −5817.98 + 10077.0i −0.247319 + 0.428369i −0.962781 0.270283i \(-0.912883\pi\)
0.715462 + 0.698651i \(0.246216\pi\)
\(822\) 5212.40 + 3009.38i 0.221172 + 0.127694i
\(823\) 28747.9 16597.6i 1.21761 0.702986i 0.253201 0.967414i \(-0.418517\pi\)
0.964405 + 0.264428i \(0.0851832\pi\)
\(824\) 12119.0 0.512363
\(825\) 9355.90 16707.1i 0.394825 0.705051i
\(826\) −502.647 870.611i −0.0211735 0.0366736i
\(827\) 31994.0i 1.34527i −0.739973 0.672637i \(-0.765162\pi\)
0.739973 0.672637i \(-0.234838\pi\)
\(828\) −69.8865 + 40.3490i −0.00293324 + 0.00169351i
\(829\) 13325.7 23080.8i 0.558289 0.966985i −0.439351 0.898316i \(-0.644791\pi\)
0.997639 0.0686690i \(-0.0218752\pi\)
\(830\) 6981.67 26756.5i 0.291973 1.11895i
\(831\) 8588.60 0.358526
\(832\) −1980.20 2253.38i −0.0825135 0.0938963i
\(833\) 35267.0i 1.46690i
\(834\) −794.325 + 1375.81i −0.0329799 + 0.0571229i
\(835\) 4005.69 + 1045.22i 0.166015 + 0.0433189i
\(836\) −9647.24 16709.5i −0.399111 0.691280i
\(837\) 14869.7i 0.614064i
\(838\) −4023.71 + 2323.09i −0.165867 + 0.0957636i
\(839\) −4554.60 7888.80i −0.187416 0.324614i 0.756972 0.653447i \(-0.226678\pi\)
−0.944388 + 0.328833i \(0.893345\pi\)
\(840\) 44.6383 + 162.327i 0.00183353 + 0.00666765i
\(841\) 6608.51 + 11446.3i 0.270963 + 0.469321i
\(842\) −5037.67 2908.50i −0.206187 0.119042i
\(843\) 5365.38 + 3097.70i 0.219209 + 0.126561i
\(844\) −13978.2 −0.570084
\(845\) −3415.10 24324.6i −0.139033 0.990288i
\(846\) 3052.98 0.124071
\(847\) −1662.23 959.690i −0.0674321 0.0389319i
\(848\) −9429.11 5443.90i −0.381836 0.220453i
\(849\) 10151.1 + 17582.3i 0.410349 + 0.710745i
\(850\) −22128.0 + 13165.5i −0.892924 + 0.531263i
\(851\) 164.054 + 284.150i 0.00660833 + 0.0114460i
\(852\) 7848.08 4531.09i 0.315576 0.182198i
\(853\) 6196.34i 0.248720i 0.992237 + 0.124360i \(0.0396878\pi\)
−0.992237 + 0.124360i \(0.960312\pi\)
\(854\) 112.873 + 195.502i 0.00452276 + 0.00783365i
\(855\) 4587.73 17582.0i 0.183505 0.703264i
\(856\) 985.938 1707.69i 0.0393676 0.0681867i
\(857\) 5042.07i 0.200973i −0.994938 0.100486i \(-0.967960\pi\)
0.994938 0.100486i \(-0.0320399\pi\)
\(858\) −9479.42 10787.1i −0.377182 0.429215i
\(859\) 1176.58 0.0467338 0.0233669 0.999727i \(-0.492561\pi\)
0.0233669 + 0.999727i \(0.492561\pi\)
\(860\) −6319.26 1648.91i −0.250564 0.0653805i
\(861\) 158.096 273.831i 0.00625773 0.0108387i
\(862\) 17283.5 9978.61i 0.682920 0.394284i
\(863\) 15621.2i 0.616167i 0.951359 + 0.308084i \(0.0996876\pi\)
−0.951359 + 0.308084i \(0.900312\pi\)
\(864\) −1892.51 3277.92i −0.0745190 0.129071i
\(865\) 11470.7 11622.2i 0.450887 0.456839i
\(866\) 6187.52 0.242795
\(867\) 12177.4 7030.63i 0.477009 0.275401i
\(868\) −331.969 191.662i −0.0129813 0.00749475i
\(869\) 13093.4 22678.4i 0.511118 0.885283i
\(870\) 5626.97 1547.36i 0.219278 0.0602992i
\(871\) 3495.55 + 17480.7i 0.135984 + 0.680034i
\(872\) 5281.54i 0.205110i
\(873\) 2312.44 + 1335.09i 0.0896497 + 0.0517593i
\(874\) 75.0406 129.974i 0.00290422 0.00503025i
\(875\) −255.435 + 1034.26i −0.00986889 + 0.0399594i
\(876\) −909.039 −0.0350612
\(877\) −24243.2 + 13996.8i −0.933448 + 0.538926i −0.887900 0.460036i \(-0.847837\pi\)
−0.0455474 + 0.998962i \(0.514503\pi\)
\(878\) −23199.7 + 13394.4i −0.891746 + 0.514850i
\(879\) −19563.2 −0.750681
\(880\) −7898.73 7795.82i −0.302575 0.298633i
\(881\) −4259.65 + 7377.93i −0.162896 + 0.282144i −0.935906 0.352250i \(-0.885417\pi\)
0.773010 + 0.634394i \(0.218750\pi\)
\(882\) −12397.4 7157.63i −0.473289 0.273254i
\(883\) 34533.5i 1.31613i −0.752960 0.658067i \(-0.771374\pi\)
0.752960 0.658067i \(-0.228626\pi\)
\(884\) 3786.43 + 18935.3i 0.144063 + 0.720433i
\(885\) −4826.55 17551.7i −0.183325 0.666662i
\(886\) −2578.96 + 4466.90i −0.0977900 + 0.169377i
\(887\) −22901.0 13221.9i −0.866899 0.500504i −0.000582639 1.00000i \(-0.500185\pi\)
−0.866317 + 0.499495i \(0.833519\pi\)
\(888\) −5815.66 + 3357.67i −0.219776 + 0.126888i
\(889\) 1946.61 0.0734388
\(890\) 15081.9 15281.0i 0.568031 0.575529i
\(891\) 8447.46 + 14631.4i 0.317621 + 0.550136i
\(892\) 17020.8i 0.638898i
\(893\) −4917.21 + 2838.95i −0.184264 + 0.106385i
\(894\) 4551.97 7884.24i 0.170291 0.294954i
\(895\) −10430.5 + 39973.6i −0.389555 + 1.49293i
\(896\) 97.5736 0.00363806
\(897\) 35.7981 105.810i 0.00133251 0.00393857i
\(898\) 27514.1i 1.02245i
\(899\) −6643.85 + 11507.5i −0.246479 + 0.426914i
\(900\) −137.061 10450.7i −0.00507635 0.387062i
\(901\) 35043.0 + 60696.2i 1.29573 + 2.24427i
\(902\) 20843.7i 0.769422i
\(903\) 238.046 137.436i 0.00877262 0.00506487i
\(904\) 8410.04 + 14566.6i 0.309418 + 0.535928i
\(905\) −2071.63 + 569.677i −0.0760921 + 0.0209245i
\(906\) 1302.87 + 2256.64i 0.0477759 + 0.0827503i
\(907\) −9023.85 5209.92i −0.330355 0.190731i 0.325644 0.945493i \(-0.394419\pi\)
−0.655999 + 0.754762i \(0.727752\pi\)
\(908\) 10654.2 + 6151.22i 0.389397 + 0.224819i
\(909\) −32243.7 −1.17652
\(910\) 667.649 + 438.833i 0.0243212 + 0.0159859i
\(911\) 52607.0 1.91322 0.956612 0.291364i \(-0.0941091\pi\)
0.956612 + 0.291364i \(0.0941091\pi\)
\(912\) 2660.17 + 1535.85i 0.0965865 + 0.0557642i
\(913\) −66442.6 38360.7i −2.40847 1.39053i
\(914\) −3760.53 6513.43i −0.136091 0.235717i
\(915\) 1083.84 + 3941.37i 0.0391590 + 0.142402i
\(916\) 4455.18 + 7716.60i 0.160702 + 0.278345i
\(917\) 845.986 488.430i 0.0304656 0.0175893i
\(918\) 24364.5i 0.875980i
\(919\) 11317.0 + 19601.6i 0.406216 + 0.703586i 0.994462 0.105095i \(-0.0335148\pi\)
−0.588246 + 0.808682i \(0.700181\pi\)
\(920\) 21.7953 83.5282i 0.000781055 0.00299331i
\(921\) −1147.57 + 1987.65i −0.0410573 + 0.0711133i
\(922\) 28595.9i 1.02143i
\(923\) 13782.7 40738.2i 0.491509 1.45278i
\(924\) 467.094 0.0166302
\(925\) −42491.0 + 557.274i −1.51038 + 0.0198087i
\(926\) −3597.59 + 6231.20i −0.127672 + 0.221134i
\(927\) 27423.3 15832.9i 0.971630 0.560971i
\(928\) 3382.32i 0.119645i
\(929\) 14272.9 + 24721.4i 0.504068 + 0.873071i 0.999989 + 0.00470362i \(0.00149722\pi\)
−0.495921 + 0.868368i \(0.665169\pi\)
\(930\) −4940.11 4875.75i −0.174186 0.171916i
\(931\) 26623.3 0.937212
\(932\) 7276.11 4200.87i 0.255726 0.147644i
\(933\) −5473.62 3160.19i −0.192067 0.110890i
\(934\) 2291.67 3969.29i 0.0802845 0.139057i
\(935\) 18941.8 + 68881.8i 0.662527 + 2.40928i
\(936\) −7424.78 2511.98i −0.259280 0.0877207i
\(937\) 35965.7i 1.25395i −0.779041 0.626973i \(-0.784293\pi\)
0.779041 0.626973i \(-0.215707\pi\)
\(938\) −502.157 289.921i −0.0174798 0.0100919i
\(939\) 2830.70 4902.91i 0.0983774 0.170395i
\(940\) −2294.12 + 2324.41i −0.0796022 + 0.0806530i
\(941\) −15840.0 −0.548746 −0.274373 0.961623i \(-0.588470\pi\)
−0.274373 + 0.961623i \(0.588470\pi\)
\(942\) −13002.3 + 7506.87i −0.449721 + 0.259646i
\(943\) −140.410 + 81.0657i −0.00484876 + 0.00279943i
\(944\) −10550.2 −0.363750
\(945\) 717.479 + 708.130i 0.0246980 + 0.0243762i
\(946\) −9059.88 + 15692.2i −0.311377 + 0.539320i
\(947\) 39118.6 + 22585.1i 1.34233 + 0.774992i 0.987148 0.159807i \(-0.0510871\pi\)
0.355177 + 0.934799i \(0.384420\pi\)
\(948\) 4168.95i 0.142828i
\(949\) −3240.58 + 2847.73i −0.110847 + 0.0974092i
\(950\) 9938.76 + 16704.6i 0.339427 + 0.570494i
\(951\) 122.600 212.350i 0.00418043 0.00724071i
\(952\) −543.943 314.046i −0.0185182 0.0106915i
\(953\) 4781.53 2760.62i 0.162528 0.0938354i −0.416530 0.909122i \(-0.636754\pi\)
0.579058 + 0.815287i \(0.303421\pi\)
\(954\) −28448.6 −0.965470
\(955\) −6413.55 6329.98i −0.217317 0.214485i
\(956\) 4866.58 + 8429.17i 0.164641 + 0.285166i
\(957\) 16191.5i 0.546914i
\(958\) 15913.2 9187.49i 0.536672 0.309848i
\(959\) −464.533 + 804.594i −0.0156419 + 0.0270925i
\(960\) 1709.56 + 446.082i 0.0574749 + 0.0149971i
\(961\) −13986.9 −0.469502
\(962\) −10213.4 + 30188.2i −0.342300 + 1.01175i
\(963\) 5152.30i 0.172410i
\(964\) −1240.97 + 2149.42i −0.0414614 + 0.0718133i
\(965\) 13065.4 + 3409.19i 0.435844 + 0.113726i
\(966\) 1.81663 + 3.14650i 6.05065e−5 + 0.000104800i
\(967\) 19462.9i 0.647245i 0.946186 + 0.323622i \(0.104901\pi\)
−0.946186 + 0.323622i \(0.895099\pi\)
\(968\) −17444.5 + 10071.6i −0.579224 + 0.334415i
\(969\) −9886.41 17123.8i −0.327758 0.567693i
\(970\) −2754.13 + 757.356i −0.0911646 + 0.0250693i
\(971\) 17055.4 + 29540.9i 0.563682 + 0.976325i 0.997171 + 0.0751667i \(0.0239489\pi\)
−0.433489 + 0.901159i \(0.642718\pi\)
\(972\) −13392.3 7732.05i −0.441933 0.255150i
\(973\) −212.372 122.613i −0.00699727 0.00403987i
\(974\) −11829.4 −0.389157
\(975\) 9691.47 + 10741.0i 0.318334 + 0.352808i
\(976\) 2369.12 0.0776986
\(977\) −11672.1 6738.88i −0.382214 0.220671i 0.296567 0.955012i \(-0.404158\pi\)
−0.678781 + 0.734341i \(0.737491\pi\)
\(978\) 4484.49 + 2589.12i 0.146624 + 0.0846533i
\(979\) −29784.6 51588.4i −0.972339 1.68414i
\(980\) 14765.3 4060.32i 0.481287 0.132349i
\(981\) 6900.05 + 11951.2i 0.224568 + 0.388964i
\(982\) −31831.3 + 18377.8i −1.03440 + 0.597209i
\(983\) 18218.9i 0.591141i −0.955321 0.295571i \(-0.904490\pi\)
0.955321 0.295571i \(-0.0955097\pi\)
\(984\) −1659.16 2873.76i −0.0537523 0.0931016i
\(985\) 4945.13 + 1290.35i 0.159964 + 0.0417401i
\(986\) −10886.2 + 18855.4i −0.351609 + 0.609005i
\(987\) 137.455i 0.00443285i
\(988\) 14294.4 2858.40i 0.460289 0.0920424i
\(989\) −140.944 −0.00453160
\(990\) −28058.3 7321.35i −0.900759 0.235038i
\(991\) −21768.9 + 37704.9i −0.697792 + 1.20861i 0.271438 + 0.962456i \(0.412501\pi\)
−0.969230 + 0.246156i \(0.920833\pi\)
\(992\) −3483.89 + 2011.43i −0.111506 + 0.0643779i
\(993\) 24124.3i 0.770959i
\(994\) 699.425 + 1211.44i 0.0223183 + 0.0386565i
\(995\) −16876.4 16656.5i −0.537706 0.530700i
\(996\) 12214.1 0.388573
\(997\) 2503.58 1445.44i 0.0795277 0.0459153i −0.459709 0.888070i \(-0.652046\pi\)
0.539237 + 0.842154i \(0.318713\pi\)
\(998\) −5410.34 3123.66i −0.171605 0.0990760i
\(999\) −20105.4 + 34823.5i −0.636743 + 1.10287i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.4.n.a.9.7 44
5.4 even 2 inner 130.4.n.a.9.16 yes 44
13.3 even 3 inner 130.4.n.a.29.16 yes 44
65.29 even 6 inner 130.4.n.a.29.7 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.4.n.a.9.7 44 1.1 even 1 trivial
130.4.n.a.9.16 yes 44 5.4 even 2 inner
130.4.n.a.29.7 yes 44 65.29 even 6 inner
130.4.n.a.29.16 yes 44 13.3 even 3 inner