Newspace parameters
| Level: | \( N \) | \(=\) | \( 130 = 2 \cdot 5 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 130.n (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(7.67024830075\) |
| Analytic rank: | \(0\) |
| Dimension: | \(44\) |
| Relative dimension: | \(22\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9.1 | −1.73205 | − | 1.00000i | −8.47005 | − | 4.89018i | 2.00000 | + | 3.46410i | 1.89034 | + | 11.0194i | 9.78037 | + | 16.9401i | 15.2112 | − | 8.78218i | − | 8.00000i | 34.3278 | + | 59.4575i | 7.74521 | − | 20.9765i | |
| 9.2 | −1.73205 | − | 1.00000i | −6.45441 | − | 3.72645i | 2.00000 | + | 3.46410i | −9.31537 | − | 6.18255i | 7.45291 | + | 12.9088i | −23.1745 | + | 13.3798i | − | 8.00000i | 14.2729 | + | 24.7214i | 9.95214 | + | 20.0239i | |
| 9.3 | −1.73205 | − | 1.00000i | −5.30007 | − | 3.06000i | 2.00000 | + | 3.46410i | 6.73291 | − | 8.92569i | 6.11999 | + | 10.6001i | 12.2028 | − | 7.04529i | − | 8.00000i | 5.22716 | + | 9.05371i | −20.5874 | + | 8.72683i | |
| 9.4 | −1.73205 | − | 1.00000i | −3.44569 | − | 1.98937i | 2.00000 | + | 3.46410i | 11.1790 | − | 0.173268i | 3.97874 | + | 6.89138i | −16.2727 | + | 9.39504i | − | 8.00000i | −5.58482 | − | 9.67320i | −19.5359 | − | 10.8789i | |
| 9.5 | −1.73205 | − | 1.00000i | −2.39309 | − | 1.38165i | 2.00000 | + | 3.46410i | −10.8544 | − | 2.68005i | 2.76331 | + | 4.78619i | 29.2023 | − | 16.8600i | − | 8.00000i | −9.68207 | − | 16.7698i | 16.1203 | + | 15.4964i | |
| 9.6 | −1.73205 | − | 1.00000i | 0.162462 | + | 0.0937974i | 2.00000 | + | 3.46410i | 2.25511 | + | 10.9505i | −0.187595 | − | 0.324924i | −16.1121 | + | 9.30232i | − | 8.00000i | −13.4824 | − | 23.3522i | 7.04459 | − | 21.2220i | |
| 9.7 | −1.73205 | − | 1.00000i | 2.13838 | + | 1.23459i | 2.00000 | + | 3.46410i | −10.7802 | + | 2.96444i | −2.46918 | − | 4.27675i | 0.660166 | − | 0.381147i | − | 8.00000i | −10.4516 | − | 18.1026i | 21.6362 | + | 5.64562i | |
| 9.8 | −1.73205 | − | 1.00000i | 3.43924 | + | 1.98565i | 2.00000 | + | 3.46410i | 2.28471 | − | 10.9444i | −3.97130 | − | 6.87849i | 5.96841 | − | 3.44587i | − | 8.00000i | −5.61440 | − | 9.72443i | −14.9016 | + | 16.6716i | |
| 9.9 | −1.73205 | − | 1.00000i | 4.53157 | + | 2.61630i | 2.00000 | + | 3.46410i | 3.51208 | + | 10.6144i | −5.23260 | − | 9.06313i | 21.0781 | − | 12.1694i | − | 8.00000i | 0.190066 | + | 0.329205i | 4.53129 | − | 21.8967i | |
| 9.10 | −1.73205 | − | 1.00000i | 6.95834 | + | 4.01740i | 2.00000 | + | 3.46410i | 10.8454 | − | 2.71598i | −8.03480 | − | 13.9167i | 8.29606 | − | 4.78973i | − | 8.00000i | 18.7790 | + | 32.5262i | −21.5008 | − | 6.14122i | |
| 9.11 | −1.73205 | − | 1.00000i | 8.83332 | + | 5.09992i | 2.00000 | + | 3.46410i | −10.7497 | + | 3.07320i | −10.1998 | − | 17.6666i | −13.6770 | + | 7.89644i | − | 8.00000i | 38.5183 | + | 66.7157i | 21.6922 | + | 5.42674i | |
| 9.12 | 1.73205 | + | 1.00000i | −8.83332 | − | 5.09992i | 2.00000 | + | 3.46410i | −10.7497 | − | 3.07320i | −10.1998 | − | 17.6666i | 13.6770 | − | 7.89644i | 8.00000i | 38.5183 | + | 66.7157i | −15.5458 | − | 16.0726i | ||
| 9.13 | 1.73205 | + | 1.00000i | −6.95834 | − | 4.01740i | 2.00000 | + | 3.46410i | 10.8454 | + | 2.71598i | −8.03480 | − | 13.9167i | −8.29606 | + | 4.78973i | 8.00000i | 18.7790 | + | 32.5262i | 16.0689 | + | 15.5496i | ||
| 9.14 | 1.73205 | + | 1.00000i | −4.53157 | − | 2.61630i | 2.00000 | + | 3.46410i | 3.51208 | − | 10.6144i | −5.23260 | − | 9.06313i | −21.0781 | + | 12.1694i | 8.00000i | 0.190066 | + | 0.329205i | 16.6975 | − | 14.8726i | ||
| 9.15 | 1.73205 | + | 1.00000i | −3.43924 | − | 1.98565i | 2.00000 | + | 3.46410i | 2.28471 | + | 10.9444i | −3.97130 | − | 6.87849i | −5.96841 | + | 3.44587i | 8.00000i | −5.61440 | − | 9.72443i | −6.98717 | + | 21.2410i | ||
| 9.16 | 1.73205 | + | 1.00000i | −2.13838 | − | 1.23459i | 2.00000 | + | 3.46410i | −10.7802 | − | 2.96444i | −2.46918 | − | 4.27675i | −0.660166 | + | 0.381147i | 8.00000i | −10.4516 | − | 18.1026i | −15.7074 | − | 15.9147i | ||
| 9.17 | 1.73205 | + | 1.00000i | −0.162462 | − | 0.0937974i | 2.00000 | + | 3.46410i | 2.25511 | − | 10.9505i | −0.187595 | − | 0.324924i | 16.1121 | − | 9.30232i | 8.00000i | −13.4824 | − | 23.3522i | 14.8565 | − | 16.7118i | ||
| 9.18 | 1.73205 | + | 1.00000i | 2.39309 | + | 1.38165i | 2.00000 | + | 3.46410i | −10.8544 | + | 2.68005i | 2.76331 | + | 4.78619i | −29.2023 | + | 16.8600i | 8.00000i | −9.68207 | − | 16.7698i | −21.4804 | − | 6.21238i | ||
| 9.19 | 1.73205 | + | 1.00000i | 3.44569 | + | 1.98937i | 2.00000 | + | 3.46410i | 11.1790 | + | 0.173268i | 3.97874 | + | 6.89138i | 16.2727 | − | 9.39504i | 8.00000i | −5.58482 | − | 9.67320i | 19.1893 | + | 11.4791i | ||
| 9.20 | 1.73205 | + | 1.00000i | 5.30007 | + | 3.06000i | 2.00000 | + | 3.46410i | 6.73291 | + | 8.92569i | 6.11999 | + | 10.6001i | −12.2028 | + | 7.04529i | 8.00000i | 5.22716 | + | 9.05371i | 2.73606 | + | 22.1927i | ||
| See all 44 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 13.c | even | 3 | 1 | inner |
| 65.n | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 130.4.n.a | ✓ | 44 |
| 5.b | even | 2 | 1 | inner | 130.4.n.a | ✓ | 44 |
| 13.c | even | 3 | 1 | inner | 130.4.n.a | ✓ | 44 |
| 65.n | even | 6 | 1 | inner | 130.4.n.a | ✓ | 44 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 130.4.n.a | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
| 130.4.n.a | ✓ | 44 | 5.b | even | 2 | 1 | inner |
| 130.4.n.a | ✓ | 44 | 13.c | even | 3 | 1 | inner |
| 130.4.n.a | ✓ | 44 | 65.n | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(130, [\chi])\).