Properties

Label 130.4.n.a.9.6
Level $130$
Weight $4$
Character 130.9
Analytic conductor $7.670$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,4,Mod(9,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.9"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 130.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67024830075\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 9.6
Character \(\chi\) \(=\) 130.9
Dual form 130.4.n.a.29.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 - 1.00000i) q^{2} +(0.162462 + 0.0937974i) q^{3} +(2.00000 + 3.46410i) q^{4} +(2.25511 + 10.9505i) q^{5} +(-0.187595 - 0.324924i) q^{6} +(-16.1121 + 9.30232i) q^{7} -8.00000i q^{8} +(-13.4824 - 23.3522i) q^{9} +(7.04459 - 21.2220i) q^{10} +(9.06526 - 15.7015i) q^{11} +0.750379i q^{12} +(-27.1045 - 38.2406i) q^{13} +37.2093 q^{14} +(-0.660764 + 1.99057i) q^{15} +(-8.00000 + 13.8564i) q^{16} +(-51.5122 + 29.7406i) q^{17} +53.9296i q^{18} +(-6.14898 - 10.6503i) q^{19} +(-33.4236 + 29.7130i) q^{20} -3.49013 q^{21} +(-31.4030 + 18.1305i) q^{22} +(-134.527 - 77.6692i) q^{23} +(0.750379 - 1.29969i) q^{24} +(-114.829 + 49.3893i) q^{25} +(8.70582 + 93.3392i) q^{26} -10.1235i q^{27} +(-64.4484 - 37.2093i) q^{28} +(-32.3294 + 55.9962i) q^{29} +(3.13504 - 2.78700i) q^{30} -111.339 q^{31} +(27.7128 - 16.0000i) q^{32} +(2.94552 - 1.70060i) q^{33} +118.962 q^{34} +(-138.200 - 155.458i) q^{35} +(53.9296 - 93.4088i) q^{36} +(176.404 + 101.847i) q^{37} +24.5959i q^{38} +(-0.816583 - 8.75497i) q^{39} +(87.6044 - 18.0409i) q^{40} +(-80.3301 + 139.136i) q^{41} +(6.04509 + 3.49013i) q^{42} +(-22.9220 + 13.2340i) q^{43} +72.5221 q^{44} +(225.315 - 200.301i) q^{45} +(155.338 + 269.054i) q^{46} -146.183i q^{47} +(-2.59939 + 1.50076i) q^{48} +(1.56631 - 2.71293i) q^{49} +(248.279 + 29.2842i) q^{50} -11.1583 q^{51} +(78.2603 - 170.374i) q^{52} -204.338i q^{53} +(-10.1235 + 17.5344i) q^{54} +(192.383 + 63.8611i) q^{55} +(74.4186 + 128.897i) q^{56} -2.30703i q^{57} +(111.992 - 64.6589i) q^{58} +(-346.709 - 600.518i) q^{59} +(-8.21706 + 1.69218i) q^{60} +(369.848 + 640.596i) q^{61} +(192.844 + 111.339i) q^{62} +(434.459 + 250.835i) q^{63} -64.0000 q^{64} +(357.632 - 383.046i) q^{65} -6.80238 q^{66} +(544.024 + 314.092i) q^{67} +(-206.049 - 118.962i) q^{68} +(-14.5703 - 25.2366i) q^{69} +(83.9109 + 407.462i) q^{70} +(103.640 + 179.510i) q^{71} +(-186.818 + 107.859i) q^{72} -604.558i q^{73} +(-203.693 - 352.807i) q^{74} +(-23.2879 - 2.74678i) q^{75} +(24.5959 - 42.6014i) q^{76} +337.312i q^{77} +(-7.34061 + 15.9806i) q^{78} -147.071 q^{79} +(-169.776 - 56.3567i) q^{80} +(-363.075 + 628.865i) q^{81} +(278.272 - 160.660i) q^{82} -617.868i q^{83} +(-6.98026 - 12.0902i) q^{84} +(-441.841 - 497.018i) q^{85} +52.9362 q^{86} +(-10.5046 + 6.06483i) q^{87} +(-125.612 - 72.5221i) q^{88} +(-9.88158 + 17.1154i) q^{89} +(-590.559 + 121.617i) q^{90} +(792.437 + 364.001i) q^{91} -621.354i q^{92} +(-18.0883 - 10.4433i) q^{93} +(-146.183 + 253.196i) q^{94} +(102.760 - 91.3523i) q^{95} +6.00303 q^{96} +(-1103.54 + 637.128i) q^{97} +(-5.42586 + 3.13262i) q^{98} -488.886 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 88 q^{4} - 12 q^{5} + 266 q^{9} + 28 q^{10} + 2 q^{11} - 216 q^{14} - 64 q^{15} - 352 q^{16} + 14 q^{19} - 24 q^{20} - 32 q^{21} + 504 q^{25} + 336 q^{26} + 308 q^{29} + 104 q^{30} + 792 q^{31} - 352 q^{34}+ \cdots + 2916 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 1.00000i −0.612372 0.353553i
\(3\) 0.162462 + 0.0937974i 0.0312658 + 0.0180513i 0.515551 0.856859i \(-0.327587\pi\)
−0.484286 + 0.874910i \(0.660920\pi\)
\(4\) 2.00000 + 3.46410i 0.250000 + 0.433013i
\(5\) 2.25511 + 10.9505i 0.201703 + 0.979447i
\(6\) −0.187595 0.324924i −0.0127642 0.0221082i
\(7\) −16.1121 + 9.30232i −0.869971 + 0.502278i −0.867339 0.497718i \(-0.834171\pi\)
−0.00263248 + 0.999997i \(0.500838\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −13.4824 23.3522i −0.499348 0.864897i
\(10\) 7.04459 21.2220i 0.222769 0.671099i
\(11\) 9.06526 15.7015i 0.248480 0.430380i −0.714624 0.699509i \(-0.753402\pi\)
0.963104 + 0.269129i \(0.0867356\pi\)
\(12\) 0.750379i 0.0180513i
\(13\) −27.1045 38.2406i −0.578265 0.815849i
\(14\) 37.2093 0.710328
\(15\) −0.660764 + 1.99057i −0.0113739 + 0.0342642i
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −51.5122 + 29.7406i −0.734914 + 0.424303i −0.820217 0.572052i \(-0.806147\pi\)
0.0853033 + 0.996355i \(0.472814\pi\)
\(18\) 53.9296i 0.706185i
\(19\) −6.14898 10.6503i −0.0742459 0.128598i 0.826512 0.562919i \(-0.190322\pi\)
−0.900758 + 0.434321i \(0.856988\pi\)
\(20\) −33.4236 + 29.7130i −0.373687 + 0.332202i
\(21\) −3.49013 −0.0362671
\(22\) −31.4030 + 18.1305i −0.304325 + 0.175702i
\(23\) −134.527 77.6692i −1.21960 0.704137i −0.254768 0.967002i \(-0.581999\pi\)
−0.964833 + 0.262865i \(0.915333\pi\)
\(24\) 0.750379 1.29969i 0.00638210 0.0110541i
\(25\) −114.829 + 49.3893i −0.918632 + 0.395114i
\(26\) 8.70582 + 93.3392i 0.0656674 + 0.704051i
\(27\) 10.1235i 0.0721582i
\(28\) −64.4484 37.2093i −0.434986 0.251139i
\(29\) −32.3294 + 55.9962i −0.207015 + 0.358560i −0.950773 0.309889i \(-0.899708\pi\)
0.743758 + 0.668449i \(0.233041\pi\)
\(30\) 3.13504 2.78700i 0.0190793 0.0169612i
\(31\) −111.339 −0.645065 −0.322532 0.946558i \(-0.604534\pi\)
−0.322532 + 0.946558i \(0.604534\pi\)
\(32\) 27.7128 16.0000i 0.153093 0.0883883i
\(33\) 2.94552 1.70060i 0.0155378 0.00897078i
\(34\) 118.962 0.600055
\(35\) −138.200 155.458i −0.667430 0.750779i
\(36\) 53.9296 93.4088i 0.249674 0.432448i
\(37\) 176.404 + 101.847i 0.783800 + 0.452527i 0.837775 0.546015i \(-0.183856\pi\)
−0.0539756 + 0.998542i \(0.517189\pi\)
\(38\) 24.5959i 0.105000i
\(39\) −0.816583 8.75497i −0.00335277 0.0359466i
\(40\) 87.6044 18.0409i 0.346287 0.0713127i
\(41\) −80.3301 + 139.136i −0.305987 + 0.529985i −0.977481 0.211026i \(-0.932320\pi\)
0.671494 + 0.741010i \(0.265653\pi\)
\(42\) 6.04509 + 3.49013i 0.0222090 + 0.0128224i
\(43\) −22.9220 + 13.2340i −0.0812925 + 0.0469342i −0.540095 0.841604i \(-0.681612\pi\)
0.458803 + 0.888538i \(0.348278\pi\)
\(44\) 72.5221 0.248480
\(45\) 225.315 200.301i 0.746400 0.663537i
\(46\) 155.338 + 269.054i 0.497900 + 0.862388i
\(47\) 146.183i 0.453680i −0.973932 0.226840i \(-0.927161\pi\)
0.973932 0.226840i \(-0.0728395\pi\)
\(48\) −2.59939 + 1.50076i −0.00781645 + 0.00451283i
\(49\) 1.56631 2.71293i 0.00456650 0.00790942i
\(50\) 248.279 + 29.2842i 0.702239 + 0.0828282i
\(51\) −11.1583 −0.0306369
\(52\) 78.2603 170.374i 0.208707 0.454358i
\(53\) 204.338i 0.529585i −0.964305 0.264792i \(-0.914697\pi\)
0.964305 0.264792i \(-0.0853034\pi\)
\(54\) −10.1235 + 17.5344i −0.0255118 + 0.0441877i
\(55\) 192.383 + 63.8611i 0.471653 + 0.156564i
\(56\) 74.4186 + 128.897i 0.177582 + 0.307581i
\(57\) 2.30703i 0.00536094i
\(58\) 111.992 64.6589i 0.253540 0.146381i
\(59\) −346.709 600.518i −0.765046 1.32510i −0.940222 0.340561i \(-0.889383\pi\)
0.175177 0.984537i \(-0.443950\pi\)
\(60\) −8.21706 + 1.69218i −0.0176803 + 0.00364100i
\(61\) 369.848 + 640.596i 0.776298 + 1.34459i 0.934062 + 0.357111i \(0.116238\pi\)
−0.157764 + 0.987477i \(0.550428\pi\)
\(62\) 192.844 + 111.339i 0.395020 + 0.228065i
\(63\) 434.459 + 250.835i 0.868837 + 0.501623i
\(64\) −64.0000 −0.125000
\(65\) 357.632 383.046i 0.682443 0.730939i
\(66\) −6.80238 −0.0126866
\(67\) 544.024 + 314.092i 0.991986 + 0.572724i 0.905867 0.423561i \(-0.139220\pi\)
0.0861189 + 0.996285i \(0.472554\pi\)
\(68\) −206.049 118.962i −0.367457 0.212151i
\(69\) −14.5703 25.2366i −0.0254212 0.0440308i
\(70\) 83.9109 + 407.462i 0.143275 + 0.695729i
\(71\) 103.640 + 179.510i 0.173237 + 0.300056i 0.939550 0.342412i \(-0.111244\pi\)
−0.766313 + 0.642468i \(0.777911\pi\)
\(72\) −186.818 + 107.859i −0.305787 + 0.176546i
\(73\) 604.558i 0.969290i −0.874711 0.484645i \(-0.838949\pi\)
0.874711 0.484645i \(-0.161051\pi\)
\(74\) −203.693 352.807i −0.319985 0.554230i
\(75\) −23.2879 2.74678i −0.0358541 0.00422895i
\(76\) 24.5959 42.6014i 0.0371230 0.0642988i
\(77\) 337.312i 0.499224i
\(78\) −7.34061 + 15.9806i −0.0106559 + 0.0231981i
\(79\) −147.071 −0.209453 −0.104727 0.994501i \(-0.533397\pi\)
−0.104727 + 0.994501i \(0.533397\pi\)
\(80\) −169.776 56.3567i −0.237269 0.0787609i
\(81\) −363.075 + 628.865i −0.498046 + 0.862641i
\(82\) 278.272 160.660i 0.374756 0.216365i
\(83\) 617.868i 0.817107i −0.912734 0.408553i \(-0.866033\pi\)
0.912734 0.408553i \(-0.133967\pi\)
\(84\) −6.98026 12.0902i −0.00906678 0.0157041i
\(85\) −441.841 497.018i −0.563816 0.634226i
\(86\) 52.9362 0.0663750
\(87\) −10.5046 + 6.06483i −0.0129449 + 0.00747377i
\(88\) −125.612 72.5221i −0.152162 0.0878509i
\(89\) −9.88158 + 17.1154i −0.0117690 + 0.0203846i −0.871850 0.489773i \(-0.837080\pi\)
0.860081 + 0.510158i \(0.170413\pi\)
\(90\) −590.559 + 121.617i −0.691671 + 0.142440i
\(91\) 792.437 + 364.001i 0.912857 + 0.419315i
\(92\) 621.354i 0.704137i
\(93\) −18.0883 10.4433i −0.0201685 0.0116443i
\(94\) −146.183 + 253.196i −0.160400 + 0.277821i
\(95\) 102.760 91.3523i 0.110979 0.0986584i
\(96\) 6.00303 0.00638210
\(97\) −1103.54 + 637.128i −1.15513 + 0.666913i −0.950131 0.311850i \(-0.899051\pi\)
−0.204996 + 0.978763i \(0.565718\pi\)
\(98\) −5.42586 + 3.13262i −0.00559280 + 0.00322901i
\(99\) −488.886 −0.496312
\(100\) −400.748 299.001i −0.400748 0.299001i
\(101\) −704.050 + 1219.45i −0.693620 + 1.20138i 0.277024 + 0.960863i \(0.410652\pi\)
−0.970644 + 0.240522i \(0.922681\pi\)
\(102\) 19.3268 + 11.1583i 0.0187612 + 0.0108318i
\(103\) 865.640i 0.828097i 0.910255 + 0.414049i \(0.135886\pi\)
−0.910255 + 0.414049i \(0.864114\pi\)
\(104\) −305.925 + 216.836i −0.288446 + 0.204448i
\(105\) −7.87062 38.2189i −0.00731518 0.0355217i
\(106\) −204.338 + 353.924i −0.187236 + 0.324303i
\(107\) −1850.41 1068.33i −1.67183 0.965230i −0.966615 0.256235i \(-0.917518\pi\)
−0.705213 0.708995i \(-0.749149\pi\)
\(108\) 35.0689 20.2470i 0.0312454 0.0180395i
\(109\) 1930.88 1.69674 0.848369 0.529406i \(-0.177585\pi\)
0.848369 + 0.529406i \(0.177585\pi\)
\(110\) −269.356 302.994i −0.233474 0.262630i
\(111\) 19.1059 + 33.0924i 0.0163374 + 0.0282972i
\(112\) 297.674i 0.251139i
\(113\) −1165.89 + 673.128i −0.970601 + 0.560377i −0.899419 0.437087i \(-0.856010\pi\)
−0.0711816 + 0.997463i \(0.522677\pi\)
\(114\) −2.30703 + 3.99590i −0.00189538 + 0.00328289i
\(115\) 547.148 1648.30i 0.443668 1.33656i
\(116\) −258.635 −0.207015
\(117\) −527.568 + 1148.53i −0.416869 + 0.907532i
\(118\) 1386.84i 1.08194i
\(119\) 553.312 958.365i 0.426236 0.738262i
\(120\) 15.9245 + 5.28611i 0.0121142 + 0.00402128i
\(121\) 501.142 + 868.003i 0.376515 + 0.652144i
\(122\) 1479.39i 1.09785i
\(123\) −26.1011 + 15.0695i −0.0191338 + 0.0110469i
\(124\) −222.677 385.688i −0.161266 0.279321i
\(125\) −799.792 1146.06i −0.572284 0.820055i
\(126\) −501.671 868.919i −0.354701 0.614361i
\(127\) 2089.13 + 1206.16i 1.45969 + 0.842750i 0.998995 0.0448106i \(-0.0142684\pi\)
0.460691 + 0.887561i \(0.347602\pi\)
\(128\) 110.851 + 64.0000i 0.0765466 + 0.0441942i
\(129\) −4.96527 −0.00338890
\(130\) −1002.48 + 305.823i −0.676335 + 0.206327i
\(131\) 677.449 0.451825 0.225912 0.974148i \(-0.427464\pi\)
0.225912 + 0.974148i \(0.427464\pi\)
\(132\) 11.7821 + 6.80238i 0.00776892 + 0.00448539i
\(133\) 198.146 + 114.400i 0.129184 + 0.0745842i
\(134\) −628.185 1088.05i −0.404977 0.701440i
\(135\) 110.858 22.8296i 0.0706751 0.0145545i
\(136\) 237.925 + 412.097i 0.150014 + 0.259831i
\(137\) −336.191 + 194.100i −0.209655 + 0.121044i −0.601151 0.799135i \(-0.705291\pi\)
0.391496 + 0.920180i \(0.371958\pi\)
\(138\) 58.2813i 0.0359510i
\(139\) −1083.06 1875.91i −0.660891 1.14470i −0.980382 0.197107i \(-0.936845\pi\)
0.319491 0.947589i \(-0.396488\pi\)
\(140\) 262.124 789.656i 0.158239 0.476701i
\(141\) 13.7116 23.7491i 0.00818952 0.0141847i
\(142\) 414.561i 0.244995i
\(143\) −846.145 + 78.9205i −0.494812 + 0.0461515i
\(144\) 431.437 0.249674
\(145\) −686.095 227.748i −0.392946 0.130437i
\(146\) −604.558 + 1047.13i −0.342696 + 0.593566i
\(147\) 0.508931 0.293832i 0.000285551 0.000164863i
\(148\) 814.774i 0.452527i
\(149\) 1303.95 + 2258.51i 0.716939 + 1.24177i 0.962207 + 0.272319i \(0.0877907\pi\)
−0.245268 + 0.969455i \(0.578876\pi\)
\(150\) 37.5891 + 28.0455i 0.0204609 + 0.0152660i
\(151\) 469.334 0.252939 0.126470 0.991970i \(-0.459635\pi\)
0.126470 + 0.991970i \(0.459635\pi\)
\(152\) −85.2027 + 49.1918i −0.0454662 + 0.0262499i
\(153\) 1389.02 + 801.949i 0.733956 + 0.423750i
\(154\) 337.312 584.241i 0.176502 0.305711i
\(155\) −251.080 1219.22i −0.130111 0.631807i
\(156\) 28.6949 20.3387i 0.0147271 0.0104384i
\(157\) 60.2108i 0.0306073i 0.999883 + 0.0153036i \(0.00487149\pi\)
−0.999883 + 0.0153036i \(0.995129\pi\)
\(158\) 254.735 + 147.071i 0.128263 + 0.0740529i
\(159\) 19.1664 33.1971i 0.00955970 0.0165579i
\(160\) 237.704 + 267.389i 0.117451 + 0.132118i
\(161\) 2890.02 1.41469
\(162\) 1257.73 726.151i 0.609979 0.352172i
\(163\) 1129.63 652.194i 0.542821 0.313398i −0.203401 0.979096i \(-0.565199\pi\)
0.746221 + 0.665698i \(0.231866\pi\)
\(164\) −642.641 −0.305987
\(165\) 25.2649 + 28.4200i 0.0119204 + 0.0134091i
\(166\) −617.868 + 1070.18i −0.288891 + 0.500374i
\(167\) −593.470 342.640i −0.274994 0.158768i 0.356161 0.934425i \(-0.384086\pi\)
−0.631155 + 0.775657i \(0.717419\pi\)
\(168\) 27.9211i 0.0128224i
\(169\) −727.689 + 2072.99i −0.331219 + 0.943554i
\(170\) 268.273 + 1302.70i 0.121033 + 0.587722i
\(171\) −165.806 + 287.184i −0.0741491 + 0.128430i
\(172\) −91.6881 52.9362i −0.0406462 0.0234671i
\(173\) 2719.04 1569.84i 1.19494 0.689899i 0.235517 0.971870i \(-0.424322\pi\)
0.959423 + 0.281972i \(0.0909884\pi\)
\(174\) 24.2593 0.0105695
\(175\) 1390.70 1863.94i 0.600726 0.805147i
\(176\) 145.044 + 251.224i 0.0621200 + 0.107595i
\(177\) 130.082i 0.0552403i
\(178\) 34.2308 19.7632i 0.0144141 0.00832197i
\(179\) −505.468 + 875.496i −0.211064 + 0.365573i −0.952048 0.305949i \(-0.901026\pi\)
0.740984 + 0.671523i \(0.234359\pi\)
\(180\) 1144.49 + 379.912i 0.473920 + 0.157316i
\(181\) −2014.89 −0.827432 −0.413716 0.910406i \(-0.635769\pi\)
−0.413716 + 0.910406i \(0.635769\pi\)
\(182\) −1008.54 1422.91i −0.410758 0.579521i
\(183\) 138.763i 0.0560528i
\(184\) −621.354 + 1076.22i −0.248950 + 0.431194i
\(185\) −717.468 + 2161.39i −0.285131 + 0.858966i
\(186\) 20.8865 + 36.1765i 0.00823374 + 0.0142613i
\(187\) 1078.42i 0.421723i
\(188\) 506.392 292.366i 0.196449 0.113420i
\(189\) 94.1721 + 163.111i 0.0362435 + 0.0627755i
\(190\) −269.339 + 55.4664i −0.102841 + 0.0211787i
\(191\) −2512.62 4351.98i −0.951867 1.64868i −0.741379 0.671086i \(-0.765828\pi\)
−0.210488 0.977596i \(-0.567505\pi\)
\(192\) −10.3976 6.00303i −0.00390822 0.00225641i
\(193\) 1528.92 + 882.722i 0.570228 + 0.329221i 0.757240 0.653136i \(-0.226547\pi\)
−0.187013 + 0.982358i \(0.559880\pi\)
\(194\) 2548.51 0.943157
\(195\) 94.0302 28.6854i 0.0345315 0.0105344i
\(196\) 12.5305 0.00456650
\(197\) −109.842 63.4173i −0.0397255 0.0229355i 0.480006 0.877265i \(-0.340635\pi\)
−0.519731 + 0.854330i \(0.673968\pi\)
\(198\) 846.776 + 488.886i 0.303928 + 0.175473i
\(199\) −2039.47 3532.46i −0.726503 1.25834i −0.958352 0.285589i \(-0.907811\pi\)
0.231849 0.972752i \(-0.425522\pi\)
\(200\) 395.114 + 918.632i 0.139694 + 0.324785i
\(201\) 58.9221 + 102.056i 0.0206768 + 0.0358133i
\(202\) 2438.90 1408.10i 0.849507 0.490463i
\(203\) 1202.95i 0.415916i
\(204\) −22.3167 38.6536i −0.00765922 0.0132662i
\(205\) −1704.77 565.893i −0.580810 0.192798i
\(206\) 865.640 1499.33i 0.292777 0.507104i
\(207\) 4188.67i 1.40644i
\(208\) 746.714 69.6465i 0.248920 0.0232169i
\(209\) −222.968 −0.0737945
\(210\) −24.5865 + 74.0676i −0.00807920 + 0.0243388i
\(211\) −2325.66 + 4028.17i −0.758793 + 1.31427i 0.184674 + 0.982800i \(0.440877\pi\)
−0.943467 + 0.331468i \(0.892456\pi\)
\(212\) 707.848 408.676i 0.229317 0.132396i
\(213\) 38.8848i 0.0125086i
\(214\) 2136.67 + 3700.81i 0.682521 + 1.18216i
\(215\) −196.612 221.165i −0.0623665 0.0701549i
\(216\) −80.9881 −0.0255118
\(217\) 1793.90 1035.71i 0.561188 0.324002i
\(218\) −3344.38 1930.88i −1.03904 0.599887i
\(219\) 56.7059 98.2176i 0.0174969 0.0303056i
\(220\) 163.545 + 794.157i 0.0501191 + 0.243373i
\(221\) 2533.51 + 1163.75i 0.771142 + 0.354219i
\(222\) 76.4236i 0.0231046i
\(223\) 145.276 + 83.8754i 0.0436252 + 0.0251870i 0.521654 0.853157i \(-0.325315\pi\)
−0.478029 + 0.878344i \(0.658649\pi\)
\(224\) −297.674 + 515.587i −0.0887911 + 0.153791i
\(225\) 2701.52 + 2015.62i 0.800450 + 0.597222i
\(226\) 2692.51 0.792492
\(227\) −1095.34 + 632.395i −0.320265 + 0.184905i −0.651511 0.758639i \(-0.725865\pi\)
0.331245 + 0.943545i \(0.392531\pi\)
\(228\) 7.99179 4.61406i 0.00232136 0.00134024i
\(229\) −4281.25 −1.23543 −0.617714 0.786403i \(-0.711941\pi\)
−0.617714 + 0.786403i \(0.711941\pi\)
\(230\) −2595.98 + 2307.79i −0.744235 + 0.661613i
\(231\) −31.6390 + 54.8003i −0.00901165 + 0.0156086i
\(232\) 447.970 + 258.635i 0.126770 + 0.0731907i
\(233\) 3286.61i 0.924089i −0.886857 0.462045i \(-0.847116\pi\)
0.886857 0.462045i \(-0.152884\pi\)
\(234\) 2062.30 1461.74i 0.576140 0.408362i
\(235\) 1600.78 329.658i 0.444355 0.0915086i
\(236\) 1386.84 2402.07i 0.382523 0.662549i
\(237\) −23.8934 13.7949i −0.00654872 0.00378090i
\(238\) −1916.73 + 1106.62i −0.522030 + 0.301394i
\(239\) 6297.79 1.70448 0.852239 0.523152i \(-0.175244\pi\)
0.852239 + 0.523152i \(0.175244\pi\)
\(240\) −22.2960 25.0804i −0.00599667 0.00674554i
\(241\) −3479.08 6025.95i −0.929906 1.61064i −0.783475 0.621424i \(-0.786555\pi\)
−0.146432 0.989221i \(-0.546779\pi\)
\(242\) 2004.57i 0.532473i
\(243\) −354.687 + 204.778i −0.0936344 + 0.0540598i
\(244\) −1479.39 + 2562.38i −0.388149 + 0.672294i
\(245\) 33.2403 + 11.0340i 0.00866793 + 0.00287730i
\(246\) 60.2780 0.0156227
\(247\) −240.610 + 523.813i −0.0619825 + 0.134937i
\(248\) 890.709i 0.228065i
\(249\) 57.9544 100.380i 0.0147498 0.0255475i
\(250\) 239.217 + 2784.83i 0.0605177 + 0.704512i
\(251\) −2305.21 3992.74i −0.579695 1.00406i −0.995514 0.0946136i \(-0.969838\pi\)
0.415819 0.909447i \(-0.363495\pi\)
\(252\) 2006.68i 0.501623i
\(253\) −2439.05 + 1408.18i −0.606093 + 0.349928i
\(254\) −2412.32 4178.26i −0.595914 1.03215i
\(255\) −25.1633 122.190i −0.00617955 0.0300072i
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 138.199 + 79.7895i 0.0335434 + 0.0193663i 0.516678 0.856180i \(-0.327168\pi\)
−0.483135 + 0.875546i \(0.660502\pi\)
\(258\) 8.60010 + 4.96527i 0.00207527 + 0.00119816i
\(259\) −3789.64 −0.909177
\(260\) 2042.17 + 472.781i 0.487117 + 0.112772i
\(261\) 1743.51 0.413490
\(262\) −1173.38 677.449i −0.276685 0.159744i
\(263\) −5485.64 3167.14i −1.28616 0.742563i −0.308190 0.951325i \(-0.599723\pi\)
−0.977966 + 0.208762i \(0.933057\pi\)
\(264\) −13.6048 23.5641i −0.00317165 0.00549346i
\(265\) 2237.61 460.804i 0.518700 0.106819i
\(266\) −228.799 396.292i −0.0527390 0.0913466i
\(267\) −3.21076 + 1.85373i −0.000735937 + 0.000424893i
\(268\) 2512.74i 0.572724i
\(269\) −1347.66 2334.21i −0.305457 0.529067i 0.671906 0.740637i \(-0.265476\pi\)
−0.977363 + 0.211569i \(0.932143\pi\)
\(270\) −214.841 71.3160i −0.0484253 0.0160746i
\(271\) 3867.25 6698.27i 0.866858 1.50144i 0.00166833 0.999999i \(-0.499469\pi\)
0.865190 0.501444i \(-0.167198\pi\)
\(272\) 951.698i 0.212151i
\(273\) 94.5984 + 133.465i 0.0209720 + 0.0295885i
\(274\) 776.401 0.171183
\(275\) −265.469 + 2250.71i −0.0582123 + 0.493539i
\(276\) 58.2813 100.946i 0.0127106 0.0220154i
\(277\) −7026.58 + 4056.80i −1.52414 + 0.879961i −0.524546 + 0.851382i \(0.675765\pi\)
−0.999592 + 0.0285791i \(0.990902\pi\)
\(278\) 4332.23i 0.934640i
\(279\) 1501.11 + 2600.00i 0.322112 + 0.557914i
\(280\) −1243.67 + 1105.60i −0.265441 + 0.235972i
\(281\) −4505.21 −0.956435 −0.478218 0.878241i \(-0.658717\pi\)
−0.478218 + 0.878241i \(0.658717\pi\)
\(282\) −47.4983 + 27.4231i −0.0100301 + 0.00579086i
\(283\) −472.098 272.566i −0.0991637 0.0572522i 0.449598 0.893231i \(-0.351567\pi\)
−0.548762 + 0.835979i \(0.684901\pi\)
\(284\) −414.561 + 718.041i −0.0866186 + 0.150028i
\(285\) 25.2633 5.20260i 0.00525076 0.00108132i
\(286\) 1544.49 + 709.450i 0.319326 + 0.146681i
\(287\) 2989.03i 0.614762i
\(288\) −747.271 431.437i −0.152894 0.0882731i
\(289\) −687.498 + 1190.78i −0.139934 + 0.242373i
\(290\) 960.605 + 1080.57i 0.194513 + 0.218803i
\(291\) −239.044 −0.0481546
\(292\) 2094.25 1209.12i 0.419715 0.242322i
\(293\) −5448.64 + 3145.77i −1.08639 + 0.627229i −0.932614 0.360877i \(-0.882478\pi\)
−0.153778 + 0.988105i \(0.549144\pi\)
\(294\) −1.17533 −0.000233151
\(295\) 5794.13 5150.89i 1.14355 1.01660i
\(296\) 814.774 1411.23i 0.159992 0.277115i
\(297\) −158.954 91.7723i −0.0310554 0.0179299i
\(298\) 5215.81i 1.01390i
\(299\) 676.174 + 7249.58i 0.130783 + 1.40219i
\(300\) −37.0607 86.1652i −0.00713233 0.0165825i
\(301\) 246.215 426.456i 0.0471481 0.0816629i
\(302\) −812.910 469.334i −0.154893 0.0894276i
\(303\) −228.762 + 132.076i −0.0433731 + 0.0250415i
\(304\) 196.767 0.0371230
\(305\) −6180.83 + 5494.65i −1.16037 + 1.03155i
\(306\) −1603.90 2778.03i −0.299636 0.518985i
\(307\) 7627.50i 1.41799i 0.705211 + 0.708997i \(0.250852\pi\)
−0.705211 + 0.708997i \(0.749148\pi\)
\(308\) −1168.48 + 674.624i −0.216170 + 0.124806i
\(309\) −81.1947 + 140.633i −0.0149482 + 0.0258911i
\(310\) −784.335 + 2362.83i −0.143701 + 0.432902i
\(311\) 568.314 0.103621 0.0518105 0.998657i \(-0.483501\pi\)
0.0518105 + 0.998657i \(0.483501\pi\)
\(312\) −70.0398 + 6.53266i −0.0127090 + 0.00118538i
\(313\) 3520.09i 0.635678i −0.948145 0.317839i \(-0.897043\pi\)
0.948145 0.317839i \(-0.102957\pi\)
\(314\) 60.2108 104.288i 0.0108213 0.0187431i
\(315\) −1767.03 + 5323.23i −0.316066 + 0.952159i
\(316\) −294.142 509.470i −0.0523633 0.0906959i
\(317\) 1550.97i 0.274798i −0.990516 0.137399i \(-0.956126\pi\)
0.990516 0.137399i \(-0.0438743\pi\)
\(318\) −66.3943 + 38.3327i −0.0117082 + 0.00675973i
\(319\) 586.150 + 1015.24i 0.102878 + 0.178190i
\(320\) −144.327 700.835i −0.0252129 0.122431i
\(321\) −200.414 347.127i −0.0348473 0.0603574i
\(322\) −5005.65 2890.02i −0.866317 0.500169i
\(323\) 633.494 + 365.748i 0.109129 + 0.0630055i
\(324\) −2904.60 −0.498046
\(325\) 5001.06 + 3052.46i 0.853566 + 0.520984i
\(326\) −2608.78 −0.443211
\(327\) 313.694 + 181.111i 0.0530498 + 0.0306283i
\(328\) 1113.09 + 642.641i 0.187378 + 0.108183i
\(329\) 1359.84 + 2355.31i 0.227874 + 0.394689i
\(330\) −15.3401 74.4898i −0.00255892 0.0124258i
\(331\) −2880.89 4989.85i −0.478393 0.828602i 0.521300 0.853374i \(-0.325447\pi\)
−0.999693 + 0.0247720i \(0.992114\pi\)
\(332\) 2140.36 1235.74i 0.353818 0.204277i
\(333\) 5492.55i 0.903874i
\(334\) 685.280 + 1186.94i 0.112266 + 0.194450i
\(335\) −2212.65 + 6665.67i −0.360866 + 1.08712i
\(336\) 27.9211 48.3607i 0.00453339 0.00785206i
\(337\) 2027.43i 0.327719i 0.986484 + 0.163859i \(0.0523944\pi\)
−0.986484 + 0.163859i \(0.947606\pi\)
\(338\) 3333.38 2862.83i 0.536426 0.460703i
\(339\) −252.551 −0.0404621
\(340\) 838.040 2524.62i 0.133674 0.402696i
\(341\) −1009.31 + 1748.18i −0.160286 + 0.277623i
\(342\) 574.369 331.612i 0.0908138 0.0524314i
\(343\) 6323.11i 0.995382i
\(344\) 105.872 + 183.376i 0.0165938 + 0.0287412i
\(345\) 243.496 216.464i 0.0379983 0.0337798i
\(346\) −6279.35 −0.975664
\(347\) 6698.82 3867.57i 1.03634 0.598334i 0.117549 0.993067i \(-0.462496\pi\)
0.918796 + 0.394733i \(0.129163\pi\)
\(348\) −42.0184 24.2593i −0.00647247 0.00373688i
\(349\) 3615.12 6261.56i 0.554478 0.960383i −0.443466 0.896291i \(-0.646251\pi\)
0.997944 0.0640923i \(-0.0204152\pi\)
\(350\) −4272.70 + 1837.74i −0.652530 + 0.280661i
\(351\) −387.129 + 274.393i −0.0588702 + 0.0417265i
\(352\) 580.177i 0.0878509i
\(353\) 8400.04 + 4849.76i 1.26654 + 0.731238i 0.974332 0.225117i \(-0.0722764\pi\)
0.292209 + 0.956355i \(0.405610\pi\)
\(354\) −130.082 + 225.308i −0.0195304 + 0.0338276i
\(355\) −1732.02 + 1539.73i −0.258946 + 0.230199i
\(356\) −79.0526 −0.0117690
\(357\) 179.784 103.798i 0.0266532 0.0153882i
\(358\) 1750.99 1010.94i 0.258499 0.149245i
\(359\) 11939.8 1.75531 0.877655 0.479293i \(-0.159107\pi\)
0.877655 + 0.479293i \(0.159107\pi\)
\(360\) −1602.41 1802.52i −0.234596 0.263892i
\(361\) 3353.88 5809.09i 0.488975 0.846930i
\(362\) 3489.88 + 2014.89i 0.506697 + 0.292542i
\(363\) 188.023i 0.0271864i
\(364\) 323.937 + 3473.08i 0.0466454 + 0.500107i
\(365\) 6620.24 1363.34i 0.949368 0.195509i
\(366\) 138.763 240.345i 0.0198177 0.0343252i
\(367\) 1411.14 + 814.724i 0.200711 + 0.115881i 0.596987 0.802251i \(-0.296364\pi\)
−0.396276 + 0.918131i \(0.629698\pi\)
\(368\) 2152.43 1242.71i 0.304900 0.176034i
\(369\) 4332.17 0.611176
\(370\) 3404.08 3026.17i 0.478297 0.425198i
\(371\) 1900.82 + 3292.31i 0.265999 + 0.460723i
\(372\) 83.5461i 0.0116443i
\(373\) 9566.79 5523.39i 1.32802 0.766730i 0.343023 0.939327i \(-0.388549\pi\)
0.984993 + 0.172597i \(0.0552158\pi\)
\(374\) 1078.42 1867.89i 0.149102 0.258252i
\(375\) −22.4380 261.210i −0.00308984 0.0359702i
\(376\) −1169.46 −0.160400
\(377\) 3017.60 281.454i 0.412240 0.0384499i
\(378\) 376.689i 0.0512560i
\(379\) −3792.00 + 6567.93i −0.513936 + 0.890164i 0.485933 + 0.873996i \(0.338480\pi\)
−0.999869 + 0.0161677i \(0.994853\pi\)
\(380\) 521.975 + 173.268i 0.0704651 + 0.0233907i
\(381\) 226.269 + 391.909i 0.0304255 + 0.0526985i
\(382\) 10050.5i 1.34614i
\(383\) −9731.99 + 5618.77i −1.29838 + 0.749623i −0.980125 0.198381i \(-0.936432\pi\)
−0.318260 + 0.948004i \(0.603098\pi\)
\(384\) 12.0061 + 20.7951i 0.00159553 + 0.00276353i
\(385\) −3693.75 + 760.674i −0.488964 + 0.100695i
\(386\) −1765.44 3057.84i −0.232795 0.403212i
\(387\) 618.088 + 356.853i 0.0811865 + 0.0468731i
\(388\) −4414.15 2548.51i −0.577563 0.333456i
\(389\) −4469.20 −0.582512 −0.291256 0.956645i \(-0.594073\pi\)
−0.291256 + 0.956645i \(0.594073\pi\)
\(390\) −191.551 44.3456i −0.0248706 0.00575777i
\(391\) 9239.70 1.19507
\(392\) −21.7034 12.5305i −0.00279640 0.00161450i
\(393\) 110.060 + 63.5430i 0.0141267 + 0.00815603i
\(394\) 126.835 + 219.684i 0.0162179 + 0.0280901i
\(395\) −331.661 1610.51i −0.0422473 0.205148i
\(396\) −977.772 1693.55i −0.124078 0.214910i
\(397\) 6610.97 3816.85i 0.835756 0.482524i −0.0200635 0.999799i \(-0.506387\pi\)
0.855819 + 0.517275i \(0.173054\pi\)
\(398\) 8157.88i 1.02743i
\(399\) 21.4607 + 37.1711i 0.00269268 + 0.00466387i
\(400\) 234.274 1986.23i 0.0292842 0.248279i
\(401\) 1239.56 2146.98i 0.154366 0.267369i −0.778462 0.627692i \(-0.784000\pi\)
0.932828 + 0.360322i \(0.117333\pi\)
\(402\) 235.688i 0.0292414i
\(403\) 3017.78 + 4257.66i 0.373018 + 0.526275i
\(404\) −5632.40 −0.693620
\(405\) −7705.19 2557.72i −0.945368 0.313812i
\(406\) −1202.95 + 2083.58i −0.147048 + 0.254695i
\(407\) 3198.29 1846.53i 0.389517 0.224888i
\(408\) 89.2668i 0.0108318i
\(409\) 1074.24 + 1860.63i 0.129872 + 0.224945i 0.923627 0.383293i \(-0.125210\pi\)
−0.793755 + 0.608238i \(0.791877\pi\)
\(410\) 2386.85 + 2684.92i 0.287508 + 0.323412i
\(411\) −72.8243 −0.00874005
\(412\) −2998.66 + 1731.28i −0.358577 + 0.207024i
\(413\) 11172.4 + 6450.40i 1.33114 + 0.768531i
\(414\) 4188.67 7254.99i 0.497251 0.861264i
\(415\) 6765.99 1393.36i 0.800312 0.164813i
\(416\) −1362.99 626.082i −0.160640 0.0737890i
\(417\) 406.352i 0.0477198i
\(418\) 386.193 + 222.968i 0.0451897 + 0.0260903i
\(419\) −2181.80 + 3778.99i −0.254387 + 0.440611i −0.964729 0.263246i \(-0.915207\pi\)
0.710342 + 0.703857i \(0.248540\pi\)
\(420\) 116.653 103.702i 0.0135526 0.0120480i
\(421\) 2412.54 0.279287 0.139644 0.990202i \(-0.455404\pi\)
0.139644 + 0.990202i \(0.455404\pi\)
\(422\) 8056.33 4651.33i 0.929327 0.536547i
\(423\) −3413.69 + 1970.90i −0.392386 + 0.226544i
\(424\) −1634.70 −0.187236
\(425\) 4446.22 5959.23i 0.507467 0.680153i
\(426\) 38.8848 67.3504i 0.00442247 0.00765995i
\(427\) −11918.1 6880.89i −1.35071 0.779835i
\(428\) 8546.66i 0.965230i
\(429\) −144.869 66.5446i −0.0163038 0.00748905i
\(430\) 119.377 + 579.680i 0.0133880 + 0.0650108i
\(431\) −1851.89 + 3207.57i −0.206967 + 0.358477i −0.950758 0.309936i \(-0.899692\pi\)
0.743791 + 0.668412i \(0.233026\pi\)
\(432\) 140.275 + 80.9881i 0.0156227 + 0.00901977i
\(433\) −934.336 + 539.439i −0.103698 + 0.0598702i −0.550952 0.834537i \(-0.685735\pi\)
0.447254 + 0.894407i \(0.352402\pi\)
\(434\) −4142.83 −0.458208
\(435\) −90.1022 101.354i −0.00993119 0.0111714i
\(436\) 3861.75 + 6688.75i 0.424184 + 0.734709i
\(437\) 1910.35i 0.209117i
\(438\) −196.435 + 113.412i −0.0214293 + 0.0123722i
\(439\) −560.400 + 970.641i −0.0609258 + 0.105527i −0.894879 0.446308i \(-0.852739\pi\)
0.833954 + 0.551834i \(0.186072\pi\)
\(440\) 510.888 1539.07i 0.0553538 0.166755i
\(441\) −84.4705 −0.00912110
\(442\) −3224.42 4549.19i −0.346991 0.489554i
\(443\) 9267.16i 0.993896i 0.867780 + 0.496948i \(0.165546\pi\)
−0.867780 + 0.496948i \(0.834454\pi\)
\(444\) −76.4236 + 132.370i −0.00816870 + 0.0141486i
\(445\) −209.707 69.6117i −0.0223395 0.00741553i
\(446\) −167.751 290.553i −0.0178099 0.0308477i
\(447\) 489.229i 0.0517667i
\(448\) 1031.17 595.348i 0.108746 0.0627848i
\(449\) −6712.19 11625.9i −0.705496 1.22196i −0.966512 0.256621i \(-0.917391\pi\)
0.261016 0.965335i \(-0.415943\pi\)
\(450\) −2663.55 6192.68i −0.279024 0.648724i
\(451\) 1456.43 + 2522.61i 0.152063 + 0.263381i
\(452\) −4663.57 2692.51i −0.485300 0.280188i
\(453\) 76.2488 + 44.0223i 0.00790835 + 0.00456589i
\(454\) 2529.58 0.261496
\(455\) −2198.98 + 9498.48i −0.226571 + 0.978672i
\(456\) −18.4563 −0.00189538
\(457\) −7642.44 4412.36i −0.782272 0.451645i 0.0549631 0.998488i \(-0.482496\pi\)
−0.837235 + 0.546844i \(0.815829\pi\)
\(458\) 7415.34 + 4281.25i 0.756542 + 0.436790i
\(459\) 301.079 + 521.484i 0.0306169 + 0.0530300i
\(460\) 6804.16 1401.22i 0.689665 0.142026i
\(461\) 2034.18 + 3523.30i 0.205512 + 0.355957i 0.950296 0.311349i \(-0.100781\pi\)
−0.744784 + 0.667306i \(0.767447\pi\)
\(462\) 109.601 63.2779i 0.0110370 0.00637220i
\(463\) 8511.92i 0.854390i 0.904159 + 0.427195i \(0.140498\pi\)
−0.904159 + 0.427195i \(0.859502\pi\)
\(464\) −517.271 895.939i −0.0517537 0.0896400i
\(465\) 73.5685 221.627i 0.00733690 0.0221026i
\(466\) −3286.61 + 5692.57i −0.326715 + 0.565887i
\(467\) 7999.89i 0.792699i −0.918100 0.396350i \(-0.870277\pi\)
0.918100 0.396350i \(-0.129723\pi\)
\(468\) −5033.75 + 469.501i −0.497190 + 0.0463733i
\(469\) −11687.1 −1.15067
\(470\) −3102.29 1029.80i −0.304464 0.101066i
\(471\) −5.64761 + 9.78195i −0.000552502 + 0.000956961i
\(472\) −4804.14 + 2773.67i −0.468493 + 0.270484i
\(473\) 479.880i 0.0466489i
\(474\) 27.5898 + 47.7869i 0.00267350 + 0.00463064i
\(475\) 1232.09 + 919.274i 0.119015 + 0.0887983i
\(476\) 4426.50 0.426236
\(477\) −4771.75 + 2754.97i −0.458036 + 0.264447i
\(478\) −10908.1 6297.79i −1.04378 0.602624i
\(479\) 5715.00 9898.67i 0.545146 0.944221i −0.453451 0.891281i \(-0.649807\pi\)
0.998598 0.0529402i \(-0.0168593\pi\)
\(480\) 13.5375 + 65.7365i 0.00128729 + 0.00625093i
\(481\) −886.659 9506.29i −0.0840502 0.901143i
\(482\) 13916.3i 1.31509i
\(483\) 469.517 + 271.076i 0.0442314 + 0.0255370i
\(484\) −2004.57 + 3472.01i −0.188258 + 0.326072i
\(485\) −9465.50 10647.6i −0.886198 0.996867i
\(486\) 819.114 0.0764522
\(487\) 542.697 313.326i 0.0504968 0.0291543i −0.474539 0.880234i \(-0.657385\pi\)
0.525036 + 0.851080i \(0.324052\pi\)
\(488\) 5124.76 2958.78i 0.475384 0.274463i
\(489\) 244.696 0.0226289
\(490\) −46.5398 52.3517i −0.00429072 0.00482655i
\(491\) −9791.12 + 16958.7i −0.899933 + 1.55873i −0.0723552 + 0.997379i \(0.523052\pi\)
−0.827578 + 0.561351i \(0.810282\pi\)
\(492\) −104.405 60.2780i −0.00956691 0.00552346i
\(493\) 3845.98i 0.351347i
\(494\) 940.563 666.661i 0.0856638 0.0607176i
\(495\) −1102.49 5353.57i −0.100108 0.486111i
\(496\) 890.709 1542.75i 0.0806331 0.139661i
\(497\) −3339.73 1928.19i −0.301423 0.174027i
\(498\) −200.760 + 115.909i −0.0180648 + 0.0104297i
\(499\) −12782.2 −1.14671 −0.573355 0.819307i \(-0.694358\pi\)
−0.573355 + 0.819307i \(0.694358\pi\)
\(500\) 2370.49 5062.68i 0.212023 0.452820i
\(501\) −64.2774 111.332i −0.00573194 0.00992802i
\(502\) 9220.83i 0.819812i
\(503\) −15048.8 + 8688.42i −1.33398 + 0.770174i −0.985907 0.167294i \(-0.946497\pi\)
−0.348073 + 0.937467i \(0.613164\pi\)
\(504\) 2006.68 3475.68i 0.177351 0.307180i
\(505\) −14941.4 4959.74i −1.31660 0.437041i
\(506\) 5632.74 0.494873
\(507\) −312.662 + 268.526i −0.0273882 + 0.0235220i
\(508\) 9649.27i 0.842750i
\(509\) 1444.78 2502.43i 0.125813 0.217914i −0.796238 0.604984i \(-0.793179\pi\)
0.922050 + 0.387070i \(0.126513\pi\)
\(510\) −78.6059 + 236.803i −0.00682496 + 0.0205604i
\(511\) 5623.79 + 9740.69i 0.486853 + 0.843254i
\(512\) 512.000i 0.0441942i
\(513\) −107.819 + 62.2493i −0.00927938 + 0.00535745i
\(514\) −159.579 276.399i −0.0136940 0.0237187i
\(515\) −9479.23 + 1952.11i −0.811077 + 0.167030i
\(516\) −9.93054 17.2002i −0.000847224 0.00146744i
\(517\) −2295.29 1325.19i −0.195255 0.112730i
\(518\) 6563.85 + 3789.64i 0.556755 + 0.321443i
\(519\) 588.986 0.0498143
\(520\) −3064.37 2861.06i −0.258426 0.241280i
\(521\) −7655.58 −0.643756 −0.321878 0.946781i \(-0.604314\pi\)
−0.321878 + 0.946781i \(0.604314\pi\)
\(522\) −3019.85 1743.51i −0.253210 0.146191i
\(523\) −13318.1 7689.20i −1.11350 0.642878i −0.173764 0.984787i \(-0.555593\pi\)
−0.939733 + 0.341909i \(0.888926\pi\)
\(524\) 1354.90 + 2346.75i 0.112956 + 0.195646i
\(525\) 400.768 172.375i 0.0333161 0.0143297i
\(526\) 6334.27 + 10971.3i 0.525071 + 0.909450i
\(527\) 5735.29 3311.27i 0.474067 0.273703i
\(528\) 54.4191i 0.00448539i
\(529\) 5981.51 + 10360.3i 0.491618 + 0.851507i
\(530\) −4336.47 1439.48i −0.355404 0.117975i
\(531\) −9348.95 + 16192.9i −0.764048 + 1.32337i
\(532\) 915.196i 0.0745842i
\(533\) 7497.95 699.339i 0.609329 0.0568325i
\(534\) 7.41493 0.000600890
\(535\) 7525.97 22672.2i 0.608179 1.83216i
\(536\) 2512.74 4352.19i 0.202488 0.350720i
\(537\) −164.238 + 94.8231i −0.0131982 + 0.00761996i
\(538\) 5390.62i 0.431982i
\(539\) −28.3980 49.1868i −0.00226937 0.00393066i
\(540\) 300.800 + 338.364i 0.0239711 + 0.0269646i
\(541\) −6283.50 −0.499351 −0.249675 0.968330i \(-0.580324\pi\)
−0.249675 + 0.968330i \(0.580324\pi\)
\(542\) −13396.5 + 7734.50i −1.06168 + 0.612961i
\(543\) −327.342 188.991i −0.0258703 0.0149362i
\(544\) −951.698 + 1648.39i −0.0750068 + 0.129916i
\(545\) 4354.33 + 21144.1i 0.342237 + 1.66186i
\(546\) −30.3845 325.766i −0.00238157 0.0255339i
\(547\) 6659.22i 0.520526i −0.965538 0.260263i \(-0.916191\pi\)
0.965538 0.260263i \(-0.0838092\pi\)
\(548\) −1344.77 776.401i −0.104828 0.0605222i
\(549\) 9972.88 17273.5i 0.775286 1.34284i
\(550\) 2710.52 3632.88i 0.210140 0.281648i
\(551\) 795.172 0.0614800
\(552\) −201.892 + 116.563i −0.0155672 + 0.00898775i
\(553\) 2369.62 1368.10i 0.182218 0.105204i
\(554\) 16227.2 1.24445
\(555\) −319.294 + 283.847i −0.0244203 + 0.0217092i
\(556\) 4332.23 7503.65i 0.330445 0.572348i
\(557\) 7913.85 + 4569.06i 0.602012 + 0.347572i 0.769833 0.638246i \(-0.220340\pi\)
−0.167821 + 0.985818i \(0.553673\pi\)
\(558\) 6004.45i 0.455535i
\(559\) 1127.37 + 517.850i 0.0852998 + 0.0391820i
\(560\) 3259.70 671.287i 0.245977 0.0506555i
\(561\) −101.153 + 175.203i −0.00761265 + 0.0131855i
\(562\) 7803.25 + 4505.21i 0.585695 + 0.338151i
\(563\) 8532.78 4926.40i 0.638746 0.368780i −0.145386 0.989375i \(-0.546442\pi\)
0.784131 + 0.620595i \(0.213109\pi\)
\(564\) 109.693 0.00818952
\(565\) −10000.3 11249.2i −0.744632 0.837622i
\(566\) 545.132 + 944.196i 0.0404834 + 0.0701193i
\(567\) 13509.8i 1.00063i
\(568\) 1436.08 829.123i 0.106086 0.0612486i
\(569\) 7020.92 12160.6i 0.517280 0.895955i −0.482519 0.875886i \(-0.660278\pi\)
0.999799 0.0200695i \(-0.00638874\pi\)
\(570\) −48.9598 16.2521i −0.00359772 0.00119425i
\(571\) 2935.30 0.215129 0.107564 0.994198i \(-0.465695\pi\)
0.107564 + 0.994198i \(0.465695\pi\)
\(572\) −1965.68 2773.29i −0.143687 0.202722i
\(573\) 942.708i 0.0687298i
\(574\) −2989.03 + 5177.14i −0.217351 + 0.376463i
\(575\) 19283.6 + 2274.48i 1.39858 + 0.164961i
\(576\) 862.874 + 1494.54i 0.0624185 + 0.108112i
\(577\) 874.237i 0.0630762i −0.999503 0.0315381i \(-0.989959\pi\)
0.999503 0.0315381i \(-0.0100405\pi\)
\(578\) 2381.56 1375.00i 0.171384 0.0989486i
\(579\) 165.594 + 286.817i 0.0118857 + 0.0205867i
\(580\) −583.250 2832.20i −0.0417554 0.202760i
\(581\) 5747.61 + 9955.15i 0.410415 + 0.710859i
\(582\) 414.036 + 239.044i 0.0294885 + 0.0170252i
\(583\) −3208.41 1852.38i −0.227923 0.131591i
\(584\) −4836.46 −0.342696
\(585\) −13766.7 3187.11i −0.972963 0.225250i
\(586\) 12583.1 0.887035
\(587\) 8031.92 + 4637.23i 0.564758 + 0.326063i 0.755053 0.655664i \(-0.227611\pi\)
−0.190295 + 0.981727i \(0.560945\pi\)
\(588\) 2.03572 + 1.17533i 0.000142775 + 8.24314e-5i
\(589\) 684.619 + 1185.79i 0.0478934 + 0.0829538i
\(590\) −15186.6 + 3127.46i −1.05970 + 0.218230i
\(591\) −11.8967 20.6058i −0.000828032 0.00143419i
\(592\) −2822.46 + 1629.55i −0.195950 + 0.113132i
\(593\) 5655.80i 0.391662i −0.980638 0.195831i \(-0.937260\pi\)
0.980638 0.195831i \(-0.0627405\pi\)
\(594\) 183.545 + 317.909i 0.0126783 + 0.0219595i
\(595\) 11742.4 + 3897.86i 0.809062 + 0.268566i
\(596\) −5215.81 + 9034.04i −0.358469 + 0.620887i
\(597\) 765.187i 0.0524573i
\(598\) 6078.42 13232.8i 0.415660 0.904900i
\(599\) −21245.2 −1.44918 −0.724588 0.689182i \(-0.757970\pi\)
−0.724588 + 0.689182i \(0.757970\pi\)
\(600\) −21.9742 + 186.303i −0.00149516 + 0.0126763i
\(601\) 3222.20 5581.02i 0.218696 0.378793i −0.735713 0.677293i \(-0.763153\pi\)
0.954410 + 0.298500i \(0.0964863\pi\)
\(602\) −852.912 + 492.429i −0.0577444 + 0.0333387i
\(603\) 16938.9i 1.14395i
\(604\) 938.667 + 1625.82i 0.0632348 + 0.109526i
\(605\) −8374.98 + 7445.22i −0.562796 + 0.500316i
\(606\) 528.304 0.0354140
\(607\) 16894.0 9753.74i 1.12966 0.652211i 0.185813 0.982585i \(-0.440508\pi\)
0.943850 + 0.330374i \(0.107175\pi\)
\(608\) −340.811 196.767i −0.0227331 0.0131249i
\(609\) 112.834 195.434i 0.00750782 0.0130039i
\(610\) 16200.2 3336.19i 1.07529 0.221440i
\(611\) −5590.12 + 3962.22i −0.370134 + 0.262347i
\(612\) 6415.59i 0.423750i
\(613\) 24422.4 + 14100.3i 1.60916 + 0.929047i 0.989559 + 0.144126i \(0.0460370\pi\)
0.619596 + 0.784921i \(0.287296\pi\)
\(614\) 7627.50 13211.2i 0.501337 0.868341i
\(615\) −223.880 251.838i −0.0146792 0.0165124i
\(616\) 2698.50 0.176502
\(617\) 1904.61 1099.63i 0.124273 0.0717492i −0.436575 0.899668i \(-0.643809\pi\)
0.560848 + 0.827919i \(0.310475\pi\)
\(618\) 281.267 162.389i 0.0183078 0.0105700i
\(619\) 2986.69 0.193934 0.0969671 0.995288i \(-0.469086\pi\)
0.0969671 + 0.995288i \(0.469086\pi\)
\(620\) 3721.34 3308.21i 0.241052 0.214292i
\(621\) −786.285 + 1361.89i −0.0508092 + 0.0880042i
\(622\) −984.349 568.314i −0.0634547 0.0366356i
\(623\) 367.686i 0.0236453i
\(624\) 127.845 + 58.7249i 0.00820176 + 0.00376743i
\(625\) 10746.4 11342.6i 0.687769 0.725929i
\(626\) −3520.09 + 6096.97i −0.224746 + 0.389271i
\(627\) −36.2239 20.9139i −0.00230724 0.00133209i
\(628\) −208.576 + 120.422i −0.0132533 + 0.00765182i
\(629\) −12115.9 −0.768034
\(630\) 8383.82 7453.07i 0.530189 0.471329i
\(631\) 6781.46 + 11745.8i 0.427838 + 0.741037i 0.996681 0.0814092i \(-0.0259421\pi\)
−0.568843 + 0.822446i \(0.692609\pi\)
\(632\) 1176.57i 0.0740529i
\(633\) −755.663 + 436.282i −0.0474485 + 0.0273944i
\(634\) −1550.97 + 2686.36i −0.0971559 + 0.168279i
\(635\) −8496.89 + 25597.1i −0.531006 + 1.59967i
\(636\) 153.331 0.00955970
\(637\) −146.198 + 13.6360i −0.00909354 + 0.000848161i
\(638\) 2344.60i 0.145491i
\(639\) 2794.64 4840.46i 0.173011 0.299665i
\(640\) −450.854 + 1358.21i −0.0278462 + 0.0838874i
\(641\) 4703.70 + 8147.04i 0.289836 + 0.502011i 0.973770 0.227533i \(-0.0730659\pi\)
−0.683934 + 0.729543i \(0.739733\pi\)
\(642\) 801.654i 0.0492816i
\(643\) −22171.3 + 12800.6i −1.35980 + 0.785082i −0.989597 0.143868i \(-0.954046\pi\)
−0.370205 + 0.928950i \(0.620713\pi\)
\(644\) 5780.03 + 10011.3i 0.353673 + 0.612579i
\(645\) −11.1972 54.3724i −0.000683550 0.00331924i
\(646\) −731.496 1266.99i −0.0445516 0.0771656i
\(647\) 17398.6 + 10045.1i 1.05720 + 0.610374i 0.924656 0.380803i \(-0.124352\pi\)
0.132543 + 0.991177i \(0.457686\pi\)
\(648\) 5030.92 + 2904.60i 0.304989 + 0.176086i
\(649\) −12572.0 −0.760394
\(650\) −5609.64 10288.1i −0.338505 0.620818i
\(651\) 388.586 0.0233946
\(652\) 4518.54 + 2608.78i 0.271410 + 0.156699i
\(653\) −12689.1 7326.04i −0.760432 0.439035i 0.0690191 0.997615i \(-0.478013\pi\)
−0.829451 + 0.558580i \(0.811346\pi\)
\(654\) −362.222 627.387i −0.0216575 0.0375119i
\(655\) 1527.72 + 7418.44i 0.0911343 + 0.442538i
\(656\) −1285.28 2226.17i −0.0764967 0.132496i
\(657\) −14117.8 + 8150.89i −0.838335 + 0.484013i
\(658\) 5439.36i 0.322262i
\(659\) 9738.87 + 16868.2i 0.575679 + 0.997105i 0.995968 + 0.0897146i \(0.0285955\pi\)
−0.420289 + 0.907390i \(0.638071\pi\)
\(660\) −47.9200 + 144.360i −0.00282619 + 0.00851396i
\(661\) −7865.73 + 13623.9i −0.462847 + 0.801674i −0.999101 0.0423822i \(-0.986505\pi\)
0.536255 + 0.844056i \(0.319839\pi\)
\(662\) 11523.6i 0.676550i
\(663\) 302.442 + 426.702i 0.0177162 + 0.0249951i
\(664\) −4942.95 −0.288891
\(665\) −805.898 + 2427.79i −0.0469945 + 0.141572i
\(666\) −5492.55 + 9513.38i −0.319568 + 0.553508i
\(667\) 8698.36 5022.00i 0.504950 0.291533i
\(668\) 2741.12i 0.158768i
\(669\) 15.7346 + 27.2531i 0.000909318 + 0.00157499i
\(670\) 10498.1 9332.63i 0.605338 0.538136i
\(671\) 13411.1 0.771578
\(672\) −96.7214 + 55.8421i −0.00555224 + 0.00320559i
\(673\) 13400.0 + 7736.50i 0.767507 + 0.443121i 0.831985 0.554799i \(-0.187205\pi\)
−0.0644773 + 0.997919i \(0.520538\pi\)
\(674\) 2027.43 3511.62i 0.115866 0.200686i
\(675\) 499.993 + 1162.47i 0.0285107 + 0.0662868i
\(676\) −8636.42 + 1625.19i −0.491376 + 0.0924663i
\(677\) 24473.0i 1.38933i −0.719335 0.694663i \(-0.755553\pi\)
0.719335 0.694663i \(-0.244447\pi\)
\(678\) 437.430 + 252.551i 0.0247779 + 0.0143055i
\(679\) 11853.5 20530.9i 0.669951 1.16039i
\(680\) −3976.15 + 3534.73i −0.224233 + 0.199339i
\(681\) −237.268 −0.0133511
\(682\) 3496.37 2018.63i 0.196309 0.113339i
\(683\) −15982.4 + 9227.45i −0.895388 + 0.516952i −0.875701 0.482854i \(-0.839600\pi\)
−0.0196867 + 0.999806i \(0.506267\pi\)
\(684\) −1326.45 −0.0741491
\(685\) −2883.65 3243.76i −0.160845 0.180931i
\(686\) −6323.11 + 10951.9i −0.351921 + 0.609544i
\(687\) −695.540 401.570i −0.0386266 0.0223011i
\(688\) 423.489i 0.0234671i
\(689\) −7814.01 + 5538.49i −0.432061 + 0.306240i
\(690\) −638.212 + 131.431i −0.0352121 + 0.00725142i
\(691\) 1509.37 2614.31i 0.0830958 0.143926i −0.821482 0.570234i \(-0.806853\pi\)
0.904578 + 0.426308i \(0.140186\pi\)
\(692\) 10876.1 + 6279.35i 0.597470 + 0.344949i
\(693\) 7876.98 4547.78i 0.431777 0.249287i
\(694\) −15470.3 −0.846172
\(695\) 18099.8 16090.5i 0.987865 0.878196i
\(696\) 48.5186 + 84.0367i 0.00264238 + 0.00457673i
\(697\) 9556.25i 0.519324i
\(698\) −12523.1 + 7230.23i −0.679094 + 0.392075i
\(699\) 308.275 533.948i 0.0166810 0.0288924i
\(700\) 9238.28 + 1089.64i 0.498820 + 0.0588353i
\(701\) 3095.36 0.166776 0.0833880 0.996517i \(-0.473426\pi\)
0.0833880 + 0.996517i \(0.473426\pi\)
\(702\) 944.921 88.1335i 0.0508030 0.00473844i
\(703\) 2505.01i 0.134393i
\(704\) −580.177 + 1004.90i −0.0310600 + 0.0537975i
\(705\) 290.987 + 96.5923i 0.0155450 + 0.00516011i
\(706\) −9699.53 16800.1i −0.517063 0.895580i
\(707\) 26197.2i 1.39356i
\(708\) 450.616 260.163i 0.0239198 0.0138101i
\(709\) 7967.58 + 13800.3i 0.422043 + 0.731001i 0.996139 0.0877876i \(-0.0279797\pi\)
−0.574096 + 0.818788i \(0.694646\pi\)
\(710\) 4539.67 934.880i 0.239959 0.0494161i
\(711\) 1982.87 + 3434.44i 0.104590 + 0.181155i
\(712\) 136.923 + 79.0526i 0.00720704 + 0.00416099i
\(713\) 14978.1 + 8647.58i 0.786722 + 0.454214i
\(714\) −415.194 −0.0217622
\(715\) −2772.37 9087.77i −0.145008 0.475333i
\(716\) −4043.74 −0.211064
\(717\) 1023.15 + 590.716i 0.0532919 + 0.0307681i
\(718\) −20680.3 11939.8i −1.07490 0.620596i
\(719\) −5451.36 9442.03i −0.282756 0.489747i 0.689307 0.724470i \(-0.257915\pi\)
−0.972062 + 0.234722i \(0.924582\pi\)
\(720\) 972.936 + 4724.47i 0.0503600 + 0.244543i
\(721\) −8052.46 13947.3i −0.415935 0.720421i
\(722\) −11618.2 + 6707.76i −0.598870 + 0.345758i
\(723\) 1305.31i 0.0671441i
\(724\) −4029.77 6979.77i −0.206858 0.358289i
\(725\) 946.742 8026.72i 0.0484981 0.411179i
\(726\) 188.023 325.666i 0.00961184 0.0166482i
\(727\) 29675.2i 1.51388i 0.653482 + 0.756942i \(0.273308\pi\)
−0.653482 + 0.756942i \(0.726692\pi\)
\(728\) 2912.01 6339.50i 0.148250 0.322744i
\(729\) 19529.2 0.992188
\(730\) −12829.9 4258.86i −0.650489 0.215928i
\(731\) 787.176 1363.43i 0.0398286 0.0689852i
\(732\) −480.689 + 277.526i −0.0242716 + 0.0140132i
\(733\) 18298.1i 0.922041i −0.887390 0.461020i \(-0.847483\pi\)
0.887390 0.461020i \(-0.152517\pi\)
\(734\) −1629.45 2822.29i −0.0819401 0.141924i
\(735\) 4.36531 + 4.91045i 0.000219071 + 0.000246428i
\(736\) −4970.83 −0.248950
\(737\) 9863.44 5694.66i 0.492978 0.284621i
\(738\) −7503.54 4332.17i −0.374267 0.216083i
\(739\) −8833.01 + 15299.2i −0.439686 + 0.761558i −0.997665 0.0682971i \(-0.978243\pi\)
0.557980 + 0.829855i \(0.311577\pi\)
\(740\) −8922.22 + 1837.40i −0.443226 + 0.0912760i
\(741\) −88.2223 + 62.5310i −0.00437372 + 0.00310005i
\(742\) 7603.27i 0.376179i
\(743\) −3722.94 2149.44i −0.183824 0.106131i 0.405264 0.914200i \(-0.367180\pi\)
−0.589088 + 0.808069i \(0.700513\pi\)
\(744\) −83.5461 + 144.706i −0.00411687 + 0.00713063i
\(745\) −21791.4 + 19372.2i −1.07164 + 0.952673i
\(746\) −22093.6 −1.08432
\(747\) −14428.6 + 8330.35i −0.706713 + 0.408021i
\(748\) −3735.77 + 2156.85i −0.182611 + 0.105431i
\(749\) 39751.9 1.93926
\(750\) −222.346 + 474.866i −0.0108252 + 0.0231196i
\(751\) 17605.6 30493.8i 0.855443 1.48167i −0.0207900 0.999784i \(-0.506618\pi\)
0.876233 0.481887i \(-0.160049\pi\)
\(752\) 2025.57 + 1169.46i 0.0982246 + 0.0567100i
\(753\) 864.889i 0.0418570i
\(754\) −5508.10 2530.11i −0.266039 0.122203i
\(755\) 1058.40 + 5139.46i 0.0510186 + 0.247741i
\(756\) −376.689 + 652.444i −0.0181217 + 0.0313878i
\(757\) −7520.57 4342.00i −0.361083 0.208471i 0.308473 0.951233i \(-0.400182\pi\)
−0.669556 + 0.742762i \(0.733515\pi\)
\(758\) 13135.9 7584.00i 0.629441 0.363408i
\(759\) −528.336 −0.0252666
\(760\) −730.819 822.084i −0.0348810 0.0392370i
\(761\) 8222.34 + 14241.5i 0.391668 + 0.678389i 0.992670 0.120859i \(-0.0385648\pi\)
−0.601002 + 0.799248i \(0.705231\pi\)
\(762\) 905.076i 0.0430281i
\(763\) −31110.4 + 17961.6i −1.47611 + 0.852234i
\(764\) 10050.5 17407.9i 0.475934 0.824341i
\(765\) −5649.40 + 17019.0i −0.266999 + 0.804342i
\(766\) 22475.1 1.06013
\(767\) −13566.8 + 29535.1i −0.638681 + 1.39042i
\(768\) 48.0242i 0.00225641i
\(769\) −17571.4 + 30434.6i −0.823981 + 1.42718i 0.0787138 + 0.996897i \(0.474919\pi\)
−0.902695 + 0.430280i \(0.858415\pi\)
\(770\) 7158.44 + 2376.22i 0.335029 + 0.111212i
\(771\) 14.9681 + 25.9255i 0.000699173 + 0.00121100i
\(772\) 7061.77i 0.329221i
\(773\) −17426.4 + 10061.1i −0.810845 + 0.468141i −0.847249 0.531196i \(-0.821743\pi\)
0.0364044 + 0.999337i \(0.488410\pi\)
\(774\) −713.707 1236.18i −0.0331443 0.0574075i
\(775\) 12784.9 5498.94i 0.592577 0.254874i
\(776\) 5097.02 + 8828.30i 0.235789 + 0.408399i
\(777\) −615.672 355.458i −0.0284261 0.0164118i
\(778\) 7740.87 + 4469.20i 0.356714 + 0.205949i
\(779\) 1975.79 0.0908730
\(780\) 287.430 + 268.359i 0.0131944 + 0.0123190i
\(781\) 3758.11 0.172184
\(782\) −16003.6 9239.70i −0.731827 0.422521i
\(783\) 566.878 + 327.287i 0.0258730 + 0.0149378i
\(784\) 25.0610 + 43.4069i 0.00114163 + 0.00197735i
\(785\) −659.341 + 135.782i −0.0299782 + 0.00617358i
\(786\) −127.086 220.119i −0.00576718 0.00998905i
\(787\) −7057.57 + 4074.69i −0.319663 + 0.184558i −0.651243 0.758870i \(-0.725752\pi\)
0.331579 + 0.943427i \(0.392419\pi\)
\(788\) 507.338i 0.0229355i
\(789\) −594.138 1029.08i −0.0268085 0.0464336i
\(790\) −1036.06 + 3121.15i −0.0466598 + 0.140564i
\(791\) 12523.3 21691.0i 0.562930 0.975023i
\(792\) 3911.09i 0.175473i
\(793\) 14472.2 31506.3i 0.648075 1.41087i
\(794\) −15267.4 −0.682392
\(795\) 406.749 + 135.019i 0.0181458 + 0.00602344i
\(796\) 8157.88 14129.9i 0.363252 0.629170i
\(797\) −18697.5 + 10795.0i −0.830992 + 0.479774i −0.854192 0.519957i \(-0.825948\pi\)
0.0232000 + 0.999731i \(0.492615\pi\)
\(798\) 85.8430i 0.00380803i
\(799\) 4347.56 + 7530.20i 0.192498 + 0.333416i
\(800\) −2392.01 + 3205.98i −0.105713 + 0.141686i
\(801\) 532.910 0.0235074
\(802\) −4293.96 + 2479.12i −0.189059 + 0.109153i
\(803\) −9492.47 5480.48i −0.417163 0.240849i
\(804\) −235.688 + 408.224i −0.0103384 + 0.0179067i
\(805\) 6517.29 + 31647.3i 0.285347 + 1.38561i
\(806\) −969.294 10392.3i −0.0423597 0.454158i
\(807\) 505.626i 0.0220556i
\(808\) 9755.61 + 5632.40i 0.424754 + 0.245232i
\(809\) 16808.7 29113.6i 0.730486 1.26524i −0.226189 0.974083i \(-0.572627\pi\)
0.956676 0.291156i \(-0.0940398\pi\)
\(810\) 10788.1 + 12135.3i 0.467968 + 0.526408i
\(811\) −27642.1 −1.19685 −0.598426 0.801178i \(-0.704207\pi\)
−0.598426 + 0.801178i \(0.704207\pi\)
\(812\) 4167.16 2405.91i 0.180097 0.103979i
\(813\) 1256.56 725.475i 0.0542060 0.0312959i
\(814\) −7386.14 −0.318039
\(815\) 9689.33 + 10899.3i 0.416445 + 0.468451i
\(816\) 89.2668 154.615i 0.00382961 0.00663308i
\(817\) 281.894 + 162.752i 0.0120713 + 0.00696935i
\(818\) 4296.95i 0.183667i
\(819\) −2183.73 23412.8i −0.0931692 0.998911i
\(820\) −1449.22 7037.27i −0.0617184 0.299698i
\(821\) 7860.45 13614.7i 0.334143 0.578753i −0.649177 0.760638i \(-0.724886\pi\)
0.983320 + 0.181885i \(0.0582198\pi\)
\(822\) 126.135 + 72.8243i 0.00535216 + 0.00309007i
\(823\) −8116.30 + 4685.95i −0.343762 + 0.198471i −0.661934 0.749562i \(-0.730264\pi\)
0.318172 + 0.948033i \(0.396931\pi\)
\(824\) 6925.12 0.292777
\(825\) −254.240 + 340.755i −0.0107291 + 0.0143801i
\(826\) −12900.8 22344.8i −0.543434 0.941255i
\(827\) 33117.9i 1.39253i −0.717784 0.696266i \(-0.754844\pi\)
0.717784 0.696266i \(-0.245156\pi\)
\(828\) −14510.0 + 8377.34i −0.609006 + 0.351610i
\(829\) −14199.5 + 24594.2i −0.594894 + 1.03039i 0.398667 + 0.917096i \(0.369473\pi\)
−0.993562 + 0.113292i \(0.963861\pi\)
\(830\) −13112.4 4352.63i −0.548359 0.182026i
\(831\) −1522.07 −0.0635378
\(832\) 1734.69 + 2447.40i 0.0722831 + 0.101981i
\(833\) 186.332i 0.00775032i
\(834\) −406.352 + 703.822i −0.0168715 + 0.0292223i
\(835\) 2413.76 7271.51i 0.100038 0.301366i
\(836\) −445.937 772.385i −0.0184486 0.0319540i
\(837\) 1127.14i 0.0465467i
\(838\) 7557.98 4363.60i 0.311559 0.179879i
\(839\) −11413.2 19768.3i −0.469640 0.813441i 0.529757 0.848149i \(-0.322283\pi\)
−0.999397 + 0.0347086i \(0.988950\pi\)
\(840\) −305.751 + 62.9650i −0.0125588 + 0.00258631i
\(841\) 10104.1 + 17500.8i 0.414290 + 0.717571i
\(842\) −4178.64 2412.54i −0.171028 0.0987429i
\(843\) −731.924 422.577i −0.0299037 0.0172649i
\(844\) −18605.3 −0.758793
\(845\) −24341.4 3293.78i −0.990969 0.134094i
\(846\) 7883.59 0.320382
\(847\) −16148.9 9323.57i −0.655115 0.378231i
\(848\) 2831.39 + 1634.70i 0.114658 + 0.0661981i
\(849\) −51.1319 88.5631i −0.00206695 0.00358007i
\(850\) −13660.3 + 5875.46i −0.551229 + 0.237090i
\(851\) −15820.7 27402.3i −0.637282 1.10380i
\(852\) −134.701 + 77.7695i −0.00541640 + 0.00312716i
\(853\) 34222.4i 1.37368i 0.726807 + 0.686842i \(0.241004\pi\)
−0.726807 + 0.686842i \(0.758996\pi\)
\(854\) 13761.8 + 23836.1i 0.551427 + 0.955099i
\(855\) −3518.74 1168.04i −0.140747 0.0467204i
\(856\) −8546.66 + 14803.3i −0.341260 + 0.591080i
\(857\) 16219.2i 0.646486i 0.946316 + 0.323243i \(0.104773\pi\)
−0.946316 + 0.323243i \(0.895227\pi\)
\(858\) 184.375 + 260.127i 0.00733621 + 0.0103503i
\(859\) −26749.3 −1.06248 −0.531242 0.847220i \(-0.678275\pi\)
−0.531242 + 0.847220i \(0.678275\pi\)
\(860\) 372.913 1123.41i 0.0147863 0.0445442i
\(861\) 280.363 485.602i 0.0110973 0.0192210i
\(862\) 6415.15 3703.79i 0.253481 0.146347i
\(863\) 4627.12i 0.182513i 0.995827 + 0.0912566i \(0.0290883\pi\)
−0.995827 + 0.0912566i \(0.970912\pi\)
\(864\) −161.976 280.551i −0.00637794 0.0110469i
\(865\) 23322.3 + 26234.8i 0.916742 + 1.03123i
\(866\) 2157.76 0.0846692
\(867\) −223.384 + 128.971i −0.00875032 + 0.00505200i
\(868\) 7175.59 + 4142.83i 0.280594 + 0.162001i
\(869\) −1333.24 + 2309.24i −0.0520449 + 0.0901445i
\(870\) 54.7073 + 265.653i 0.00213190 + 0.0103523i
\(871\) −2734.43 29317.1i −0.106375 1.14050i
\(872\) 15447.0i 0.599887i
\(873\) 29756.7 + 17180.0i 1.15362 + 0.666044i
\(874\) 1910.35 3308.81i 0.0739341 0.128058i
\(875\) 23547.4 + 11025.5i 0.909767 + 0.425979i
\(876\) 453.647 0.0174969
\(877\) 22840.7 13187.1i 0.879446 0.507748i 0.00897043 0.999960i \(-0.497145\pi\)
0.870476 + 0.492211i \(0.163811\pi\)
\(878\) 1941.28 1120.80i 0.0746186 0.0430811i
\(879\) −1180.26 −0.0452892
\(880\) −2423.95 + 2154.85i −0.0928538 + 0.0825455i
\(881\) 711.813 1232.90i 0.0272209 0.0471479i −0.852094 0.523389i \(-0.824668\pi\)
0.879315 + 0.476241i \(0.158001\pi\)
\(882\) 146.307 + 84.4705i 0.00558551 + 0.00322480i
\(883\) 51374.6i 1.95798i −0.203919 0.978988i \(-0.565368\pi\)
0.203919 0.978988i \(-0.434632\pi\)
\(884\) 1035.66 + 11103.8i 0.0394040 + 0.422469i
\(885\) 1424.46 293.348i 0.0541049 0.0111421i
\(886\) 9267.16 16051.2i 0.351395 0.608634i
\(887\) 33952.4 + 19602.4i 1.28524 + 0.742035i 0.977802 0.209533i \(-0.0671943\pi\)
0.307440 + 0.951567i \(0.400528\pi\)
\(888\) 264.739 152.847i 0.0100046 0.00577615i
\(889\) −44880.3 −1.69318
\(890\) 293.612 + 330.278i 0.0110583 + 0.0124393i
\(891\) 6582.75 + 11401.7i 0.247509 + 0.428698i
\(892\) 671.003i 0.0251870i
\(893\) −1556.90 + 898.875i −0.0583422 + 0.0336839i
\(894\) 489.229 847.369i 0.0183023 0.0317005i
\(895\) −10727.0 3560.81i −0.400632 0.132989i
\(896\) −2381.39 −0.0887911
\(897\) −570.139 + 1241.20i −0.0212223 + 0.0462013i
\(898\) 26848.8i 0.997722i
\(899\) 3599.51 6234.54i 0.133538 0.231294i
\(900\) −1579.29 + 13389.6i −0.0584921 + 0.495911i
\(901\) 6077.13 + 10525.9i 0.224704 + 0.389199i
\(902\) 5825.71i 0.215050i
\(903\) 80.0009 46.1885i 0.00294824 0.00170217i
\(904\) 5385.03 + 9327.14i 0.198123 + 0.343159i
\(905\) −4543.78 22064.1i −0.166895 0.810426i
\(906\) −88.0445 152.498i −0.00322857 0.00559205i
\(907\) 31299.7 + 18070.9i 1.14585 + 0.661559i 0.947874 0.318646i \(-0.103228\pi\)
0.197981 + 0.980206i \(0.436562\pi\)
\(908\) −4381.36 2529.58i −0.160133 0.0924527i
\(909\) 37969.2 1.38543
\(910\) 13307.2 14252.9i 0.484759 0.519207i
\(911\) −26416.9 −0.960735 −0.480368 0.877067i \(-0.659497\pi\)
−0.480368 + 0.877067i \(0.659497\pi\)
\(912\) 31.9672 + 18.4563i 0.00116068 + 0.000670118i
\(913\) −9701.46 5601.14i −0.351666 0.203035i
\(914\) 8824.73 + 15284.9i 0.319361 + 0.553150i
\(915\) −1519.53 + 312.926i −0.0549007 + 0.0113060i
\(916\) −8562.50 14830.7i −0.308857 0.534956i
\(917\) −10915.1 + 6301.85i −0.393074 + 0.226942i
\(918\) 1204.32i 0.0432989i
\(919\) 14119.0 + 24454.8i 0.506793 + 0.877790i 0.999969 + 0.00786115i \(0.00250231\pi\)
−0.493177 + 0.869929i \(0.664164\pi\)
\(920\) −13186.4 4377.18i −0.472546 0.156860i
\(921\) −715.439 + 1239.18i −0.0255967 + 0.0443347i
\(922\) 8136.71i 0.290638i
\(923\) 4055.46 8828.81i 0.144623 0.314847i
\(924\) −253.112 −0.00901165
\(925\) −25286.4 2982.50i −0.898823 0.106015i
\(926\) 8511.92 14743.1i 0.302073 0.523205i
\(927\) 20214.6 11670.9i 0.716219 0.413509i
\(928\) 2069.08i 0.0731907i
\(929\) 21785.8 + 37734.2i 0.769397 + 1.33264i 0.937890 + 0.346933i \(0.112777\pi\)
−0.168493 + 0.985703i \(0.553890\pi\)
\(930\) −349.052 + 310.301i −0.0123074 + 0.0109410i
\(931\) −38.5248 −0.00135618
\(932\) 11385.1 6573.21i 0.400142 0.231022i
\(933\) 92.3293 + 53.3064i 0.00323979 + 0.00187050i
\(934\) −7999.89 + 13856.2i −0.280262 + 0.485427i
\(935\) −11809.3 + 2431.96i −0.413055 + 0.0850627i
\(936\) 9188.21 + 4220.55i 0.320861 + 0.147386i
\(937\) 7402.81i 0.258100i 0.991638 + 0.129050i \(0.0411927\pi\)
−0.991638 + 0.129050i \(0.958807\pi\)
\(938\) 20242.7 + 11687.1i 0.704636 + 0.406822i
\(939\) 330.175 571.880i 0.0114748 0.0198750i
\(940\) 4343.53 + 4885.96i 0.150713 + 0.169534i
\(941\) −36843.9 −1.27638 −0.638192 0.769878i \(-0.720317\pi\)
−0.638192 + 0.769878i \(0.720317\pi\)
\(942\) 19.5639 11.2952i 0.000676674 0.000390678i
\(943\) 21613.1 12478.4i 0.746363 0.430913i
\(944\) 11094.7 0.382523
\(945\) −1573.79 + 1399.07i −0.0541749 + 0.0481606i
\(946\) 479.880 831.177i 0.0164929 0.0285665i
\(947\) −22079.4 12747.5i −0.757638 0.437423i 0.0708088 0.997490i \(-0.477442\pi\)
−0.828447 + 0.560067i \(0.810775\pi\)
\(948\) 110.359i 0.00378090i
\(949\) −23118.7 + 16386.3i −0.790794 + 0.560506i
\(950\) −1214.78 2824.32i −0.0414868 0.0964560i
\(951\) 145.477 251.973i 0.00496047 0.00859179i
\(952\) −7666.92 4426.50i −0.261015 0.150697i
\(953\) 28283.5 16329.5i 0.961378 0.555052i 0.0647813 0.997899i \(-0.479365\pi\)
0.896597 + 0.442848i \(0.146032\pi\)
\(954\) 11019.9 0.373985
\(955\) 41990.4 37328.7i 1.42280 1.26485i
\(956\) 12595.6 + 21816.2i 0.426120 + 0.738061i
\(957\) 219.917i 0.00742833i
\(958\) −19797.3 + 11430.0i −0.667665 + 0.385477i
\(959\) 3611.16 6254.72i 0.121596 0.210610i
\(960\) 42.2889 127.396i 0.00142174 0.00428302i
\(961\) −17394.7 −0.583892
\(962\) −7970.55 + 17352.0i −0.267132 + 0.581551i
\(963\) 57614.8i 1.92794i
\(964\) 13916.3 24103.8i 0.464953 0.805322i
\(965\) −6218.41 + 18733.1i −0.207438 + 0.624913i
\(966\) −542.152 939.034i −0.0180574 0.0312763i
\(967\) 9956.75i 0.331114i −0.986200 0.165557i \(-0.947058\pi\)
0.986200 0.165557i \(-0.0529422\pi\)
\(968\) 6944.03 4009.14i 0.230568 0.133118i
\(969\) 68.6124 + 118.840i 0.00227466 + 0.00393983i
\(970\) 5747.17 + 27907.6i 0.190237 + 0.923772i
\(971\) −16846.6 29179.2i −0.556780 0.964371i −0.997763 0.0668552i \(-0.978703\pi\)
0.440983 0.897515i \(-0.354630\pi\)
\(972\) −1418.75 819.114i −0.0468172 0.0270299i
\(973\) 34900.7 + 20149.9i 1.14991 + 0.663902i
\(974\) −1253.30 −0.0412305
\(975\) 526.169 + 964.994i 0.0172830 + 0.0316970i
\(976\) −11835.1 −0.388149
\(977\) −35738.9 20633.9i −1.17031 0.675677i −0.216554 0.976271i \(-0.569482\pi\)
−0.953752 + 0.300594i \(0.902815\pi\)
\(978\) −423.827 244.696i −0.0138573 0.00800054i
\(979\) 179.158 + 310.311i 0.00584875 + 0.0101303i
\(980\) 28.2576 + 137.216i 0.000921077 + 0.00447265i
\(981\) −26032.8 45090.2i −0.847263 1.46750i
\(982\) 33917.4 19582.2i 1.10219 0.636349i
\(983\) 37742.0i 1.22460i 0.790625 + 0.612301i \(0.209756\pi\)
−0.790625 + 0.612301i \(0.790244\pi\)
\(984\) 120.556 + 208.809i 0.00390568 + 0.00676483i
\(985\) 446.749 1345.84i 0.0144514 0.0435351i
\(986\) −3845.98 + 6661.44i −0.124220 + 0.215155i
\(987\) 510.197i 0.0164537i
\(988\) −2295.76 + 214.128i −0.0739251 + 0.00689505i
\(989\) 4111.51 0.132193
\(990\) −3444.00 + 10375.1i −0.110563 + 0.333075i
\(991\) 17333.5 30022.4i 0.555616 0.962356i −0.442239 0.896897i \(-0.645816\pi\)
0.997855 0.0654583i \(-0.0208509\pi\)
\(992\) −3085.51 + 1781.42i −0.0987550 + 0.0570162i
\(993\) 1080.88i 0.0345425i
\(994\) 3856.38 + 6679.45i 0.123055 + 0.213138i
\(995\) 34083.2 30299.4i 1.08594 0.965382i
\(996\) 463.635 0.0147498
\(997\) −19143.0 + 11052.2i −0.608090 + 0.351081i −0.772218 0.635358i \(-0.780852\pi\)
0.164128 + 0.986439i \(0.447519\pi\)
\(998\) 22139.3 + 12782.2i 0.702213 + 0.405423i
\(999\) 1031.05 1785.82i 0.0326535 0.0565576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.4.n.a.9.6 44
5.4 even 2 inner 130.4.n.a.9.17 yes 44
13.3 even 3 inner 130.4.n.a.29.17 yes 44
65.29 even 6 inner 130.4.n.a.29.6 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.4.n.a.9.6 44 1.1 even 1 trivial
130.4.n.a.9.17 yes 44 5.4 even 2 inner
130.4.n.a.29.6 yes 44 65.29 even 6 inner
130.4.n.a.29.17 yes 44 13.3 even 3 inner