Properties

Label 130.2.g.c.57.1
Level $130$
Weight $2$
Character 130.57
Analytic conductor $1.038$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,2,Mod(57,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 57.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 130.57
Dual form 130.2.g.c.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-1.00000 + 1.00000i) q^{3} +1.00000 q^{4} +(1.00000 + 2.00000i) q^{5} +(-1.00000 + 1.00000i) q^{6} -2.00000i q^{7} +1.00000 q^{8} +1.00000i q^{9} +(1.00000 + 2.00000i) q^{10} +(1.00000 + 1.00000i) q^{11} +(-1.00000 + 1.00000i) q^{12} +(-3.00000 - 2.00000i) q^{13} -2.00000i q^{14} +(-3.00000 - 1.00000i) q^{15} +1.00000 q^{16} +(5.00000 - 5.00000i) q^{17} +1.00000i q^{18} +(-3.00000 - 3.00000i) q^{19} +(1.00000 + 2.00000i) q^{20} +(2.00000 + 2.00000i) q^{21} +(1.00000 + 1.00000i) q^{22} +(-5.00000 - 5.00000i) q^{23} +(-1.00000 + 1.00000i) q^{24} +(-3.00000 + 4.00000i) q^{25} +(-3.00000 - 2.00000i) q^{26} +(-4.00000 - 4.00000i) q^{27} -2.00000i q^{28} +4.00000i q^{29} +(-3.00000 - 1.00000i) q^{30} +(1.00000 - 1.00000i) q^{31} +1.00000 q^{32} -2.00000 q^{33} +(5.00000 - 5.00000i) q^{34} +(4.00000 - 2.00000i) q^{35} +1.00000i q^{36} +8.00000i q^{37} +(-3.00000 - 3.00000i) q^{38} +(5.00000 - 1.00000i) q^{39} +(1.00000 + 2.00000i) q^{40} +(1.00000 - 1.00000i) q^{41} +(2.00000 + 2.00000i) q^{42} +(5.00000 + 5.00000i) q^{43} +(1.00000 + 1.00000i) q^{44} +(-2.00000 + 1.00000i) q^{45} +(-5.00000 - 5.00000i) q^{46} -2.00000i q^{47} +(-1.00000 + 1.00000i) q^{48} +3.00000 q^{49} +(-3.00000 + 4.00000i) q^{50} +10.0000i q^{51} +(-3.00000 - 2.00000i) q^{52} +(-1.00000 + 1.00000i) q^{53} +(-4.00000 - 4.00000i) q^{54} +(-1.00000 + 3.00000i) q^{55} -2.00000i q^{56} +6.00000 q^{57} +4.00000i q^{58} +(3.00000 - 3.00000i) q^{59} +(-3.00000 - 1.00000i) q^{60} +2.00000 q^{61} +(1.00000 - 1.00000i) q^{62} +2.00000 q^{63} +1.00000 q^{64} +(1.00000 - 8.00000i) q^{65} -2.00000 q^{66} -12.0000 q^{67} +(5.00000 - 5.00000i) q^{68} +10.0000 q^{69} +(4.00000 - 2.00000i) q^{70} +(1.00000 - 1.00000i) q^{71} +1.00000i q^{72} -6.00000 q^{73} +8.00000i q^{74} +(-1.00000 - 7.00000i) q^{75} +(-3.00000 - 3.00000i) q^{76} +(2.00000 - 2.00000i) q^{77} +(5.00000 - 1.00000i) q^{78} +14.0000i q^{79} +(1.00000 + 2.00000i) q^{80} +5.00000 q^{81} +(1.00000 - 1.00000i) q^{82} +6.00000i q^{83} +(2.00000 + 2.00000i) q^{84} +(15.0000 + 5.00000i) q^{85} +(5.00000 + 5.00000i) q^{86} +(-4.00000 - 4.00000i) q^{87} +(1.00000 + 1.00000i) q^{88} +(-7.00000 + 7.00000i) q^{89} +(-2.00000 + 1.00000i) q^{90} +(-4.00000 + 6.00000i) q^{91} +(-5.00000 - 5.00000i) q^{92} +2.00000i q^{93} -2.00000i q^{94} +(3.00000 - 9.00000i) q^{95} +(-1.00000 + 1.00000i) q^{96} -2.00000 q^{97} +3.00000 q^{98} +(-1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{5} - 2 q^{6} + 2 q^{8} + 2 q^{10} + 2 q^{11} - 2 q^{12} - 6 q^{13} - 6 q^{15} + 2 q^{16} + 10 q^{17} - 6 q^{19} + 2 q^{20} + 4 q^{21} + 2 q^{22} - 10 q^{23} - 2 q^{24}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 + 1.00000i −0.577350 + 0.577350i −0.934172 0.356822i \(-0.883860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 + 2.00000i 0.447214 + 0.894427i
\(6\) −1.00000 + 1.00000i −0.408248 + 0.408248i
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000i 0.333333i
\(10\) 1.00000 + 2.00000i 0.316228 + 0.632456i
\(11\) 1.00000 + 1.00000i 0.301511 + 0.301511i 0.841605 0.540094i \(-0.181611\pi\)
−0.540094 + 0.841605i \(0.681611\pi\)
\(12\) −1.00000 + 1.00000i −0.288675 + 0.288675i
\(13\) −3.00000 2.00000i −0.832050 0.554700i
\(14\) 2.00000i 0.534522i
\(15\) −3.00000 1.00000i −0.774597 0.258199i
\(16\) 1.00000 0.250000
\(17\) 5.00000 5.00000i 1.21268 1.21268i 0.242536 0.970143i \(-0.422021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −3.00000 3.00000i −0.688247 0.688247i 0.273597 0.961844i \(-0.411786\pi\)
−0.961844 + 0.273597i \(0.911786\pi\)
\(20\) 1.00000 + 2.00000i 0.223607 + 0.447214i
\(21\) 2.00000 + 2.00000i 0.436436 + 0.436436i
\(22\) 1.00000 + 1.00000i 0.213201 + 0.213201i
\(23\) −5.00000 5.00000i −1.04257 1.04257i −0.999053 0.0435195i \(-0.986143\pi\)
−0.0435195 0.999053i \(-0.513857\pi\)
\(24\) −1.00000 + 1.00000i −0.204124 + 0.204124i
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) −3.00000 2.00000i −0.588348 0.392232i
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 2.00000i 0.377964i
\(29\) 4.00000i 0.742781i 0.928477 + 0.371391i \(0.121119\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) −3.00000 1.00000i −0.547723 0.182574i
\(31\) 1.00000 1.00000i 0.179605 0.179605i −0.611578 0.791184i \(-0.709465\pi\)
0.791184 + 0.611578i \(0.209465\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.00000 −0.348155
\(34\) 5.00000 5.00000i 0.857493 0.857493i
\(35\) 4.00000 2.00000i 0.676123 0.338062i
\(36\) 1.00000i 0.166667i
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) −3.00000 3.00000i −0.486664 0.486664i
\(39\) 5.00000 1.00000i 0.800641 0.160128i
\(40\) 1.00000 + 2.00000i 0.158114 + 0.316228i
\(41\) 1.00000 1.00000i 0.156174 0.156174i −0.624695 0.780869i \(-0.714777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 2.00000 + 2.00000i 0.308607 + 0.308607i
\(43\) 5.00000 + 5.00000i 0.762493 + 0.762493i 0.976772 0.214280i \(-0.0687403\pi\)
−0.214280 + 0.976772i \(0.568740\pi\)
\(44\) 1.00000 + 1.00000i 0.150756 + 0.150756i
\(45\) −2.00000 + 1.00000i −0.298142 + 0.149071i
\(46\) −5.00000 5.00000i −0.737210 0.737210i
\(47\) 2.00000i 0.291730i −0.989305 0.145865i \(-0.953403\pi\)
0.989305 0.145865i \(-0.0465965\pi\)
\(48\) −1.00000 + 1.00000i −0.144338 + 0.144338i
\(49\) 3.00000 0.428571
\(50\) −3.00000 + 4.00000i −0.424264 + 0.565685i
\(51\) 10.0000i 1.40028i
\(52\) −3.00000 2.00000i −0.416025 0.277350i
\(53\) −1.00000 + 1.00000i −0.137361 + 0.137361i −0.772444 0.635083i \(-0.780966\pi\)
0.635083 + 0.772444i \(0.280966\pi\)
\(54\) −4.00000 4.00000i −0.544331 0.544331i
\(55\) −1.00000 + 3.00000i −0.134840 + 0.404520i
\(56\) 2.00000i 0.267261i
\(57\) 6.00000 0.794719
\(58\) 4.00000i 0.525226i
\(59\) 3.00000 3.00000i 0.390567 0.390567i −0.484323 0.874889i \(-0.660934\pi\)
0.874889 + 0.484323i \(0.160934\pi\)
\(60\) −3.00000 1.00000i −0.387298 0.129099i
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 1.00000 1.00000i 0.127000 0.127000i
\(63\) 2.00000 0.251976
\(64\) 1.00000 0.125000
\(65\) 1.00000 8.00000i 0.124035 0.992278i
\(66\) −2.00000 −0.246183
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 5.00000 5.00000i 0.606339 0.606339i
\(69\) 10.0000 1.20386
\(70\) 4.00000 2.00000i 0.478091 0.239046i
\(71\) 1.00000 1.00000i 0.118678 0.118678i −0.645273 0.763952i \(-0.723257\pi\)
0.763952 + 0.645273i \(0.223257\pi\)
\(72\) 1.00000i 0.117851i
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 8.00000i 0.929981i
\(75\) −1.00000 7.00000i −0.115470 0.808290i
\(76\) −3.00000 3.00000i −0.344124 0.344124i
\(77\) 2.00000 2.00000i 0.227921 0.227921i
\(78\) 5.00000 1.00000i 0.566139 0.113228i
\(79\) 14.0000i 1.57512i 0.616236 + 0.787562i \(0.288657\pi\)
−0.616236 + 0.787562i \(0.711343\pi\)
\(80\) 1.00000 + 2.00000i 0.111803 + 0.223607i
\(81\) 5.00000 0.555556
\(82\) 1.00000 1.00000i 0.110432 0.110432i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 2.00000 + 2.00000i 0.218218 + 0.218218i
\(85\) 15.0000 + 5.00000i 1.62698 + 0.542326i
\(86\) 5.00000 + 5.00000i 0.539164 + 0.539164i
\(87\) −4.00000 4.00000i −0.428845 0.428845i
\(88\) 1.00000 + 1.00000i 0.106600 + 0.106600i
\(89\) −7.00000 + 7.00000i −0.741999 + 0.741999i −0.972962 0.230964i \(-0.925812\pi\)
0.230964 + 0.972962i \(0.425812\pi\)
\(90\) −2.00000 + 1.00000i −0.210819 + 0.105409i
\(91\) −4.00000 + 6.00000i −0.419314 + 0.628971i
\(92\) −5.00000 5.00000i −0.521286 0.521286i
\(93\) 2.00000i 0.207390i
\(94\) 2.00000i 0.206284i
\(95\) 3.00000 9.00000i 0.307794 0.923381i
\(96\) −1.00000 + 1.00000i −0.102062 + 0.102062i
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 3.00000 0.303046
\(99\) −1.00000 + 1.00000i −0.100504 + 0.100504i
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 10.0000i 0.990148i
\(103\) −5.00000 5.00000i −0.492665 0.492665i 0.416480 0.909145i \(-0.363264\pi\)
−0.909145 + 0.416480i \(0.863264\pi\)
\(104\) −3.00000 2.00000i −0.294174 0.196116i
\(105\) −2.00000 + 6.00000i −0.195180 + 0.585540i
\(106\) −1.00000 + 1.00000i −0.0971286 + 0.0971286i
\(107\) 13.0000 + 13.0000i 1.25676 + 1.25676i 0.952632 + 0.304125i \(0.0983642\pi\)
0.304125 + 0.952632i \(0.401636\pi\)
\(108\) −4.00000 4.00000i −0.384900 0.384900i
\(109\) −13.0000 13.0000i −1.24517 1.24517i −0.957826 0.287348i \(-0.907226\pi\)
−0.287348 0.957826i \(-0.592774\pi\)
\(110\) −1.00000 + 3.00000i −0.0953463 + 0.286039i
\(111\) −8.00000 8.00000i −0.759326 0.759326i
\(112\) 2.00000i 0.188982i
\(113\) 9.00000 9.00000i 0.846649 0.846649i −0.143065 0.989713i \(-0.545696\pi\)
0.989713 + 0.143065i \(0.0456957\pi\)
\(114\) 6.00000 0.561951
\(115\) 5.00000 15.0000i 0.466252 1.39876i
\(116\) 4.00000i 0.371391i
\(117\) 2.00000 3.00000i 0.184900 0.277350i
\(118\) 3.00000 3.00000i 0.276172 0.276172i
\(119\) −10.0000 10.0000i −0.916698 0.916698i
\(120\) −3.00000 1.00000i −0.273861 0.0912871i
\(121\) 9.00000i 0.818182i
\(122\) 2.00000 0.181071
\(123\) 2.00000i 0.180334i
\(124\) 1.00000 1.00000i 0.0898027 0.0898027i
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) 2.00000 0.178174
\(127\) −15.0000 + 15.0000i −1.33103 + 1.33103i −0.426589 + 0.904445i \(0.640285\pi\)
−0.904445 + 0.426589i \(0.859715\pi\)
\(128\) 1.00000 0.0883883
\(129\) −10.0000 −0.880451
\(130\) 1.00000 8.00000i 0.0877058 0.701646i
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) −2.00000 −0.174078
\(133\) −6.00000 + 6.00000i −0.520266 + 0.520266i
\(134\) −12.0000 −1.03664
\(135\) 4.00000 12.0000i 0.344265 1.03280i
\(136\) 5.00000 5.00000i 0.428746 0.428746i
\(137\) 12.0000i 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 10.0000 0.851257
\(139\) 14.0000i 1.18746i 0.804663 + 0.593732i \(0.202346\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(140\) 4.00000 2.00000i 0.338062 0.169031i
\(141\) 2.00000 + 2.00000i 0.168430 + 0.168430i
\(142\) 1.00000 1.00000i 0.0839181 0.0839181i
\(143\) −1.00000 5.00000i −0.0836242 0.418121i
\(144\) 1.00000i 0.0833333i
\(145\) −8.00000 + 4.00000i −0.664364 + 0.332182i
\(146\) −6.00000 −0.496564
\(147\) −3.00000 + 3.00000i −0.247436 + 0.247436i
\(148\) 8.00000i 0.657596i
\(149\) −13.0000 13.0000i −1.06500 1.06500i −0.997735 0.0672664i \(-0.978572\pi\)
−0.0672664 0.997735i \(-0.521428\pi\)
\(150\) −1.00000 7.00000i −0.0816497 0.571548i
\(151\) −9.00000 9.00000i −0.732410 0.732410i 0.238687 0.971097i \(-0.423283\pi\)
−0.971097 + 0.238687i \(0.923283\pi\)
\(152\) −3.00000 3.00000i −0.243332 0.243332i
\(153\) 5.00000 + 5.00000i 0.404226 + 0.404226i
\(154\) 2.00000 2.00000i 0.161165 0.161165i
\(155\) 3.00000 + 1.00000i 0.240966 + 0.0803219i
\(156\) 5.00000 1.00000i 0.400320 0.0800641i
\(157\) 3.00000 + 3.00000i 0.239426 + 0.239426i 0.816612 0.577186i \(-0.195849\pi\)
−0.577186 + 0.816612i \(0.695849\pi\)
\(158\) 14.0000i 1.11378i
\(159\) 2.00000i 0.158610i
\(160\) 1.00000 + 2.00000i 0.0790569 + 0.158114i
\(161\) −10.0000 + 10.0000i −0.788110 + 0.788110i
\(162\) 5.00000 0.392837
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 1.00000 1.00000i 0.0780869 0.0780869i
\(165\) −2.00000 4.00000i −0.155700 0.311400i
\(166\) 6.00000i 0.465690i
\(167\) 2.00000i 0.154765i −0.997001 0.0773823i \(-0.975344\pi\)
0.997001 0.0773823i \(-0.0246562\pi\)
\(168\) 2.00000 + 2.00000i 0.154303 + 0.154303i
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 15.0000 + 5.00000i 1.15045 + 0.383482i
\(171\) 3.00000 3.00000i 0.229416 0.229416i
\(172\) 5.00000 + 5.00000i 0.381246 + 0.381246i
\(173\) 15.0000 + 15.0000i 1.14043 + 1.14043i 0.988372 + 0.152057i \(0.0485898\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) −4.00000 4.00000i −0.303239 0.303239i
\(175\) 8.00000 + 6.00000i 0.604743 + 0.453557i
\(176\) 1.00000 + 1.00000i 0.0753778 + 0.0753778i
\(177\) 6.00000i 0.450988i
\(178\) −7.00000 + 7.00000i −0.524672 + 0.524672i
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) −2.00000 + 1.00000i −0.149071 + 0.0745356i
\(181\) 20.0000i 1.48659i −0.668965 0.743294i \(-0.733262\pi\)
0.668965 0.743294i \(-0.266738\pi\)
\(182\) −4.00000 + 6.00000i −0.296500 + 0.444750i
\(183\) −2.00000 + 2.00000i −0.147844 + 0.147844i
\(184\) −5.00000 5.00000i −0.368605 0.368605i
\(185\) −16.0000 + 8.00000i −1.17634 + 0.588172i
\(186\) 2.00000i 0.146647i
\(187\) 10.0000 0.731272
\(188\) 2.00000i 0.145865i
\(189\) −8.00000 + 8.00000i −0.581914 + 0.581914i
\(190\) 3.00000 9.00000i 0.217643 0.652929i
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) −1.00000 + 1.00000i −0.0721688 + 0.0721688i
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) −2.00000 −0.143592
\(195\) 7.00000 + 9.00000i 0.501280 + 0.644503i
\(196\) 3.00000 0.214286
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) −1.00000 + 1.00000i −0.0710669 + 0.0710669i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −3.00000 + 4.00000i −0.212132 + 0.282843i
\(201\) 12.0000 12.0000i 0.846415 0.846415i
\(202\) 0 0
\(203\) 8.00000 0.561490
\(204\) 10.0000i 0.700140i
\(205\) 3.00000 + 1.00000i 0.209529 + 0.0698430i
\(206\) −5.00000 5.00000i −0.348367 0.348367i
\(207\) 5.00000 5.00000i 0.347524 0.347524i
\(208\) −3.00000 2.00000i −0.208013 0.138675i
\(209\) 6.00000i 0.415029i
\(210\) −2.00000 + 6.00000i −0.138013 + 0.414039i
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −1.00000 + 1.00000i −0.0686803 + 0.0686803i
\(213\) 2.00000i 0.137038i
\(214\) 13.0000 + 13.0000i 0.888662 + 0.888662i
\(215\) −5.00000 + 15.0000i −0.340997 + 1.02299i
\(216\) −4.00000 4.00000i −0.272166 0.272166i
\(217\) −2.00000 2.00000i −0.135769 0.135769i
\(218\) −13.0000 13.0000i −0.880471 0.880471i
\(219\) 6.00000 6.00000i 0.405442 0.405442i
\(220\) −1.00000 + 3.00000i −0.0674200 + 0.202260i
\(221\) −25.0000 + 5.00000i −1.68168 + 0.336336i
\(222\) −8.00000 8.00000i −0.536925 0.536925i
\(223\) 6.00000i 0.401790i 0.979613 + 0.200895i \(0.0643850\pi\)
−0.979613 + 0.200895i \(0.935615\pi\)
\(224\) 2.00000i 0.133631i
\(225\) −4.00000 3.00000i −0.266667 0.200000i
\(226\) 9.00000 9.00000i 0.598671 0.598671i
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 6.00000 0.397360
\(229\) 3.00000 3.00000i 0.198246 0.198246i −0.601002 0.799248i \(-0.705232\pi\)
0.799248 + 0.601002i \(0.205232\pi\)
\(230\) 5.00000 15.0000i 0.329690 0.989071i
\(231\) 4.00000i 0.263181i
\(232\) 4.00000i 0.262613i
\(233\) 5.00000 + 5.00000i 0.327561 + 0.327561i 0.851658 0.524097i \(-0.175597\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 2.00000 3.00000i 0.130744 0.196116i
\(235\) 4.00000 2.00000i 0.260931 0.130466i
\(236\) 3.00000 3.00000i 0.195283 0.195283i
\(237\) −14.0000 14.0000i −0.909398 0.909398i
\(238\) −10.0000 10.0000i −0.648204 0.648204i
\(239\) 7.00000 + 7.00000i 0.452792 + 0.452792i 0.896280 0.443488i \(-0.146259\pi\)
−0.443488 + 0.896280i \(0.646259\pi\)
\(240\) −3.00000 1.00000i −0.193649 0.0645497i
\(241\) 1.00000 + 1.00000i 0.0644157 + 0.0644157i 0.738581 0.674165i \(-0.235496\pi\)
−0.674165 + 0.738581i \(0.735496\pi\)
\(242\) 9.00000i 0.578542i
\(243\) 7.00000 7.00000i 0.449050 0.449050i
\(244\) 2.00000 0.128037
\(245\) 3.00000 + 6.00000i 0.191663 + 0.383326i
\(246\) 2.00000i 0.127515i
\(247\) 3.00000 + 15.0000i 0.190885 + 0.954427i
\(248\) 1.00000 1.00000i 0.0635001 0.0635001i
\(249\) −6.00000 6.00000i −0.380235 0.380235i
\(250\) −11.0000 2.00000i −0.695701 0.126491i
\(251\) 30.0000i 1.89358i 0.321847 + 0.946792i \(0.395696\pi\)
−0.321847 + 0.946792i \(0.604304\pi\)
\(252\) 2.00000 0.125988
\(253\) 10.0000i 0.628695i
\(254\) −15.0000 + 15.0000i −0.941184 + 0.941184i
\(255\) −20.0000 + 10.0000i −1.25245 + 0.626224i
\(256\) 1.00000 0.0625000
\(257\) −15.0000 + 15.0000i −0.935674 + 0.935674i −0.998053 0.0623783i \(-0.980131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) −10.0000 −0.622573
\(259\) 16.0000 0.994192
\(260\) 1.00000 8.00000i 0.0620174 0.496139i
\(261\) −4.00000 −0.247594
\(262\) 12.0000 0.741362
\(263\) 9.00000 9.00000i 0.554964 0.554964i −0.372906 0.927869i \(-0.621638\pi\)
0.927869 + 0.372906i \(0.121638\pi\)
\(264\) −2.00000 −0.123091
\(265\) −3.00000 1.00000i −0.184289 0.0614295i
\(266\) −6.00000 + 6.00000i −0.367884 + 0.367884i
\(267\) 14.0000i 0.856786i
\(268\) −12.0000 −0.733017
\(269\) 16.0000i 0.975537i −0.872973 0.487769i \(-0.837811\pi\)
0.872973 0.487769i \(-0.162189\pi\)
\(270\) 4.00000 12.0000i 0.243432 0.730297i
\(271\) −9.00000 9.00000i −0.546711 0.546711i 0.378777 0.925488i \(-0.376345\pi\)
−0.925488 + 0.378777i \(0.876345\pi\)
\(272\) 5.00000 5.00000i 0.303170 0.303170i
\(273\) −2.00000 10.0000i −0.121046 0.605228i
\(274\) 12.0000i 0.724947i
\(275\) −7.00000 + 1.00000i −0.422116 + 0.0603023i
\(276\) 10.0000 0.601929
\(277\) −5.00000 + 5.00000i −0.300421 + 0.300421i −0.841178 0.540758i \(-0.818138\pi\)
0.540758 + 0.841178i \(0.318138\pi\)
\(278\) 14.0000i 0.839664i
\(279\) 1.00000 + 1.00000i 0.0598684 + 0.0598684i
\(280\) 4.00000 2.00000i 0.239046 0.119523i
\(281\) 21.0000 + 21.0000i 1.25275 + 1.25275i 0.954480 + 0.298275i \(0.0964112\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 2.00000 + 2.00000i 0.119098 + 0.119098i
\(283\) −15.0000 15.0000i −0.891657 0.891657i 0.103022 0.994679i \(-0.467149\pi\)
−0.994679 + 0.103022i \(0.967149\pi\)
\(284\) 1.00000 1.00000i 0.0593391 0.0593391i
\(285\) 6.00000 + 12.0000i 0.355409 + 0.710819i
\(286\) −1.00000 5.00000i −0.0591312 0.295656i
\(287\) −2.00000 2.00000i −0.118056 0.118056i
\(288\) 1.00000i 0.0589256i
\(289\) 33.0000i 1.94118i
\(290\) −8.00000 + 4.00000i −0.469776 + 0.234888i
\(291\) 2.00000 2.00000i 0.117242 0.117242i
\(292\) −6.00000 −0.351123
\(293\) −26.0000 −1.51894 −0.759468 0.650545i \(-0.774541\pi\)
−0.759468 + 0.650545i \(0.774541\pi\)
\(294\) −3.00000 + 3.00000i −0.174964 + 0.174964i
\(295\) 9.00000 + 3.00000i 0.524000 + 0.174667i
\(296\) 8.00000i 0.464991i
\(297\) 8.00000i 0.464207i
\(298\) −13.0000 13.0000i −0.753070 0.753070i
\(299\) 5.00000 + 25.0000i 0.289157 + 1.44579i
\(300\) −1.00000 7.00000i −0.0577350 0.404145i
\(301\) 10.0000 10.0000i 0.576390 0.576390i
\(302\) −9.00000 9.00000i −0.517892 0.517892i
\(303\) 0 0
\(304\) −3.00000 3.00000i −0.172062 0.172062i
\(305\) 2.00000 + 4.00000i 0.114520 + 0.229039i
\(306\) 5.00000 + 5.00000i 0.285831 + 0.285831i
\(307\) 2.00000i 0.114146i −0.998370 0.0570730i \(-0.981823\pi\)
0.998370 0.0570730i \(-0.0181768\pi\)
\(308\) 2.00000 2.00000i 0.113961 0.113961i
\(309\) 10.0000 0.568880
\(310\) 3.00000 + 1.00000i 0.170389 + 0.0567962i
\(311\) 10.0000i 0.567048i −0.958965 0.283524i \(-0.908496\pi\)
0.958965 0.283524i \(-0.0915036\pi\)
\(312\) 5.00000 1.00000i 0.283069 0.0566139i
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) 3.00000 + 3.00000i 0.169300 + 0.169300i
\(315\) 2.00000 + 4.00000i 0.112687 + 0.225374i
\(316\) 14.0000i 0.787562i
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 2.00000i 0.112154i
\(319\) −4.00000 + 4.00000i −0.223957 + 0.223957i
\(320\) 1.00000 + 2.00000i 0.0559017 + 0.111803i
\(321\) −26.0000 −1.45118
\(322\) −10.0000 + 10.0000i −0.557278 + 0.557278i
\(323\) −30.0000 −1.66924
\(324\) 5.00000 0.277778
\(325\) 17.0000 6.00000i 0.942990 0.332820i
\(326\) 4.00000 0.221540
\(327\) 26.0000 1.43780
\(328\) 1.00000 1.00000i 0.0552158 0.0552158i
\(329\) −4.00000 −0.220527
\(330\) −2.00000 4.00000i −0.110096 0.220193i
\(331\) −9.00000 + 9.00000i −0.494685 + 0.494685i −0.909779 0.415094i \(-0.863749\pi\)
0.415094 + 0.909779i \(0.363749\pi\)
\(332\) 6.00000i 0.329293i
\(333\) −8.00000 −0.438397
\(334\) 2.00000i 0.109435i
\(335\) −12.0000 24.0000i −0.655630 1.31126i
\(336\) 2.00000 + 2.00000i 0.109109 + 0.109109i
\(337\) 5.00000 5.00000i 0.272367 0.272367i −0.557685 0.830053i \(-0.688310\pi\)
0.830053 + 0.557685i \(0.188310\pi\)
\(338\) 5.00000 + 12.0000i 0.271964 + 0.652714i
\(339\) 18.0000i 0.977626i
\(340\) 15.0000 + 5.00000i 0.813489 + 0.271163i
\(341\) 2.00000 0.108306
\(342\) 3.00000 3.00000i 0.162221 0.162221i
\(343\) 20.0000i 1.07990i
\(344\) 5.00000 + 5.00000i 0.269582 + 0.269582i
\(345\) 10.0000 + 20.0000i 0.538382 + 1.07676i
\(346\) 15.0000 + 15.0000i 0.806405 + 0.806405i
\(347\) −7.00000 7.00000i −0.375780 0.375780i 0.493797 0.869577i \(-0.335608\pi\)
−0.869577 + 0.493797i \(0.835608\pi\)
\(348\) −4.00000 4.00000i −0.214423 0.214423i
\(349\) 3.00000 3.00000i 0.160586 0.160586i −0.622240 0.782826i \(-0.713777\pi\)
0.782826 + 0.622240i \(0.213777\pi\)
\(350\) 8.00000 + 6.00000i 0.427618 + 0.320713i
\(351\) 4.00000 + 20.0000i 0.213504 + 1.06752i
\(352\) 1.00000 + 1.00000i 0.0533002 + 0.0533002i
\(353\) 16.0000i 0.851594i 0.904819 + 0.425797i \(0.140006\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 6.00000i 0.318896i
\(355\) 3.00000 + 1.00000i 0.159223 + 0.0530745i
\(356\) −7.00000 + 7.00000i −0.370999 + 0.370999i
\(357\) 20.0000 1.05851
\(358\) 20.0000 1.05703
\(359\) 13.0000 13.0000i 0.686114 0.686114i −0.275257 0.961371i \(-0.588763\pi\)
0.961371 + 0.275257i \(0.0887629\pi\)
\(360\) −2.00000 + 1.00000i −0.105409 + 0.0527046i
\(361\) 1.00000i 0.0526316i
\(362\) 20.0000i 1.05118i
\(363\) 9.00000 + 9.00000i 0.472377 + 0.472377i
\(364\) −4.00000 + 6.00000i −0.209657 + 0.314485i
\(365\) −6.00000 12.0000i −0.314054 0.628109i
\(366\) −2.00000 + 2.00000i −0.104542 + 0.104542i
\(367\) 3.00000 + 3.00000i 0.156599 + 0.156599i 0.781058 0.624459i \(-0.214680\pi\)
−0.624459 + 0.781058i \(0.714680\pi\)
\(368\) −5.00000 5.00000i −0.260643 0.260643i
\(369\) 1.00000 + 1.00000i 0.0520579 + 0.0520579i
\(370\) −16.0000 + 8.00000i −0.831800 + 0.415900i
\(371\) 2.00000 + 2.00000i 0.103835 + 0.103835i
\(372\) 2.00000i 0.103695i
\(373\) −1.00000 + 1.00000i −0.0517780 + 0.0517780i −0.732522 0.680744i \(-0.761657\pi\)
0.680744 + 0.732522i \(0.261657\pi\)
\(374\) 10.0000 0.517088
\(375\) 13.0000 9.00000i 0.671317 0.464758i
\(376\) 2.00000i 0.103142i
\(377\) 8.00000 12.0000i 0.412021 0.618031i
\(378\) −8.00000 + 8.00000i −0.411476 + 0.411476i
\(379\) 17.0000 + 17.0000i 0.873231 + 0.873231i 0.992823 0.119592i \(-0.0381586\pi\)
−0.119592 + 0.992823i \(0.538159\pi\)
\(380\) 3.00000 9.00000i 0.153897 0.461690i
\(381\) 30.0000i 1.53695i
\(382\) −8.00000 −0.409316
\(383\) 6.00000i 0.306586i 0.988181 + 0.153293i \(0.0489878\pi\)
−0.988181 + 0.153293i \(0.951012\pi\)
\(384\) −1.00000 + 1.00000i −0.0510310 + 0.0510310i
\(385\) 6.00000 + 2.00000i 0.305788 + 0.101929i
\(386\) 14.0000 0.712581
\(387\) −5.00000 + 5.00000i −0.254164 + 0.254164i
\(388\) −2.00000 −0.101535
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 7.00000 + 9.00000i 0.354459 + 0.455733i
\(391\) −50.0000 −2.52861
\(392\) 3.00000 0.151523
\(393\) −12.0000 + 12.0000i −0.605320 + 0.605320i
\(394\) 18.0000 0.906827
\(395\) −28.0000 + 14.0000i −1.40883 + 0.704416i
\(396\) −1.00000 + 1.00000i −0.0502519 + 0.0502519i
\(397\) 8.00000i 0.401508i 0.979642 + 0.200754i \(0.0643393\pi\)
−0.979642 + 0.200754i \(0.935661\pi\)
\(398\) 0 0
\(399\) 12.0000i 0.600751i
\(400\) −3.00000 + 4.00000i −0.150000 + 0.200000i
\(401\) 1.00000 + 1.00000i 0.0499376 + 0.0499376i 0.731635 0.681697i \(-0.238758\pi\)
−0.681697 + 0.731635i \(0.738758\pi\)
\(402\) 12.0000 12.0000i 0.598506 0.598506i
\(403\) −5.00000 + 1.00000i −0.249068 + 0.0498135i
\(404\) 0 0
\(405\) 5.00000 + 10.0000i 0.248452 + 0.496904i
\(406\) 8.00000 0.397033
\(407\) −8.00000 + 8.00000i −0.396545 + 0.396545i
\(408\) 10.0000i 0.495074i
\(409\) −3.00000 3.00000i −0.148340 0.148340i 0.629036 0.777376i \(-0.283450\pi\)
−0.777376 + 0.629036i \(0.783450\pi\)
\(410\) 3.00000 + 1.00000i 0.148159 + 0.0493865i
\(411\) 12.0000 + 12.0000i 0.591916 + 0.591916i
\(412\) −5.00000 5.00000i −0.246332 0.246332i
\(413\) −6.00000 6.00000i −0.295241 0.295241i
\(414\) 5.00000 5.00000i 0.245737 0.245737i
\(415\) −12.0000 + 6.00000i −0.589057 + 0.294528i
\(416\) −3.00000 2.00000i −0.147087 0.0980581i
\(417\) −14.0000 14.0000i −0.685583 0.685583i
\(418\) 6.00000i 0.293470i
\(419\) 26.0000i 1.27018i −0.772437 0.635092i \(-0.780962\pi\)
0.772437 0.635092i \(-0.219038\pi\)
\(420\) −2.00000 + 6.00000i −0.0975900 + 0.292770i
\(421\) −9.00000 + 9.00000i −0.438633 + 0.438633i −0.891552 0.452919i \(-0.850383\pi\)
0.452919 + 0.891552i \(0.350383\pi\)
\(422\) 12.0000 0.584151
\(423\) 2.00000 0.0972433
\(424\) −1.00000 + 1.00000i −0.0485643 + 0.0485643i
\(425\) 5.00000 + 35.0000i 0.242536 + 1.69775i
\(426\) 2.00000i 0.0969003i
\(427\) 4.00000i 0.193574i
\(428\) 13.0000 + 13.0000i 0.628379 + 0.628379i
\(429\) 6.00000 + 4.00000i 0.289683 + 0.193122i
\(430\) −5.00000 + 15.0000i −0.241121 + 0.723364i
\(431\) 21.0000 21.0000i 1.01153 1.01153i 0.0116017 0.999933i \(-0.496307\pi\)
0.999933 0.0116017i \(-0.00369302\pi\)
\(432\) −4.00000 4.00000i −0.192450 0.192450i
\(433\) −15.0000 15.0000i −0.720854 0.720854i 0.247925 0.968779i \(-0.420251\pi\)
−0.968779 + 0.247925i \(0.920251\pi\)
\(434\) −2.00000 2.00000i −0.0960031 0.0960031i
\(435\) 4.00000 12.0000i 0.191785 0.575356i
\(436\) −13.0000 13.0000i −0.622587 0.622587i
\(437\) 30.0000i 1.43509i
\(438\) 6.00000 6.00000i 0.286691 0.286691i
\(439\) 40.0000 1.90910 0.954548 0.298057i \(-0.0963387\pi\)
0.954548 + 0.298057i \(0.0963387\pi\)
\(440\) −1.00000 + 3.00000i −0.0476731 + 0.143019i
\(441\) 3.00000i 0.142857i
\(442\) −25.0000 + 5.00000i −1.18913 + 0.237826i
\(443\) 19.0000 19.0000i 0.902717 0.902717i −0.0929532 0.995670i \(-0.529631\pi\)
0.995670 + 0.0929532i \(0.0296307\pi\)
\(444\) −8.00000 8.00000i −0.379663 0.379663i
\(445\) −21.0000 7.00000i −0.995495 0.331832i
\(446\) 6.00000i 0.284108i
\(447\) 26.0000 1.22976
\(448\) 2.00000i 0.0944911i
\(449\) −7.00000 + 7.00000i −0.330350 + 0.330350i −0.852720 0.522369i \(-0.825048\pi\)
0.522369 + 0.852720i \(0.325048\pi\)
\(450\) −4.00000 3.00000i −0.188562 0.141421i
\(451\) 2.00000 0.0941763
\(452\) 9.00000 9.00000i 0.423324 0.423324i
\(453\) 18.0000 0.845714
\(454\) −12.0000 −0.563188
\(455\) −16.0000 2.00000i −0.750092 0.0937614i
\(456\) 6.00000 0.280976
\(457\) 38.0000 1.77757 0.888783 0.458329i \(-0.151552\pi\)
0.888783 + 0.458329i \(0.151552\pi\)
\(458\) 3.00000 3.00000i 0.140181 0.140181i
\(459\) −40.0000 −1.86704
\(460\) 5.00000 15.0000i 0.233126 0.699379i
\(461\) 11.0000 11.0000i 0.512321 0.512321i −0.402916 0.915237i \(-0.632003\pi\)
0.915237 + 0.402916i \(0.132003\pi\)
\(462\) 4.00000i 0.186097i
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 4.00000i 0.185695i
\(465\) −4.00000 + 2.00000i −0.185496 + 0.0927478i
\(466\) 5.00000 + 5.00000i 0.231621 + 0.231621i
\(467\) −5.00000 + 5.00000i −0.231372 + 0.231372i −0.813265 0.581893i \(-0.802312\pi\)
0.581893 + 0.813265i \(0.302312\pi\)
\(468\) 2.00000 3.00000i 0.0924500 0.138675i
\(469\) 24.0000i 1.10822i
\(470\) 4.00000 2.00000i 0.184506 0.0922531i
\(471\) −6.00000 −0.276465
\(472\) 3.00000 3.00000i 0.138086 0.138086i
\(473\) 10.0000i 0.459800i
\(474\) −14.0000 14.0000i −0.643041 0.643041i
\(475\) 21.0000 3.00000i 0.963546 0.137649i
\(476\) −10.0000 10.0000i −0.458349 0.458349i
\(477\) −1.00000 1.00000i −0.0457869 0.0457869i
\(478\) 7.00000 + 7.00000i 0.320173 + 0.320173i
\(479\) 13.0000 13.0000i 0.593985 0.593985i −0.344720 0.938705i \(-0.612026\pi\)
0.938705 + 0.344720i \(0.112026\pi\)
\(480\) −3.00000 1.00000i −0.136931 0.0456435i
\(481\) 16.0000 24.0000i 0.729537 1.09431i
\(482\) 1.00000 + 1.00000i 0.0455488 + 0.0455488i
\(483\) 20.0000i 0.910032i
\(484\) 9.00000i 0.409091i
\(485\) −2.00000 4.00000i −0.0908153 0.181631i
\(486\) 7.00000 7.00000i 0.317526 0.317526i
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 2.00000 0.0905357
\(489\) −4.00000 + 4.00000i −0.180886 + 0.180886i
\(490\) 3.00000 + 6.00000i 0.135526 + 0.271052i
\(491\) 10.0000i 0.451294i −0.974209 0.225647i \(-0.927550\pi\)
0.974209 0.225647i \(-0.0724495\pi\)
\(492\) 2.00000i 0.0901670i
\(493\) 20.0000 + 20.0000i 0.900755 + 0.900755i
\(494\) 3.00000 + 15.0000i 0.134976 + 0.674882i
\(495\) −3.00000 1.00000i −0.134840 0.0449467i
\(496\) 1.00000 1.00000i 0.0449013 0.0449013i
\(497\) −2.00000 2.00000i −0.0897123 0.0897123i
\(498\) −6.00000 6.00000i −0.268866 0.268866i
\(499\) −23.0000 23.0000i −1.02962 1.02962i −0.999548 0.0300737i \(-0.990426\pi\)
−0.0300737 0.999548i \(-0.509574\pi\)
\(500\) −11.0000 2.00000i −0.491935 0.0894427i
\(501\) 2.00000 + 2.00000i 0.0893534 + 0.0893534i
\(502\) 30.0000i 1.33897i
\(503\) 9.00000 9.00000i 0.401290 0.401290i −0.477397 0.878688i \(-0.658420\pi\)
0.878688 + 0.477397i \(0.158420\pi\)
\(504\) 2.00000 0.0890871
\(505\) 0 0
\(506\) 10.0000i 0.444554i
\(507\) −17.0000 7.00000i −0.754997 0.310881i
\(508\) −15.0000 + 15.0000i −0.665517 + 0.665517i
\(509\) −13.0000 13.0000i −0.576215 0.576215i 0.357643 0.933858i \(-0.383580\pi\)
−0.933858 + 0.357643i \(0.883580\pi\)
\(510\) −20.0000 + 10.0000i −0.885615 + 0.442807i
\(511\) 12.0000i 0.530849i
\(512\) 1.00000 0.0441942
\(513\) 24.0000i 1.05963i
\(514\) −15.0000 + 15.0000i −0.661622 + 0.661622i
\(515\) 5.00000 15.0000i 0.220326 0.660979i
\(516\) −10.0000 −0.440225
\(517\) 2.00000 2.00000i 0.0879599 0.0879599i
\(518\) 16.0000 0.703000
\(519\) −30.0000 −1.31685
\(520\) 1.00000 8.00000i 0.0438529 0.350823i
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) −4.00000 −0.175075
\(523\) −21.0000 + 21.0000i −0.918266 + 0.918266i −0.996903 0.0786374i \(-0.974943\pi\)
0.0786374 + 0.996903i \(0.474943\pi\)
\(524\) 12.0000 0.524222
\(525\) −14.0000 + 2.00000i −0.611010 + 0.0872872i
\(526\) 9.00000 9.00000i 0.392419 0.392419i
\(527\) 10.0000i 0.435607i
\(528\) −2.00000 −0.0870388
\(529\) 27.0000i 1.17391i
\(530\) −3.00000 1.00000i −0.130312 0.0434372i
\(531\) 3.00000 + 3.00000i 0.130189 + 0.130189i
\(532\) −6.00000 + 6.00000i −0.260133 + 0.260133i
\(533\) −5.00000 + 1.00000i −0.216574 + 0.0433148i
\(534\) 14.0000i 0.605839i
\(535\) −13.0000 + 39.0000i −0.562039 + 1.68612i
\(536\) −12.0000 −0.518321
\(537\) −20.0000 + 20.0000i −0.863064 + 0.863064i
\(538\) 16.0000i 0.689809i
\(539\) 3.00000 + 3.00000i 0.129219 + 0.129219i
\(540\) 4.00000 12.0000i 0.172133 0.516398i
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) −9.00000 9.00000i −0.386583 0.386583i
\(543\) 20.0000 + 20.0000i 0.858282 + 0.858282i
\(544\) 5.00000 5.00000i 0.214373 0.214373i
\(545\) 13.0000 39.0000i 0.556859 1.67058i
\(546\) −2.00000 10.0000i −0.0855921 0.427960i
\(547\) −7.00000 7.00000i −0.299298 0.299298i 0.541441 0.840739i \(-0.317879\pi\)
−0.840739 + 0.541441i \(0.817879\pi\)
\(548\) 12.0000i 0.512615i
\(549\) 2.00000i 0.0853579i
\(550\) −7.00000 + 1.00000i −0.298481 + 0.0426401i
\(551\) 12.0000 12.0000i 0.511217 0.511217i
\(552\) 10.0000 0.425628
\(553\) 28.0000 1.19068
\(554\) −5.00000 + 5.00000i −0.212430 + 0.212430i
\(555\) 8.00000 24.0000i 0.339581 1.01874i
\(556\) 14.0000i 0.593732i
\(557\) 8.00000i 0.338971i 0.985533 + 0.169485i \(0.0542106\pi\)
−0.985533 + 0.169485i \(0.945789\pi\)
\(558\) 1.00000 + 1.00000i 0.0423334 + 0.0423334i
\(559\) −5.00000 25.0000i −0.211477 1.05739i
\(560\) 4.00000 2.00000i 0.169031 0.0845154i
\(561\) −10.0000 + 10.0000i −0.422200 + 0.422200i
\(562\) 21.0000 + 21.0000i 0.885832 + 0.885832i
\(563\) 5.00000 + 5.00000i 0.210725 + 0.210725i 0.804575 0.593851i \(-0.202393\pi\)
−0.593851 + 0.804575i \(0.702393\pi\)
\(564\) 2.00000 + 2.00000i 0.0842152 + 0.0842152i
\(565\) 27.0000 + 9.00000i 1.13590 + 0.378633i
\(566\) −15.0000 15.0000i −0.630497 0.630497i
\(567\) 10.0000i 0.419961i
\(568\) 1.00000 1.00000i 0.0419591 0.0419591i
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 6.00000 + 12.0000i 0.251312 + 0.502625i
\(571\) 10.0000i 0.418487i −0.977864 0.209243i \(-0.932900\pi\)
0.977864 0.209243i \(-0.0671001\pi\)
\(572\) −1.00000 5.00000i −0.0418121 0.209061i
\(573\) 8.00000 8.00000i 0.334205 0.334205i
\(574\) −2.00000 2.00000i −0.0834784 0.0834784i
\(575\) 35.0000 5.00000i 1.45960 0.208514i
\(576\) 1.00000i 0.0416667i
\(577\) −22.0000 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(578\) 33.0000i 1.37262i
\(579\) −14.0000 + 14.0000i −0.581820 + 0.581820i
\(580\) −8.00000 + 4.00000i −0.332182 + 0.166091i
\(581\) 12.0000 0.497844
\(582\) 2.00000 2.00000i 0.0829027 0.0829027i
\(583\) −2.00000 −0.0828315
\(584\) −6.00000 −0.248282
\(585\) 8.00000 + 1.00000i 0.330759 + 0.0413449i
\(586\) −26.0000 −1.07405
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) −3.00000 + 3.00000i −0.123718 + 0.123718i
\(589\) −6.00000 −0.247226
\(590\) 9.00000 + 3.00000i 0.370524 + 0.123508i
\(591\) −18.0000 + 18.0000i −0.740421 + 0.740421i
\(592\) 8.00000i 0.328798i
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 8.00000i 0.328244i
\(595\) 10.0000 30.0000i 0.409960 1.22988i
\(596\) −13.0000 13.0000i −0.532501 0.532501i
\(597\) 0 0
\(598\) 5.00000 + 25.0000i 0.204465 + 1.02233i
\(599\) 14.0000i 0.572024i 0.958226 + 0.286012i \(0.0923298\pi\)
−0.958226 + 0.286012i \(0.907670\pi\)
\(600\) −1.00000 7.00000i −0.0408248 0.285774i
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 10.0000 10.0000i 0.407570 0.407570i
\(603\) 12.0000i 0.488678i
\(604\) −9.00000 9.00000i −0.366205 0.366205i
\(605\) 18.0000 9.00000i 0.731804 0.365902i
\(606\) 0 0
\(607\) 3.00000 + 3.00000i 0.121766 + 0.121766i 0.765364 0.643598i \(-0.222559\pi\)
−0.643598 + 0.765364i \(0.722559\pi\)
\(608\) −3.00000 3.00000i −0.121666 0.121666i
\(609\) −8.00000 + 8.00000i −0.324176 + 0.324176i
\(610\) 2.00000 + 4.00000i 0.0809776 + 0.161955i
\(611\) −4.00000 + 6.00000i −0.161823 + 0.242734i
\(612\) 5.00000 + 5.00000i 0.202113 + 0.202113i
\(613\) 4.00000i 0.161558i −0.996732 0.0807792i \(-0.974259\pi\)
0.996732 0.0807792i \(-0.0257409\pi\)
\(614\) 2.00000i 0.0807134i
\(615\) −4.00000 + 2.00000i −0.161296 + 0.0806478i
\(616\) 2.00000 2.00000i 0.0805823 0.0805823i
\(617\) 38.0000 1.52982 0.764911 0.644136i \(-0.222783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 10.0000 0.402259
\(619\) 3.00000 3.00000i 0.120580 0.120580i −0.644242 0.764822i \(-0.722827\pi\)
0.764822 + 0.644242i \(0.222827\pi\)
\(620\) 3.00000 + 1.00000i 0.120483 + 0.0401610i
\(621\) 40.0000i 1.60514i
\(622\) 10.0000i 0.400963i
\(623\) 14.0000 + 14.0000i 0.560898 + 0.560898i
\(624\) 5.00000 1.00000i 0.200160 0.0400320i
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 9.00000 9.00000i 0.359712 0.359712i
\(627\) 6.00000 + 6.00000i 0.239617 + 0.239617i
\(628\) 3.00000 + 3.00000i 0.119713 + 0.119713i
\(629\) 40.0000 + 40.0000i 1.59490 + 1.59490i
\(630\) 2.00000 + 4.00000i 0.0796819 + 0.159364i
\(631\) 11.0000 + 11.0000i 0.437903 + 0.437903i 0.891306 0.453403i \(-0.149790\pi\)
−0.453403 + 0.891306i \(0.649790\pi\)
\(632\) 14.0000i 0.556890i
\(633\) −12.0000 + 12.0000i −0.476957 + 0.476957i
\(634\) −2.00000 −0.0794301
\(635\) −45.0000 15.0000i −1.78577 0.595257i
\(636\) 2.00000i 0.0793052i
\(637\) −9.00000 6.00000i −0.356593 0.237729i
\(638\) −4.00000 + 4.00000i −0.158362 + 0.158362i
\(639\) 1.00000 + 1.00000i 0.0395594 + 0.0395594i
\(640\) 1.00000 + 2.00000i 0.0395285 + 0.0790569i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) −26.0000 −1.02614
\(643\) 46.0000i 1.81406i 0.421063 + 0.907031i \(0.361657\pi\)
−0.421063 + 0.907031i \(0.638343\pi\)
\(644\) −10.0000 + 10.0000i −0.394055 + 0.394055i
\(645\) −10.0000 20.0000i −0.393750 0.787499i
\(646\) −30.0000 −1.18033
\(647\) 5.00000 5.00000i 0.196570 0.196570i −0.601958 0.798528i \(-0.705612\pi\)
0.798528 + 0.601958i \(0.205612\pi\)
\(648\) 5.00000 0.196419
\(649\) 6.00000 0.235521
\(650\) 17.0000 6.00000i 0.666795 0.235339i
\(651\) 4.00000 0.156772
\(652\) 4.00000 0.156652
\(653\) −21.0000 + 21.0000i −0.821794 + 0.821794i −0.986365 0.164572i \(-0.947376\pi\)
0.164572 + 0.986365i \(0.447376\pi\)
\(654\) 26.0000 1.01668
\(655\) 12.0000 + 24.0000i 0.468879 + 0.937758i
\(656\) 1.00000 1.00000i 0.0390434 0.0390434i
\(657\) 6.00000i 0.234082i
\(658\) −4.00000 −0.155936
\(659\) 14.0000i 0.545363i 0.962104 + 0.272681i \(0.0879105\pi\)
−0.962104 + 0.272681i \(0.912090\pi\)
\(660\) −2.00000 4.00000i −0.0778499 0.155700i
\(661\) 31.0000 + 31.0000i 1.20576 + 1.20576i 0.972387 + 0.233373i \(0.0749763\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) −9.00000 + 9.00000i −0.349795 + 0.349795i
\(663\) 20.0000 30.0000i 0.776736 1.16510i
\(664\) 6.00000i 0.232845i
\(665\) −18.0000 6.00000i −0.698010 0.232670i
\(666\) −8.00000 −0.309994
\(667\) 20.0000 20.0000i 0.774403 0.774403i
\(668\) 2.00000i 0.0773823i
\(669\) −6.00000 6.00000i −0.231973 0.231973i
\(670\) −12.0000 24.0000i −0.463600 0.927201i
\(671\) 2.00000 + 2.00000i 0.0772091 + 0.0772091i
\(672\) 2.00000 + 2.00000i 0.0771517 + 0.0771517i
\(673\) 5.00000 + 5.00000i 0.192736 + 0.192736i 0.796877 0.604141i \(-0.206484\pi\)
−0.604141 + 0.796877i \(0.706484\pi\)
\(674\) 5.00000 5.00000i 0.192593 0.192593i
\(675\) 28.0000 4.00000i 1.07772 0.153960i
\(676\) 5.00000 + 12.0000i 0.192308 + 0.461538i
\(677\) 23.0000 + 23.0000i 0.883962 + 0.883962i 0.993935 0.109973i \(-0.0350764\pi\)
−0.109973 + 0.993935i \(0.535076\pi\)
\(678\) 18.0000i 0.691286i
\(679\) 4.00000i 0.153506i
\(680\) 15.0000 + 5.00000i 0.575224 + 0.191741i
\(681\) 12.0000 12.0000i 0.459841 0.459841i
\(682\) 2.00000 0.0765840
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 3.00000 3.00000i 0.114708 0.114708i
\(685\) 24.0000 12.0000i 0.916993 0.458496i
\(686\) 20.0000i 0.763604i
\(687\) 6.00000i 0.228914i
\(688\) 5.00000 + 5.00000i 0.190623 + 0.190623i
\(689\) 5.00000 1.00000i 0.190485 0.0380970i
\(690\) 10.0000 + 20.0000i 0.380693 + 0.761387i
\(691\) −9.00000 + 9.00000i −0.342376 + 0.342376i −0.857260 0.514884i \(-0.827835\pi\)
0.514884 + 0.857260i \(0.327835\pi\)
\(692\) 15.0000 + 15.0000i 0.570214 + 0.570214i
\(693\) 2.00000 + 2.00000i 0.0759737 + 0.0759737i
\(694\) −7.00000 7.00000i −0.265716 0.265716i
\(695\) −28.0000 + 14.0000i −1.06210 + 0.531050i
\(696\) −4.00000 4.00000i −0.151620 0.151620i
\(697\) 10.0000i 0.378777i
\(698\) 3.00000 3.00000i 0.113552 0.113552i
\(699\) −10.0000 −0.378235
\(700\) 8.00000 + 6.00000i 0.302372 + 0.226779i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 4.00000 + 20.0000i 0.150970 + 0.754851i
\(703\) 24.0000 24.0000i 0.905177 0.905177i
\(704\) 1.00000 + 1.00000i 0.0376889 + 0.0376889i
\(705\) −2.00000 + 6.00000i −0.0753244 + 0.225973i
\(706\) 16.0000i 0.602168i
\(707\) 0 0
\(708\) 6.00000i 0.225494i
\(709\) 3.00000 3.00000i 0.112667 0.112667i −0.648526 0.761193i \(-0.724614\pi\)
0.761193 + 0.648526i \(0.224614\pi\)
\(710\) 3.00000 + 1.00000i 0.112588 + 0.0375293i
\(711\) −14.0000 −0.525041
\(712\) −7.00000 + 7.00000i −0.262336 + 0.262336i
\(713\) −10.0000 −0.374503
\(714\) 20.0000 0.748481
\(715\) 9.00000 7.00000i 0.336581 0.261785i
\(716\) 20.0000 0.747435
\(717\) −14.0000 −0.522840
\(718\) 13.0000 13.0000i 0.485156 0.485156i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −2.00000 + 1.00000i −0.0745356 + 0.0372678i
\(721\) −10.0000 + 10.0000i −0.372419 + 0.372419i
\(722\) 1.00000i 0.0372161i
\(723\) −2.00000 −0.0743808
\(724\) 20.0000i 0.743294i
\(725\) −16.0000 12.0000i −0.594225 0.445669i
\(726\) 9.00000 + 9.00000i 0.334021 + 0.334021i
\(727\) −35.0000 + 35.0000i −1.29808 + 1.29808i −0.368418 + 0.929660i \(0.620100\pi\)
−0.929660 + 0.368418i \(0.879900\pi\)
\(728\) −4.00000 + 6.00000i −0.148250 + 0.222375i
\(729\) 29.0000i 1.07407i
\(730\) −6.00000 12.0000i −0.222070 0.444140i
\(731\) 50.0000 1.84932
\(732\) −2.00000 + 2.00000i −0.0739221 + 0.0739221i
\(733\) 44.0000i 1.62518i −0.582838 0.812589i \(-0.698058\pi\)
0.582838 0.812589i \(-0.301942\pi\)
\(734\) 3.00000 + 3.00000i 0.110732 + 0.110732i
\(735\) −9.00000 3.00000i −0.331970 0.110657i
\(736\) −5.00000 5.00000i −0.184302 0.184302i
\(737\) −12.0000 12.0000i −0.442026 0.442026i
\(738\) 1.00000 + 1.00000i 0.0368105 + 0.0368105i
\(739\) −37.0000 + 37.0000i −1.36107 + 1.36107i −0.488507 + 0.872560i \(0.662458\pi\)
−0.872560 + 0.488507i \(0.837542\pi\)
\(740\) −16.0000 + 8.00000i −0.588172 + 0.294086i
\(741\) −18.0000 12.0000i −0.661247 0.440831i
\(742\) 2.00000 + 2.00000i 0.0734223 + 0.0734223i
\(743\) 6.00000i 0.220119i 0.993925 + 0.110059i \(0.0351041\pi\)
−0.993925 + 0.110059i \(0.964896\pi\)
\(744\) 2.00000i 0.0733236i
\(745\) 13.0000 39.0000i 0.476283 1.42885i
\(746\) −1.00000 + 1.00000i −0.0366126 + 0.0366126i
\(747\) −6.00000 −0.219529
\(748\) 10.0000 0.365636
\(749\) 26.0000 26.0000i 0.950019 0.950019i
\(750\) 13.0000 9.00000i 0.474693 0.328634i
\(751\) 10.0000i 0.364905i −0.983215 0.182453i \(-0.941596\pi\)
0.983215 0.182453i \(-0.0584036\pi\)
\(752\) 2.00000i 0.0729325i
\(753\) −30.0000 30.0000i −1.09326 1.09326i
\(754\) 8.00000 12.0000i 0.291343 0.437014i
\(755\) 9.00000 27.0000i 0.327544 0.982631i
\(756\) −8.00000 + 8.00000i −0.290957 + 0.290957i
\(757\) −17.0000 17.0000i −0.617876 0.617876i 0.327111 0.944986i \(-0.393925\pi\)
−0.944986 + 0.327111i \(0.893925\pi\)
\(758\) 17.0000 + 17.0000i 0.617468 + 0.617468i
\(759\) 10.0000 + 10.0000i 0.362977 + 0.362977i
\(760\) 3.00000 9.00000i 0.108821 0.326464i
\(761\) −19.0000 19.0000i −0.688749 0.688749i 0.273206 0.961956i \(-0.411916\pi\)
−0.961956 + 0.273206i \(0.911916\pi\)
\(762\) 30.0000i 1.08679i
\(763\) −26.0000 + 26.0000i −0.941263 + 0.941263i
\(764\) −8.00000 −0.289430
\(765\) −5.00000 + 15.0000i −0.180775 + 0.542326i
\(766\) 6.00000i 0.216789i
\(767\) −15.0000 + 3.00000i −0.541619 + 0.108324i
\(768\) −1.00000 + 1.00000i −0.0360844 + 0.0360844i
\(769\) −23.0000 23.0000i −0.829401 0.829401i 0.158033 0.987434i \(-0.449485\pi\)
−0.987434 + 0.158033i \(0.949485\pi\)
\(770\) 6.00000 + 2.00000i 0.216225 + 0.0720750i
\(771\) 30.0000i 1.08042i
\(772\) 14.0000 0.503871
\(773\) 24.0000i 0.863220i −0.902060 0.431610i \(-0.857946\pi\)
0.902060 0.431610i \(-0.142054\pi\)
\(774\) −5.00000 + 5.00000i −0.179721 + 0.179721i
\(775\) 1.00000 + 7.00000i 0.0359211 + 0.251447i
\(776\) −2.00000 −0.0717958
\(777\) −16.0000 + 16.0000i −0.573997 + 0.573997i
\(778\) −10.0000 −0.358517
\(779\) −6.00000 −0.214972
\(780\) 7.00000 + 9.00000i 0.250640 + 0.322252i
\(781\) 2.00000 0.0715656
\(782\) −50.0000 −1.78800
\(783\) 16.0000 16.0000i 0.571793 0.571793i
\(784\) 3.00000 0.107143
\(785\) −3.00000 + 9.00000i −0.107075 + 0.321224i
\(786\) −12.0000 + 12.0000i −0.428026 + 0.428026i
\(787\) 42.0000i 1.49714i −0.663057 0.748569i \(-0.730741\pi\)
0.663057 0.748569i \(-0.269259\pi\)
\(788\) 18.0000 0.641223
\(789\) 18.0000i 0.640817i
\(790\) −28.0000 + 14.0000i −0.996195 + 0.498098i
\(791\) −18.0000 18.0000i −0.640006 0.640006i
\(792\) −1.00000 + 1.00000i −0.0355335 + 0.0355335i
\(793\) −6.00000 4.00000i −0.213066 0.142044i
\(794\) 8.00000i 0.283909i
\(795\) 4.00000 2.00000i 0.141865 0.0709327i
\(796\) 0 0
\(797\) −5.00000 + 5.00000i −0.177109 + 0.177109i −0.790094 0.612985i \(-0.789968\pi\)
0.612985 + 0.790094i \(0.289968\pi\)
\(798\) 12.0000i 0.424795i
\(799\) −10.0000 10.0000i −0.353775 0.353775i
\(800\) −3.00000 + 4.00000i −0.106066 + 0.141421i
\(801\) −7.00000 7.00000i −0.247333 0.247333i
\(802\) 1.00000 + 1.00000i 0.0353112 + 0.0353112i
\(803\) −6.00000 6.00000i −0.211735 0.211735i
\(804\) 12.0000 12.0000i 0.423207 0.423207i
\(805\) −30.0000 10.0000i −1.05736 0.352454i
\(806\) −5.00000 + 1.00000i −0.176117 + 0.0352235i
\(807\) 16.0000 + 16.0000i 0.563227 + 0.563227i
\(808\) 0 0
\(809\) 36.0000i 1.26569i −0.774277 0.632846i \(-0.781886\pi\)
0.774277 0.632846i \(-0.218114\pi\)
\(810\) 5.00000 + 10.0000i 0.175682 + 0.351364i
\(811\) 11.0000 11.0000i 0.386262 0.386262i −0.487090 0.873352i \(-0.661942\pi\)
0.873352 + 0.487090i \(0.161942\pi\)
\(812\) 8.00000 0.280745
\(813\) 18.0000 0.631288
\(814\) −8.00000 + 8.00000i −0.280400 + 0.280400i
\(815\) 4.00000 + 8.00000i 0.140114 + 0.280228i
\(816\) 10.0000i 0.350070i
\(817\) 30.0000i 1.04957i
\(818\) −3.00000 3.00000i −0.104893 0.104893i
\(819\) −6.00000 4.00000i −0.209657 0.139771i
\(820\) 3.00000 + 1.00000i 0.104765 + 0.0349215i
\(821\) −29.0000 + 29.0000i −1.01211 + 1.01211i −0.0121812 + 0.999926i \(0.503877\pi\)
−0.999926 + 0.0121812i \(0.996123\pi\)
\(822\) 12.0000 + 12.0000i 0.418548 + 0.418548i
\(823\) 15.0000 + 15.0000i 0.522867 + 0.522867i 0.918436 0.395569i \(-0.129453\pi\)
−0.395569 + 0.918436i \(0.629453\pi\)
\(824\) −5.00000 5.00000i −0.174183 0.174183i
\(825\) 6.00000 8.00000i 0.208893 0.278524i
\(826\) −6.00000 6.00000i −0.208767 0.208767i
\(827\) 2.00000i 0.0695468i −0.999395 0.0347734i \(-0.988929\pi\)
0.999395 0.0347734i \(-0.0110710\pi\)
\(828\) 5.00000 5.00000i 0.173762 0.173762i
\(829\) −30.0000 −1.04194 −0.520972 0.853574i \(-0.674430\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) −12.0000 + 6.00000i −0.416526 + 0.208263i
\(831\) 10.0000i 0.346896i
\(832\) −3.00000 2.00000i −0.104006 0.0693375i
\(833\) 15.0000 15.0000i 0.519719 0.519719i
\(834\) −14.0000 14.0000i −0.484780 0.484780i
\(835\) 4.00000 2.00000i 0.138426 0.0692129i
\(836\) 6.00000i 0.207514i
\(837\) −8.00000 −0.276520
\(838\) 26.0000i 0.898155i
\(839\) 13.0000 13.0000i 0.448810 0.448810i −0.446149 0.894959i \(-0.647205\pi\)
0.894959 + 0.446149i \(0.147205\pi\)
\(840\) −2.00000 + 6.00000i −0.0690066 + 0.207020i
\(841\) 13.0000 0.448276
\(842\) −9.00000 + 9.00000i −0.310160 + 0.310160i
\(843\) −42.0000 −1.44656
\(844\) 12.0000 0.413057
\(845\) −19.0000 + 22.0000i −0.653620 + 0.756823i
\(846\) 2.00000 0.0687614
\(847\) −18.0000 −0.618487
\(848\) −1.00000 + 1.00000i −0.0343401 + 0.0343401i
\(849\) 30.0000 1.02960
\(850\) 5.00000 + 35.0000i 0.171499 + 1.20049i
\(851\) 40.0000 40.0000i 1.37118 1.37118i
\(852\) 2.00000i 0.0685189i
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 4.00000i 0.136877i
\(855\) 9.00000 + 3.00000i 0.307794 + 0.102598i
\(856\) 13.0000 + 13.0000i 0.444331 + 0.444331i
\(857\) 5.00000 5.00000i 0.170797 0.170797i −0.616533 0.787329i \(-0.711463\pi\)
0.787329 + 0.616533i \(0.211463\pi\)
\(858\) 6.00000 + 4.00000i 0.204837 + 0.136558i
\(859\) 26.0000i 0.887109i −0.896248 0.443554i \(-0.853717\pi\)
0.896248 0.443554i \(-0.146283\pi\)
\(860\) −5.00000 + 15.0000i −0.170499 + 0.511496i
\(861\) 4.00000 0.136320
\(862\) 21.0000 21.0000i 0.715263 0.715263i
\(863\) 46.0000i 1.56586i 0.622111 + 0.782929i \(0.286275\pi\)
−0.622111 + 0.782929i \(0.713725\pi\)
\(864\) −4.00000 4.00000i −0.136083 0.136083i
\(865\) −15.0000 + 45.0000i −0.510015 + 1.53005i
\(866\) −15.0000 15.0000i −0.509721 0.509721i
\(867\) 33.0000 + 33.0000i 1.12074 + 1.12074i
\(868\) −2.00000 2.00000i −0.0678844 0.0678844i
\(869\) −14.0000 + 14.0000i −0.474917 + 0.474917i
\(870\) 4.00000 12.0000i 0.135613 0.406838i
\(871\) 36.0000 + 24.0000i 1.21981 + 0.813209i
\(872\) −13.0000 13.0000i −0.440236 0.440236i
\(873\) 2.00000i 0.0676897i
\(874\) 30.0000i 1.01477i
\(875\) −4.00000 + 22.0000i −0.135225 + 0.743736i
\(876\) 6.00000 6.00000i 0.202721 0.202721i
\(877\) 18.0000 0.607817 0.303908 0.952701i \(-0.401708\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(878\) 40.0000 1.34993
\(879\) 26.0000 26.0000i 0.876958 0.876958i
\(880\) −1.00000 + 3.00000i −0.0337100 + 0.101130i
\(881\) 20.0000i 0.673817i 0.941537 + 0.336909i \(0.109381\pi\)
−0.941537 + 0.336909i \(0.890619\pi\)
\(882\) 3.00000i 0.101015i
\(883\) 5.00000 + 5.00000i 0.168263 + 0.168263i 0.786216 0.617952i \(-0.212037\pi\)
−0.617952 + 0.786216i \(0.712037\pi\)
\(884\) −25.0000 + 5.00000i −0.840841 + 0.168168i
\(885\) −12.0000 + 6.00000i −0.403376 + 0.201688i
\(886\) 19.0000 19.0000i 0.638317 0.638317i
\(887\) 23.0000 + 23.0000i 0.772264 + 0.772264i 0.978502 0.206238i \(-0.0661220\pi\)
−0.206238 + 0.978502i \(0.566122\pi\)
\(888\) −8.00000 8.00000i −0.268462 0.268462i
\(889\) 30.0000 + 30.0000i 1.00617 + 1.00617i
\(890\) −21.0000 7.00000i −0.703922 0.234641i
\(891\) 5.00000 + 5.00000i 0.167506 + 0.167506i
\(892\) 6.00000i 0.200895i
\(893\) −6.00000 + 6.00000i −0.200782 + 0.200782i
\(894\) 26.0000 0.869570
\(895\) 20.0000 + 40.0000i 0.668526 + 1.33705i
\(896\) 2.00000i 0.0668153i
\(897\) −30.0000 20.0000i −1.00167 0.667781i
\(898\) −7.00000 + 7.00000i −0.233593 + 0.233593i
\(899\) 4.00000 + 4.00000i 0.133407 + 0.133407i
\(900\) −4.00000 3.00000i −0.133333 0.100000i
\(901\) 10.0000i 0.333148i
\(902\) 2.00000 0.0665927
\(903\) 20.0000i 0.665558i
\(904\) 9.00000 9.00000i 0.299336 0.299336i
\(905\) 40.0000 20.0000i 1.32964 0.664822i
\(906\) 18.0000 0.598010
\(907\) 35.0000 35.0000i 1.16216 1.16216i 0.178153 0.984003i \(-0.442988\pi\)
0.984003 0.178153i \(-0.0570122\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) −16.0000 2.00000i −0.530395 0.0662994i
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 6.00000 0.198680
\(913\) −6.00000 + 6.00000i −0.198571 + 0.198571i
\(914\) 38.0000 1.25693
\(915\) −6.00000 2.00000i −0.198354 0.0661180i
\(916\) 3.00000 3.00000i 0.0991228 0.0991228i
\(917\) 24.0000i 0.792550i
\(918\) −40.0000 −1.32020
\(919\) 14.0000i 0.461817i 0.972975 + 0.230909i \(0.0741699\pi\)
−0.972975 + 0.230909i \(0.925830\pi\)
\(920\) 5.00000 15.0000i 0.164845 0.494535i
\(921\) 2.00000 + 2.00000i 0.0659022 + 0.0659022i
\(922\) 11.0000 11.0000i 0.362266 0.362266i
\(923\) −5.00000 + 1.00000i −0.164577 + 0.0329154i
\(924\) 4.00000i 0.131590i
\(925\) −32.0000 24.0000i −1.05215 0.789115i
\(926\) −16.0000 −0.525793
\(927\) 5.00000 5.00000i 0.164222 0.164222i
\(928\) 4.00000i 0.131306i
\(929\) 17.0000 + 17.0000i 0.557752 + 0.557752i 0.928667 0.370915i \(-0.120956\pi\)
−0.370915 + 0.928667i \(0.620956\pi\)
\(930\) −4.00000 + 2.00000i −0.131165 + 0.0655826i
\(931\) −9.00000 9.00000i −0.294963 0.294963i
\(932\) 5.00000 + 5.00000i 0.163780 + 0.163780i
\(933\) 10.0000 + 10.0000i 0.327385 + 0.327385i
\(934\) −5.00000 + 5.00000i −0.163605 + 0.163605i
\(935\) 10.0000 + 20.0000i 0.327035 + 0.654070i
\(936\) 2.00000 3.00000i 0.0653720 0.0980581i
\(937\) 33.0000 + 33.0000i 1.07806 + 1.07806i 0.996683 + 0.0813798i \(0.0259327\pi\)
0.0813798 + 0.996683i \(0.474067\pi\)
\(938\) 24.0000i 0.783628i
\(939\) 18.0000i 0.587408i
\(940\) 4.00000 2.00000i 0.130466 0.0652328i
\(941\) −29.0000 + 29.0000i −0.945373 + 0.945373i −0.998583 0.0532103i \(-0.983055\pi\)
0.0532103 + 0.998583i \(0.483055\pi\)
\(942\) −6.00000 −0.195491
\(943\) −10.0000 −0.325645
\(944\) 3.00000 3.00000i 0.0976417 0.0976417i
\(945\) −24.0000 8.00000i −0.780720 0.260240i
\(946\) 10.0000i 0.325128i
\(947\) 38.0000i 1.23483i 0.786636 + 0.617417i \(0.211821\pi\)
−0.786636 + 0.617417i \(0.788179\pi\)
\(948\) −14.0000 14.0000i −0.454699 0.454699i
\(949\) 18.0000 + 12.0000i 0.584305 + 0.389536i
\(950\) 21.0000 3.00000i 0.681330 0.0973329i
\(951\) 2.00000 2.00000i 0.0648544 0.0648544i
\(952\) −10.0000 10.0000i −0.324102 0.324102i
\(953\) −35.0000 35.0000i −1.13376 1.13376i −0.989546 0.144215i \(-0.953934\pi\)
−0.144215 0.989546i \(-0.546066\pi\)
\(954\) −1.00000 1.00000i −0.0323762 0.0323762i
\(955\) −8.00000 16.0000i −0.258874 0.517748i
\(956\) 7.00000 + 7.00000i 0.226396 + 0.226396i
\(957\) 8.00000i 0.258603i
\(958\) 13.0000 13.0000i 0.420011 0.420011i
\(959\) −24.0000 −0.775000
\(960\) −3.00000 1.00000i −0.0968246 0.0322749i
\(961\) 29.0000i 0.935484i
\(962\) 16.0000 24.0000i 0.515861 0.773791i
\(963\) −13.0000 + 13.0000i −0.418919 + 0.418919i
\(964\) 1.00000 + 1.00000i 0.0322078 + 0.0322078i
\(965\) 14.0000 + 28.0000i 0.450676 + 0.901352i
\(966\) 20.0000i 0.643489i
\(967\) 48.0000 1.54358 0.771788 0.635880i \(-0.219363\pi\)
0.771788 + 0.635880i \(0.219363\pi\)
\(968\) 9.00000i 0.289271i
\(969\) 30.0000 30.0000i 0.963739 0.963739i
\(970\) −2.00000 4.00000i −0.0642161 0.128432i
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 7.00000 7.00000i 0.224525 0.224525i
\(973\) 28.0000 0.897639
\(974\) −32.0000 −1.02535
\(975\) −11.0000 + 23.0000i −0.352282 + 0.736590i
\(976\) 2.00000 0.0640184
\(977\) −22.0000 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(978\) −4.00000 + 4.00000i −0.127906 + 0.127906i
\(979\) −14.0000 −0.447442
\(980\) 3.00000 + 6.00000i 0.0958315 + 0.191663i
\(981\) 13.0000 13.0000i 0.415058 0.415058i
\(982\) 10.0000i 0.319113i
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 2.00000i 0.0637577i
\(985\) 18.0000 + 36.0000i 0.573528 + 1.14706i
\(986\) 20.0000 + 20.0000i 0.636930 + 0.636930i
\(987\) 4.00000 4.00000i 0.127321 0.127321i
\(988\) 3.00000 + 15.0000i 0.0954427 + 0.477214i
\(989\) 50.0000i 1.58991i
\(990\) −3.00000 1.00000i −0.0953463 0.0317821i
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 1.00000 1.00000i 0.0317500 0.0317500i
\(993\) 18.0000i 0.571213i
\(994\) −2.00000 2.00000i −0.0634361 0.0634361i
\(995\) 0 0
\(996\) −6.00000 6.00000i −0.190117 0.190117i
\(997\) −17.0000 17.0000i −0.538395 0.538395i 0.384662 0.923057i \(-0.374318\pi\)
−0.923057 + 0.384662i \(0.874318\pi\)
\(998\) −23.0000 23.0000i −0.728052 0.728052i
\(999\) 32.0000 32.0000i 1.01244 1.01244i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.g.c.57.1 2
3.2 odd 2 1170.2.m.a.577.1 2
4.3 odd 2 1040.2.bg.f.577.1 2
5.2 odd 4 650.2.j.d.343.1 2
5.3 odd 4 130.2.j.b.83.1 yes 2
5.4 even 2 650.2.g.b.57.1 2
13.8 odd 4 130.2.j.b.47.1 yes 2
15.8 even 4 1170.2.w.c.343.1 2
20.3 even 4 1040.2.cd.e.993.1 2
39.8 even 4 1170.2.w.c.307.1 2
52.47 even 4 1040.2.cd.e.177.1 2
65.8 even 4 inner 130.2.g.c.73.1 yes 2
65.34 odd 4 650.2.j.d.307.1 2
65.47 even 4 650.2.g.b.593.1 2
195.8 odd 4 1170.2.m.a.73.1 2
260.203 odd 4 1040.2.bg.f.593.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.g.c.57.1 2 1.1 even 1 trivial
130.2.g.c.73.1 yes 2 65.8 even 4 inner
130.2.j.b.47.1 yes 2 13.8 odd 4
130.2.j.b.83.1 yes 2 5.3 odd 4
650.2.g.b.57.1 2 5.4 even 2
650.2.g.b.593.1 2 65.47 even 4
650.2.j.d.307.1 2 65.34 odd 4
650.2.j.d.343.1 2 5.2 odd 4
1040.2.bg.f.577.1 2 4.3 odd 2
1040.2.bg.f.593.1 2 260.203 odd 4
1040.2.cd.e.177.1 2 52.47 even 4
1040.2.cd.e.993.1 2 20.3 even 4
1170.2.m.a.73.1 2 195.8 odd 4
1170.2.m.a.577.1 2 3.2 odd 2
1170.2.w.c.307.1 2 39.8 even 4
1170.2.w.c.343.1 2 15.8 even 4