Properties

Label 1040.2.cd.e.993.1
Level $1040$
Weight $2$
Character 1040.993
Analytic conductor $8.304$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(177,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.177"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.cd (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,-4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 993.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1040.993
Dual form 1040.2.cd.e.177.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{3} +(-2.00000 - 1.00000i) q^{5} +2.00000 q^{7} -1.00000i q^{9} +(-1.00000 - 1.00000i) q^{11} +(2.00000 - 3.00000i) q^{13} +(-1.00000 - 3.00000i) q^{15} +(-5.00000 - 5.00000i) q^{17} +(-3.00000 - 3.00000i) q^{19} +(2.00000 + 2.00000i) q^{21} +(-5.00000 + 5.00000i) q^{23} +(3.00000 + 4.00000i) q^{25} +(4.00000 - 4.00000i) q^{27} -4.00000i q^{29} +(-1.00000 + 1.00000i) q^{31} -2.00000i q^{33} +(-4.00000 - 2.00000i) q^{35} +8.00000 q^{37} +(5.00000 - 1.00000i) q^{39} +(1.00000 - 1.00000i) q^{41} +(5.00000 - 5.00000i) q^{43} +(-1.00000 + 2.00000i) q^{45} +2.00000 q^{47} -3.00000 q^{49} -10.0000i q^{51} +(-1.00000 - 1.00000i) q^{53} +(1.00000 + 3.00000i) q^{55} -6.00000i q^{57} +(3.00000 - 3.00000i) q^{59} +2.00000 q^{61} -2.00000i q^{63} +(-7.00000 + 4.00000i) q^{65} -12.0000i q^{67} -10.0000 q^{69} +(-1.00000 + 1.00000i) q^{71} -6.00000i q^{73} +(-1.00000 + 7.00000i) q^{75} +(-2.00000 - 2.00000i) q^{77} +14.0000i q^{79} +5.00000 q^{81} +6.00000 q^{83} +(5.00000 + 15.0000i) q^{85} +(4.00000 - 4.00000i) q^{87} +(7.00000 - 7.00000i) q^{89} +(4.00000 - 6.00000i) q^{91} -2.00000 q^{93} +(3.00000 + 9.00000i) q^{95} +2.00000i q^{97} +(-1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 4 q^{5} + 4 q^{7} - 2 q^{11} + 4 q^{13} - 2 q^{15} - 10 q^{17} - 6 q^{19} + 4 q^{21} - 10 q^{23} + 6 q^{25} + 8 q^{27} - 2 q^{31} - 8 q^{35} + 16 q^{37} + 10 q^{39} + 2 q^{41} + 10 q^{43}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 1.00000i 0.577350 + 0.577350i 0.934172 0.356822i \(-0.116140\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(4\) 0 0
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.00000 1.00000i −0.301511 0.301511i 0.540094 0.841605i \(-0.318389\pi\)
−0.841605 + 0.540094i \(0.818389\pi\)
\(12\) 0 0
\(13\) 2.00000 3.00000i 0.554700 0.832050i
\(14\) 0 0
\(15\) −1.00000 3.00000i −0.258199 0.774597i
\(16\) 0 0
\(17\) −5.00000 5.00000i −1.21268 1.21268i −0.970143 0.242536i \(-0.922021\pi\)
−0.242536 0.970143i \(-0.577979\pi\)
\(18\) 0 0
\(19\) −3.00000 3.00000i −0.688247 0.688247i 0.273597 0.961844i \(-0.411786\pi\)
−0.961844 + 0.273597i \(0.911786\pi\)
\(20\) 0 0
\(21\) 2.00000 + 2.00000i 0.436436 + 0.436436i
\(22\) 0 0
\(23\) −5.00000 + 5.00000i −1.04257 + 1.04257i −0.0435195 + 0.999053i \(0.513857\pi\)
−0.999053 + 0.0435195i \(0.986143\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 0 0
\(29\) 4.00000i 0.742781i −0.928477 0.371391i \(-0.878881\pi\)
0.928477 0.371391i \(-0.121119\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.00000i −0.179605 + 0.179605i −0.791184 0.611578i \(-0.790535\pi\)
0.611578 + 0.791184i \(0.290535\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) −4.00000 2.00000i −0.676123 0.338062i
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) 5.00000 1.00000i 0.800641 0.160128i
\(40\) 0 0
\(41\) 1.00000 1.00000i 0.156174 0.156174i −0.624695 0.780869i \(-0.714777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 5.00000 5.00000i 0.762493 0.762493i −0.214280 0.976772i \(-0.568740\pi\)
0.976772 + 0.214280i \(0.0687403\pi\)
\(44\) 0 0
\(45\) −1.00000 + 2.00000i −0.149071 + 0.298142i
\(46\) 0 0
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 10.0000i 1.40028i
\(52\) 0 0
\(53\) −1.00000 1.00000i −0.137361 0.137361i 0.635083 0.772444i \(-0.280966\pi\)
−0.772444 + 0.635083i \(0.780966\pi\)
\(54\) 0 0
\(55\) 1.00000 + 3.00000i 0.134840 + 0.404520i
\(56\) 0 0
\(57\) 6.00000i 0.794719i
\(58\) 0 0
\(59\) 3.00000 3.00000i 0.390567 0.390567i −0.484323 0.874889i \(-0.660934\pi\)
0.874889 + 0.484323i \(0.160934\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 2.00000i 0.251976i
\(64\) 0 0
\(65\) −7.00000 + 4.00000i −0.868243 + 0.496139i
\(66\) 0 0
\(67\) 12.0000i 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) 0 0
\(69\) −10.0000 −1.20386
\(70\) 0 0
\(71\) −1.00000 + 1.00000i −0.118678 + 0.118678i −0.763952 0.645273i \(-0.776743\pi\)
0.645273 + 0.763952i \(0.276743\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 0 0
\(75\) −1.00000 + 7.00000i −0.115470 + 0.808290i
\(76\) 0 0
\(77\) −2.00000 2.00000i −0.227921 0.227921i
\(78\) 0 0
\(79\) 14.0000i 1.57512i 0.616236 + 0.787562i \(0.288657\pi\)
−0.616236 + 0.787562i \(0.711343\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 5.00000 + 15.0000i 0.542326 + 1.62698i
\(86\) 0 0
\(87\) 4.00000 4.00000i 0.428845 0.428845i
\(88\) 0 0
\(89\) 7.00000 7.00000i 0.741999 0.741999i −0.230964 0.972962i \(-0.574188\pi\)
0.972962 + 0.230964i \(0.0741879\pi\)
\(90\) 0 0
\(91\) 4.00000 6.00000i 0.419314 0.628971i
\(92\) 0 0
\(93\) −2.00000 −0.207390
\(94\) 0 0
\(95\) 3.00000 + 9.00000i 0.307794 + 0.923381i
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) −1.00000 + 1.00000i −0.100504 + 0.100504i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −5.00000 + 5.00000i −0.492665 + 0.492665i −0.909145 0.416480i \(-0.863264\pi\)
0.416480 + 0.909145i \(0.363264\pi\)
\(104\) 0 0
\(105\) −2.00000 6.00000i −0.195180 0.585540i
\(106\) 0 0
\(107\) −13.0000 + 13.0000i −1.25676 + 1.25676i −0.304125 + 0.952632i \(0.598364\pi\)
−0.952632 + 0.304125i \(0.901636\pi\)
\(108\) 0 0
\(109\) 13.0000 + 13.0000i 1.24517 + 1.24517i 0.957826 + 0.287348i \(0.0927736\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 8.00000 + 8.00000i 0.759326 + 0.759326i
\(112\) 0 0
\(113\) 9.00000 + 9.00000i 0.846649 + 0.846649i 0.989713 0.143065i \(-0.0456957\pi\)
−0.143065 + 0.989713i \(0.545696\pi\)
\(114\) 0 0
\(115\) 15.0000 5.00000i 1.39876 0.466252i
\(116\) 0 0
\(117\) −3.00000 2.00000i −0.277350 0.184900i
\(118\) 0 0
\(119\) −10.0000 10.0000i −0.916698 0.916698i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) −15.0000 15.0000i −1.33103 1.33103i −0.904445 0.426589i \(-0.859715\pi\)
−0.426589 0.904445i \(-0.640285\pi\)
\(128\) 0 0
\(129\) 10.0000 0.880451
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −6.00000 6.00000i −0.520266 0.520266i
\(134\) 0 0
\(135\) −12.0000 + 4.00000i −1.03280 + 0.344265i
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) 14.0000i 1.18746i 0.804663 + 0.593732i \(0.202346\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(140\) 0 0
\(141\) 2.00000 + 2.00000i 0.168430 + 0.168430i
\(142\) 0 0
\(143\) −5.00000 + 1.00000i −0.418121 + 0.0836242i
\(144\) 0 0
\(145\) −4.00000 + 8.00000i −0.332182 + 0.664364i
\(146\) 0 0
\(147\) −3.00000 3.00000i −0.247436 0.247436i
\(148\) 0 0
\(149\) 13.0000 + 13.0000i 1.06500 + 1.06500i 0.997735 + 0.0672664i \(0.0214278\pi\)
0.0672664 + 0.997735i \(0.478572\pi\)
\(150\) 0 0
\(151\) 9.00000 + 9.00000i 0.732410 + 0.732410i 0.971097 0.238687i \(-0.0767170\pi\)
−0.238687 + 0.971097i \(0.576717\pi\)
\(152\) 0 0
\(153\) −5.00000 + 5.00000i −0.404226 + 0.404226i
\(154\) 0 0
\(155\) 3.00000 1.00000i 0.240966 0.0803219i
\(156\) 0 0
\(157\) 3.00000 3.00000i 0.239426 0.239426i −0.577186 0.816612i \(-0.695849\pi\)
0.816612 + 0.577186i \(0.195849\pi\)
\(158\) 0 0
\(159\) 2.00000i 0.158610i
\(160\) 0 0
\(161\) −10.0000 + 10.0000i −0.788110 + 0.788110i
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) −2.00000 + 4.00000i −0.155700 + 0.311400i
\(166\) 0 0
\(167\) 2.00000 0.154765 0.0773823 0.997001i \(-0.475344\pi\)
0.0773823 + 0.997001i \(0.475344\pi\)
\(168\) 0 0
\(169\) −5.00000 12.0000i −0.384615 0.923077i
\(170\) 0 0
\(171\) −3.00000 + 3.00000i −0.229416 + 0.229416i
\(172\) 0 0
\(173\) −15.0000 + 15.0000i −1.14043 + 1.14043i −0.152057 + 0.988372i \(0.548590\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 6.00000 + 8.00000i 0.453557 + 0.604743i
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) 20.0000i 1.48659i −0.668965 0.743294i \(-0.733262\pi\)
0.668965 0.743294i \(-0.266738\pi\)
\(182\) 0 0
\(183\) 2.00000 + 2.00000i 0.147844 + 0.147844i
\(184\) 0 0
\(185\) −16.0000 8.00000i −1.17634 0.588172i
\(186\) 0 0
\(187\) 10.0000i 0.731272i
\(188\) 0 0
\(189\) 8.00000 8.00000i 0.581914 0.581914i
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 14.0000i 1.00774i 0.863779 + 0.503871i \(0.168091\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 0 0
\(195\) −11.0000 3.00000i −0.787726 0.214834i
\(196\) 0 0
\(197\) 18.0000i 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 12.0000 12.0000i 0.846415 0.846415i
\(202\) 0 0
\(203\) 8.00000i 0.561490i
\(204\) 0 0
\(205\) −3.00000 + 1.00000i −0.209529 + 0.0698430i
\(206\) 0 0
\(207\) 5.00000 + 5.00000i 0.347524 + 0.347524i
\(208\) 0 0
\(209\) 6.00000i 0.415029i
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) −2.00000 −0.137038
\(214\) 0 0
\(215\) −15.0000 + 5.00000i −1.02299 + 0.340997i
\(216\) 0 0
\(217\) −2.00000 + 2.00000i −0.135769 + 0.135769i
\(218\) 0 0
\(219\) 6.00000 6.00000i 0.405442 0.405442i
\(220\) 0 0
\(221\) −25.0000 + 5.00000i −1.68168 + 0.336336i
\(222\) 0 0
\(223\) 6.00000 0.401790 0.200895 0.979613i \(-0.435615\pi\)
0.200895 + 0.979613i \(0.435615\pi\)
\(224\) 0 0
\(225\) 4.00000 3.00000i 0.266667 0.200000i
\(226\) 0 0
\(227\) 12.0000i 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) −3.00000 + 3.00000i −0.198246 + 0.198246i −0.799248 0.601002i \(-0.794768\pi\)
0.601002 + 0.799248i \(0.294768\pi\)
\(230\) 0 0
\(231\) 4.00000i 0.263181i
\(232\) 0 0
\(233\) −5.00000 + 5.00000i −0.327561 + 0.327561i −0.851658 0.524097i \(-0.824403\pi\)
0.524097 + 0.851658i \(0.324403\pi\)
\(234\) 0 0
\(235\) −4.00000 2.00000i −0.260931 0.130466i
\(236\) 0 0
\(237\) −14.0000 + 14.0000i −0.909398 + 0.909398i
\(238\) 0 0
\(239\) 7.00000 + 7.00000i 0.452792 + 0.452792i 0.896280 0.443488i \(-0.146259\pi\)
−0.443488 + 0.896280i \(0.646259\pi\)
\(240\) 0 0
\(241\) 1.00000 + 1.00000i 0.0644157 + 0.0644157i 0.738581 0.674165i \(-0.235496\pi\)
−0.674165 + 0.738581i \(0.735496\pi\)
\(242\) 0 0
\(243\) −7.00000 7.00000i −0.449050 0.449050i
\(244\) 0 0
\(245\) 6.00000 + 3.00000i 0.383326 + 0.191663i
\(246\) 0 0
\(247\) −15.0000 + 3.00000i −0.954427 + 0.190885i
\(248\) 0 0
\(249\) 6.00000 + 6.00000i 0.380235 + 0.380235i
\(250\) 0 0
\(251\) 30.0000i 1.89358i −0.321847 0.946792i \(-0.604304\pi\)
0.321847 0.946792i \(-0.395696\pi\)
\(252\) 0 0
\(253\) 10.0000 0.628695
\(254\) 0 0
\(255\) −10.0000 + 20.0000i −0.626224 + 1.25245i
\(256\) 0 0
\(257\) 15.0000 + 15.0000i 0.935674 + 0.935674i 0.998053 0.0623783i \(-0.0198685\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) 16.0000 0.994192
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) 0 0
\(263\) −9.00000 9.00000i −0.554964 0.554964i 0.372906 0.927869i \(-0.378362\pi\)
−0.927869 + 0.372906i \(0.878362\pi\)
\(264\) 0 0
\(265\) 1.00000 + 3.00000i 0.0614295 + 0.184289i
\(266\) 0 0
\(267\) 14.0000 0.856786
\(268\) 0 0
\(269\) 16.0000i 0.975537i 0.872973 + 0.487769i \(0.162189\pi\)
−0.872973 + 0.487769i \(0.837811\pi\)
\(270\) 0 0
\(271\) 9.00000 + 9.00000i 0.546711 + 0.546711i 0.925488 0.378777i \(-0.123655\pi\)
−0.378777 + 0.925488i \(0.623655\pi\)
\(272\) 0 0
\(273\) 10.0000 2.00000i 0.605228 0.121046i
\(274\) 0 0
\(275\) 1.00000 7.00000i 0.0603023 0.422116i
\(276\) 0 0
\(277\) 5.00000 + 5.00000i 0.300421 + 0.300421i 0.841178 0.540758i \(-0.181862\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 0 0
\(279\) 1.00000 + 1.00000i 0.0598684 + 0.0598684i
\(280\) 0 0
\(281\) 21.0000 + 21.0000i 1.25275 + 1.25275i 0.954480 + 0.298275i \(0.0964112\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) −15.0000 + 15.0000i −0.891657 + 0.891657i −0.994679 0.103022i \(-0.967149\pi\)
0.103022 + 0.994679i \(0.467149\pi\)
\(284\) 0 0
\(285\) −6.00000 + 12.0000i −0.355409 + 0.710819i
\(286\) 0 0
\(287\) 2.00000 2.00000i 0.118056 0.118056i
\(288\) 0 0
\(289\) 33.0000i 1.94118i
\(290\) 0 0
\(291\) −2.00000 + 2.00000i −0.117242 + 0.117242i
\(292\) 0 0
\(293\) 26.0000i 1.51894i −0.650545 0.759468i \(-0.725459\pi\)
0.650545 0.759468i \(-0.274541\pi\)
\(294\) 0 0
\(295\) −9.00000 + 3.00000i −0.524000 + 0.174667i
\(296\) 0 0
\(297\) −8.00000 −0.464207
\(298\) 0 0
\(299\) 5.00000 + 25.0000i 0.289157 + 1.44579i
\(300\) 0 0
\(301\) 10.0000 10.0000i 0.576390 0.576390i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.00000 2.00000i −0.229039 0.114520i
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) −10.0000 −0.568880
\(310\) 0 0
\(311\) 10.0000i 0.567048i 0.958965 + 0.283524i \(0.0915036\pi\)
−0.958965 + 0.283524i \(0.908496\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) 0 0
\(315\) −2.00000 + 4.00000i −0.112687 + 0.225374i
\(316\) 0 0
\(317\) 2.00000i 0.112331i 0.998421 + 0.0561656i \(0.0178875\pi\)
−0.998421 + 0.0561656i \(0.982113\pi\)
\(318\) 0 0
\(319\) −4.00000 + 4.00000i −0.223957 + 0.223957i
\(320\) 0 0
\(321\) −26.0000 −1.45118
\(322\) 0 0
\(323\) 30.0000i 1.66924i
\(324\) 0 0
\(325\) 18.0000 1.00000i 0.998460 0.0554700i
\(326\) 0 0
\(327\) 26.0000i 1.43780i
\(328\) 0 0
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) 9.00000 9.00000i 0.494685 0.494685i −0.415094 0.909779i \(-0.636251\pi\)
0.909779 + 0.415094i \(0.136251\pi\)
\(332\) 0 0
\(333\) 8.00000i 0.438397i
\(334\) 0 0
\(335\) −12.0000 + 24.0000i −0.655630 + 1.31126i
\(336\) 0 0
\(337\) −5.00000 5.00000i −0.272367 0.272367i 0.557685 0.830053i \(-0.311690\pi\)
−0.830053 + 0.557685i \(0.811690\pi\)
\(338\) 0 0
\(339\) 18.0000i 0.977626i
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 20.0000 + 10.0000i 1.07676 + 0.538382i
\(346\) 0 0
\(347\) 7.00000 7.00000i 0.375780 0.375780i −0.493797 0.869577i \(-0.664392\pi\)
0.869577 + 0.493797i \(0.164392\pi\)
\(348\) 0 0
\(349\) −3.00000 + 3.00000i −0.160586 + 0.160586i −0.782826 0.622240i \(-0.786223\pi\)
0.622240 + 0.782826i \(0.286223\pi\)
\(350\) 0 0
\(351\) −4.00000 20.0000i −0.213504 1.06752i
\(352\) 0 0
\(353\) −16.0000 −0.851594 −0.425797 0.904819i \(-0.640006\pi\)
−0.425797 + 0.904819i \(0.640006\pi\)
\(354\) 0 0
\(355\) 3.00000 1.00000i 0.159223 0.0530745i
\(356\) 0 0
\(357\) 20.0000i 1.05851i
\(358\) 0 0
\(359\) 13.0000 13.0000i 0.686114 0.686114i −0.275257 0.961371i \(-0.588763\pi\)
0.961371 + 0.275257i \(0.0887629\pi\)
\(360\) 0 0
\(361\) 1.00000i 0.0526316i
\(362\) 0 0
\(363\) 9.00000 9.00000i 0.472377 0.472377i
\(364\) 0 0
\(365\) −6.00000 + 12.0000i −0.314054 + 0.628109i
\(366\) 0 0
\(367\) −3.00000 + 3.00000i −0.156599 + 0.156599i −0.781058 0.624459i \(-0.785320\pi\)
0.624459 + 0.781058i \(0.285320\pi\)
\(368\) 0 0
\(369\) −1.00000 1.00000i −0.0520579 0.0520579i
\(370\) 0 0
\(371\) −2.00000 2.00000i −0.103835 0.103835i
\(372\) 0 0
\(373\) −1.00000 1.00000i −0.0517780 0.0517780i 0.680744 0.732522i \(-0.261657\pi\)
−0.732522 + 0.680744i \(0.761657\pi\)
\(374\) 0 0
\(375\) 9.00000 13.0000i 0.464758 0.671317i
\(376\) 0 0
\(377\) −12.0000 8.00000i −0.618031 0.412021i
\(378\) 0 0
\(379\) 17.0000 + 17.0000i 0.873231 + 0.873231i 0.992823 0.119592i \(-0.0381586\pi\)
−0.119592 + 0.992823i \(0.538159\pi\)
\(380\) 0 0
\(381\) 30.0000i 1.53695i
\(382\) 0 0
\(383\) 6.00000 0.306586 0.153293 0.988181i \(-0.451012\pi\)
0.153293 + 0.988181i \(0.451012\pi\)
\(384\) 0 0
\(385\) 2.00000 + 6.00000i 0.101929 + 0.305788i
\(386\) 0 0
\(387\) −5.00000 5.00000i −0.254164 0.254164i
\(388\) 0 0
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) 50.0000 2.52861
\(392\) 0 0
\(393\) −12.0000 12.0000i −0.605320 0.605320i
\(394\) 0 0
\(395\) 14.0000 28.0000i 0.704416 1.40883i
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 0 0
\(399\) 12.0000i 0.600751i
\(400\) 0 0
\(401\) 1.00000 + 1.00000i 0.0499376 + 0.0499376i 0.731635 0.681697i \(-0.238758\pi\)
−0.681697 + 0.731635i \(0.738758\pi\)
\(402\) 0 0
\(403\) 1.00000 + 5.00000i 0.0498135 + 0.249068i
\(404\) 0 0
\(405\) −10.0000 5.00000i −0.496904 0.248452i
\(406\) 0 0
\(407\) −8.00000 8.00000i −0.396545 0.396545i
\(408\) 0 0
\(409\) 3.00000 + 3.00000i 0.148340 + 0.148340i 0.777376 0.629036i \(-0.216550\pi\)
−0.629036 + 0.777376i \(0.716550\pi\)
\(410\) 0 0
\(411\) −12.0000 12.0000i −0.591916 0.591916i
\(412\) 0 0
\(413\) 6.00000 6.00000i 0.295241 0.295241i
\(414\) 0 0
\(415\) −12.0000 6.00000i −0.589057 0.294528i
\(416\) 0 0
\(417\) −14.0000 + 14.0000i −0.685583 + 0.685583i
\(418\) 0 0
\(419\) 26.0000i 1.27018i −0.772437 0.635092i \(-0.780962\pi\)
0.772437 0.635092i \(-0.219038\pi\)
\(420\) 0 0
\(421\) −9.00000 + 9.00000i −0.438633 + 0.438633i −0.891552 0.452919i \(-0.850383\pi\)
0.452919 + 0.891552i \(0.350383\pi\)
\(422\) 0 0
\(423\) 2.00000i 0.0972433i
\(424\) 0 0
\(425\) 5.00000 35.0000i 0.242536 1.69775i
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) 0 0
\(429\) −6.00000 4.00000i −0.289683 0.193122i
\(430\) 0 0
\(431\) −21.0000 + 21.0000i −1.01153 + 1.01153i −0.0116017 + 0.999933i \(0.503693\pi\)
−0.999933 + 0.0116017i \(0.996307\pi\)
\(432\) 0 0
\(433\) 15.0000 15.0000i 0.720854 0.720854i −0.247925 0.968779i \(-0.579749\pi\)
0.968779 + 0.247925i \(0.0797487\pi\)
\(434\) 0 0
\(435\) −12.0000 + 4.00000i −0.575356 + 0.191785i
\(436\) 0 0
\(437\) 30.0000 1.43509
\(438\) 0 0
\(439\) 40.0000 1.90910 0.954548 0.298057i \(-0.0963387\pi\)
0.954548 + 0.298057i \(0.0963387\pi\)
\(440\) 0 0
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) −19.0000 19.0000i −0.902717 0.902717i 0.0929532 0.995670i \(-0.470369\pi\)
−0.995670 + 0.0929532i \(0.970369\pi\)
\(444\) 0 0
\(445\) −21.0000 + 7.00000i −0.995495 + 0.331832i
\(446\) 0 0
\(447\) 26.0000i 1.22976i
\(448\) 0 0
\(449\) 7.00000 7.00000i 0.330350 0.330350i −0.522369 0.852720i \(-0.674952\pi\)
0.852720 + 0.522369i \(0.174952\pi\)
\(450\) 0 0
\(451\) −2.00000 −0.0941763
\(452\) 0 0
\(453\) 18.0000i 0.845714i
\(454\) 0 0
\(455\) −14.0000 + 8.00000i −0.656330 + 0.375046i
\(456\) 0 0
\(457\) 38.0000i 1.77757i −0.458329 0.888783i \(-0.651552\pi\)
0.458329 0.888783i \(-0.348448\pi\)
\(458\) 0 0
\(459\) −40.0000 −1.86704
\(460\) 0 0
\(461\) 11.0000 11.0000i 0.512321 0.512321i −0.402916 0.915237i \(-0.632003\pi\)
0.915237 + 0.402916i \(0.132003\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 0 0
\(465\) 4.00000 + 2.00000i 0.185496 + 0.0927478i
\(466\) 0 0
\(467\) −5.00000 5.00000i −0.231372 0.231372i 0.581893 0.813265i \(-0.302312\pi\)
−0.813265 + 0.581893i \(0.802312\pi\)
\(468\) 0 0
\(469\) 24.0000i 1.10822i
\(470\) 0 0
\(471\) 6.00000 0.276465
\(472\) 0 0
\(473\) −10.0000 −0.459800
\(474\) 0 0
\(475\) 3.00000 21.0000i 0.137649 0.963546i
\(476\) 0 0
\(477\) −1.00000 + 1.00000i −0.0457869 + 0.0457869i
\(478\) 0 0
\(479\) 13.0000 13.0000i 0.593985 0.593985i −0.344720 0.938705i \(-0.612026\pi\)
0.938705 + 0.344720i \(0.112026\pi\)
\(480\) 0 0
\(481\) 16.0000 24.0000i 0.729537 1.09431i
\(482\) 0 0
\(483\) −20.0000 −0.910032
\(484\) 0 0
\(485\) 2.00000 4.00000i 0.0908153 0.181631i
\(486\) 0 0
\(487\) 32.0000i 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(488\) 0 0
\(489\) 4.00000 4.00000i 0.180886 0.180886i
\(490\) 0 0
\(491\) 10.0000i 0.451294i 0.974209 + 0.225647i \(0.0724495\pi\)
−0.974209 + 0.225647i \(0.927550\pi\)
\(492\) 0 0
\(493\) −20.0000 + 20.0000i −0.900755 + 0.900755i
\(494\) 0 0
\(495\) 3.00000 1.00000i 0.134840 0.0449467i
\(496\) 0 0
\(497\) −2.00000 + 2.00000i −0.0897123 + 0.0897123i
\(498\) 0 0
\(499\) −23.0000 23.0000i −1.02962 1.02962i −0.999548 0.0300737i \(-0.990426\pi\)
−0.0300737 0.999548i \(-0.509574\pi\)
\(500\) 0 0
\(501\) 2.00000 + 2.00000i 0.0893534 + 0.0893534i
\(502\) 0 0
\(503\) −9.00000 9.00000i −0.401290 0.401290i 0.477397 0.878688i \(-0.341580\pi\)
−0.878688 + 0.477397i \(0.841580\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 7.00000 17.0000i 0.310881 0.754997i
\(508\) 0 0
\(509\) 13.0000 + 13.0000i 0.576215 + 0.576215i 0.933858 0.357643i \(-0.116420\pi\)
−0.357643 + 0.933858i \(0.616420\pi\)
\(510\) 0 0
\(511\) 12.0000i 0.530849i
\(512\) 0 0
\(513\) −24.0000 −1.05963
\(514\) 0 0
\(515\) 15.0000 5.00000i 0.660979 0.220326i
\(516\) 0 0
\(517\) −2.00000 2.00000i −0.0879599 0.0879599i
\(518\) 0 0
\(519\) −30.0000 −1.31685
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 21.0000 + 21.0000i 0.918266 + 0.918266i 0.996903 0.0786374i \(-0.0250569\pi\)
−0.0786374 + 0.996903i \(0.525057\pi\)
\(524\) 0 0
\(525\) −2.00000 + 14.0000i −0.0872872 + 0.611010i
\(526\) 0 0
\(527\) 10.0000 0.435607
\(528\) 0 0
\(529\) 27.0000i 1.17391i
\(530\) 0 0
\(531\) −3.00000 3.00000i −0.130189 0.130189i
\(532\) 0 0
\(533\) −1.00000 5.00000i −0.0433148 0.216574i
\(534\) 0 0
\(535\) 39.0000 13.0000i 1.68612 0.562039i
\(536\) 0 0
\(537\) 20.0000 + 20.0000i 0.863064 + 0.863064i
\(538\) 0 0
\(539\) 3.00000 + 3.00000i 0.129219 + 0.129219i
\(540\) 0 0
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) 0 0
\(543\) 20.0000 20.0000i 0.858282 0.858282i
\(544\) 0 0
\(545\) −13.0000 39.0000i −0.556859 1.67058i
\(546\) 0 0
\(547\) 7.00000 7.00000i 0.299298 0.299298i −0.541441 0.840739i \(-0.682121\pi\)
0.840739 + 0.541441i \(0.182121\pi\)
\(548\) 0 0
\(549\) 2.00000i 0.0853579i
\(550\) 0 0
\(551\) −12.0000 + 12.0000i −0.511217 + 0.511217i
\(552\) 0 0
\(553\) 28.0000i 1.19068i
\(554\) 0 0
\(555\) −8.00000 24.0000i −0.339581 1.01874i
\(556\) 0 0
\(557\) 8.00000 0.338971 0.169485 0.985533i \(-0.445789\pi\)
0.169485 + 0.985533i \(0.445789\pi\)
\(558\) 0 0
\(559\) −5.00000 25.0000i −0.211477 1.05739i
\(560\) 0 0
\(561\) −10.0000 + 10.0000i −0.422200 + 0.422200i
\(562\) 0 0
\(563\) 5.00000 5.00000i 0.210725 0.210725i −0.593851 0.804575i \(-0.702393\pi\)
0.804575 + 0.593851i \(0.202393\pi\)
\(564\) 0 0
\(565\) −9.00000 27.0000i −0.378633 1.13590i
\(566\) 0 0
\(567\) 10.0000 0.419961
\(568\) 0 0
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) 10.0000i 0.418487i 0.977864 + 0.209243i \(0.0671001\pi\)
−0.977864 + 0.209243i \(0.932900\pi\)
\(572\) 0 0
\(573\) 8.00000 + 8.00000i 0.334205 + 0.334205i
\(574\) 0 0
\(575\) −35.0000 5.00000i −1.45960 0.208514i
\(576\) 0 0
\(577\) 22.0000i 0.915872i 0.888985 + 0.457936i \(0.151411\pi\)
−0.888985 + 0.457936i \(0.848589\pi\)
\(578\) 0 0
\(579\) −14.0000 + 14.0000i −0.581820 + 0.581820i
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 2.00000i 0.0828315i
\(584\) 0 0
\(585\) 4.00000 + 7.00000i 0.165380 + 0.289414i
\(586\) 0 0
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) 0 0
\(591\) 18.0000 18.0000i 0.740421 0.740421i
\(592\) 0 0
\(593\) 14.0000i 0.574911i 0.957794 + 0.287456i \(0.0928094\pi\)
−0.957794 + 0.287456i \(0.907191\pi\)
\(594\) 0 0
\(595\) 10.0000 + 30.0000i 0.409960 + 1.22988i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.0000i 0.572024i 0.958226 + 0.286012i \(0.0923298\pi\)
−0.958226 + 0.286012i \(0.907670\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) −12.0000 −0.488678
\(604\) 0 0
\(605\) −9.00000 + 18.0000i −0.365902 + 0.731804i
\(606\) 0 0
\(607\) −3.00000 + 3.00000i −0.121766 + 0.121766i −0.765364 0.643598i \(-0.777441\pi\)
0.643598 + 0.765364i \(0.277441\pi\)
\(608\) 0 0
\(609\) 8.00000 8.00000i 0.324176 0.324176i
\(610\) 0 0
\(611\) 4.00000 6.00000i 0.161823 0.242734i
\(612\) 0 0
\(613\) 4.00000 0.161558 0.0807792 0.996732i \(-0.474259\pi\)
0.0807792 + 0.996732i \(0.474259\pi\)
\(614\) 0 0
\(615\) −4.00000 2.00000i −0.161296 0.0806478i
\(616\) 0 0
\(617\) 38.0000i 1.52982i −0.644136 0.764911i \(-0.722783\pi\)
0.644136 0.764911i \(-0.277217\pi\)
\(618\) 0 0
\(619\) 3.00000 3.00000i 0.120580 0.120580i −0.644242 0.764822i \(-0.722827\pi\)
0.764822 + 0.644242i \(0.222827\pi\)
\(620\) 0 0
\(621\) 40.0000i 1.60514i
\(622\) 0 0
\(623\) 14.0000 14.0000i 0.560898 0.560898i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) −6.00000 + 6.00000i −0.239617 + 0.239617i
\(628\) 0 0
\(629\) −40.0000 40.0000i −1.59490 1.59490i
\(630\) 0 0
\(631\) −11.0000 11.0000i −0.437903 0.437903i 0.453403 0.891306i \(-0.350210\pi\)
−0.891306 + 0.453403i \(0.850210\pi\)
\(632\) 0 0
\(633\) −12.0000 12.0000i −0.476957 0.476957i
\(634\) 0 0
\(635\) 15.0000 + 45.0000i 0.595257 + 1.78577i
\(636\) 0 0
\(637\) −6.00000 + 9.00000i −0.237729 + 0.356593i
\(638\) 0 0
\(639\) 1.00000 + 1.00000i 0.0395594 + 0.0395594i
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 46.0000 1.81406 0.907031 0.421063i \(-0.138343\pi\)
0.907031 + 0.421063i \(0.138343\pi\)
\(644\) 0 0
\(645\) −20.0000 10.0000i −0.787499 0.393750i
\(646\) 0 0
\(647\) 5.00000 + 5.00000i 0.196570 + 0.196570i 0.798528 0.601958i \(-0.205612\pi\)
−0.601958 + 0.798528i \(0.705612\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) −4.00000 −0.156772
\(652\) 0 0
\(653\) −21.0000 21.0000i −0.821794 0.821794i 0.164572 0.986365i \(-0.447376\pi\)
−0.986365 + 0.164572i \(0.947376\pi\)
\(654\) 0 0
\(655\) 24.0000 + 12.0000i 0.937758 + 0.468879i
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) 14.0000i 0.545363i 0.962104 + 0.272681i \(0.0879105\pi\)
−0.962104 + 0.272681i \(0.912090\pi\)
\(660\) 0 0
\(661\) 31.0000 + 31.0000i 1.20576 + 1.20576i 0.972387 + 0.233373i \(0.0749763\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) 0 0
\(663\) −30.0000 20.0000i −1.16510 0.776736i
\(664\) 0 0
\(665\) 6.00000 + 18.0000i 0.232670 + 0.698010i
\(666\) 0 0
\(667\) 20.0000 + 20.0000i 0.774403 + 0.774403i
\(668\) 0 0
\(669\) 6.00000 + 6.00000i 0.231973 + 0.231973i
\(670\) 0 0
\(671\) −2.00000 2.00000i −0.0772091 0.0772091i
\(672\) 0 0
\(673\) −5.00000 + 5.00000i −0.192736 + 0.192736i −0.796877 0.604141i \(-0.793516\pi\)
0.604141 + 0.796877i \(0.293516\pi\)
\(674\) 0 0
\(675\) 28.0000 + 4.00000i 1.07772 + 0.153960i
\(676\) 0 0
\(677\) 23.0000 23.0000i 0.883962 0.883962i −0.109973 0.993935i \(-0.535076\pi\)
0.993935 + 0.109973i \(0.0350764\pi\)
\(678\) 0 0
\(679\) 4.00000i 0.153506i
\(680\) 0 0
\(681\) 12.0000 12.0000i 0.459841 0.459841i
\(682\) 0 0
\(683\) 36.0000i 1.37750i 0.724998 + 0.688751i \(0.241841\pi\)
−0.724998 + 0.688751i \(0.758159\pi\)
\(684\) 0 0
\(685\) 24.0000 + 12.0000i 0.916993 + 0.458496i
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 0 0
\(689\) −5.00000 + 1.00000i −0.190485 + 0.0380970i
\(690\) 0 0
\(691\) 9.00000 9.00000i 0.342376 0.342376i −0.514884 0.857260i \(-0.672165\pi\)
0.857260 + 0.514884i \(0.172165\pi\)
\(692\) 0 0
\(693\) −2.00000 + 2.00000i −0.0759737 + 0.0759737i
\(694\) 0 0
\(695\) 14.0000 28.0000i 0.531050 1.06210i
\(696\) 0 0
\(697\) −10.0000 −0.378777
\(698\) 0 0
\(699\) −10.0000 −0.378235
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) −24.0000 24.0000i −0.905177 0.905177i
\(704\) 0 0
\(705\) −2.00000 6.00000i −0.0753244 0.225973i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −3.00000 + 3.00000i −0.112667 + 0.112667i −0.761193 0.648526i \(-0.775386\pi\)
0.648526 + 0.761193i \(0.275386\pi\)
\(710\) 0 0
\(711\) 14.0000 0.525041
\(712\) 0 0
\(713\) 10.0000i 0.374503i
\(714\) 0 0
\(715\) 11.0000 + 3.00000i 0.411377 + 0.112194i
\(716\) 0 0
\(717\) 14.0000i 0.522840i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −10.0000 + 10.0000i −0.372419 + 0.372419i
\(722\) 0 0
\(723\) 2.00000i 0.0743808i
\(724\) 0 0
\(725\) 16.0000 12.0000i 0.594225 0.445669i
\(726\) 0 0
\(727\) −35.0000 35.0000i −1.29808 1.29808i −0.929660 0.368418i \(-0.879900\pi\)
−0.368418 0.929660i \(-0.620100\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) −50.0000 −1.84932
\(732\) 0 0
\(733\) 44.0000 1.62518 0.812589 0.582838i \(-0.198058\pi\)
0.812589 + 0.582838i \(0.198058\pi\)
\(734\) 0 0
\(735\) 3.00000 + 9.00000i 0.110657 + 0.331970i
\(736\) 0 0
\(737\) −12.0000 + 12.0000i −0.442026 + 0.442026i
\(738\) 0 0
\(739\) −37.0000 + 37.0000i −1.36107 + 1.36107i −0.488507 + 0.872560i \(0.662458\pi\)
−0.872560 + 0.488507i \(0.837542\pi\)
\(740\) 0 0
\(741\) −18.0000 12.0000i −0.661247 0.440831i
\(742\) 0 0
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 0 0
\(745\) −13.0000 39.0000i −0.476283 1.42885i
\(746\) 0 0
\(747\) 6.00000i 0.219529i
\(748\) 0 0
\(749\) −26.0000 + 26.0000i −0.950019 + 0.950019i
\(750\) 0 0
\(751\) 10.0000i 0.364905i 0.983215 + 0.182453i \(0.0584036\pi\)
−0.983215 + 0.182453i \(0.941596\pi\)
\(752\) 0 0
\(753\) 30.0000 30.0000i 1.09326 1.09326i
\(754\) 0 0
\(755\) −9.00000 27.0000i −0.327544 0.982631i
\(756\) 0 0
\(757\) −17.0000 + 17.0000i −0.617876 + 0.617876i −0.944986 0.327111i \(-0.893925\pi\)
0.327111 + 0.944986i \(0.393925\pi\)
\(758\) 0 0
\(759\) 10.0000 + 10.0000i 0.362977 + 0.362977i
\(760\) 0 0
\(761\) −19.0000 19.0000i −0.688749 0.688749i 0.273206 0.961956i \(-0.411916\pi\)
−0.961956 + 0.273206i \(0.911916\pi\)
\(762\) 0 0
\(763\) 26.0000 + 26.0000i 0.941263 + 0.941263i
\(764\) 0 0
\(765\) 15.0000 5.00000i 0.542326 0.180775i
\(766\) 0 0
\(767\) −3.00000 15.0000i −0.108324 0.541619i
\(768\) 0 0
\(769\) 23.0000 + 23.0000i 0.829401 + 0.829401i 0.987434 0.158033i \(-0.0505151\pi\)
−0.158033 + 0.987434i \(0.550515\pi\)
\(770\) 0 0
\(771\) 30.0000i 1.08042i
\(772\) 0 0
\(773\) 24.0000 0.863220 0.431610 0.902060i \(-0.357946\pi\)
0.431610 + 0.902060i \(0.357946\pi\)
\(774\) 0 0
\(775\) −7.00000 1.00000i −0.251447 0.0359211i
\(776\) 0 0
\(777\) 16.0000 + 16.0000i 0.573997 + 0.573997i
\(778\) 0 0
\(779\) −6.00000 −0.214972
\(780\) 0 0
\(781\) 2.00000 0.0715656
\(782\) 0 0
\(783\) −16.0000 16.0000i −0.571793 0.571793i
\(784\) 0 0
\(785\) −9.00000 + 3.00000i −0.321224 + 0.107075i
\(786\) 0 0
\(787\) 42.0000 1.49714 0.748569 0.663057i \(-0.230741\pi\)
0.748569 + 0.663057i \(0.230741\pi\)
\(788\) 0 0
\(789\) 18.0000i 0.640817i
\(790\) 0 0
\(791\) 18.0000 + 18.0000i 0.640006 + 0.640006i
\(792\) 0 0
\(793\) 4.00000 6.00000i 0.142044 0.213066i
\(794\) 0 0
\(795\) −2.00000 + 4.00000i −0.0709327 + 0.141865i
\(796\) 0 0
\(797\) 5.00000 + 5.00000i 0.177109 + 0.177109i 0.790094 0.612985i \(-0.210032\pi\)
−0.612985 + 0.790094i \(0.710032\pi\)
\(798\) 0 0
\(799\) −10.0000 10.0000i −0.353775 0.353775i
\(800\) 0 0
\(801\) −7.00000 7.00000i −0.247333 0.247333i
\(802\) 0 0
\(803\) −6.00000 + 6.00000i −0.211735 + 0.211735i
\(804\) 0 0
\(805\) 30.0000 10.0000i 1.05736 0.352454i
\(806\) 0 0
\(807\) −16.0000 + 16.0000i −0.563227 + 0.563227i
\(808\) 0 0
\(809\) 36.0000i 1.26569i 0.774277 + 0.632846i \(0.218114\pi\)
−0.774277 + 0.632846i \(0.781886\pi\)
\(810\) 0 0
\(811\) −11.0000 + 11.0000i −0.386262 + 0.386262i −0.873352 0.487090i \(-0.838058\pi\)
0.487090 + 0.873352i \(0.338058\pi\)
\(812\) 0 0
\(813\) 18.0000i 0.631288i
\(814\) 0 0
\(815\) −4.00000 + 8.00000i −0.140114 + 0.280228i
\(816\) 0 0
\(817\) −30.0000 −1.04957
\(818\) 0 0
\(819\) −6.00000 4.00000i −0.209657 0.139771i
\(820\) 0 0
\(821\) −29.0000 + 29.0000i −1.01211 + 1.01211i −0.0121812 + 0.999926i \(0.503877\pi\)
−0.999926 + 0.0121812i \(0.996123\pi\)
\(822\) 0 0
\(823\) 15.0000 15.0000i 0.522867 0.522867i −0.395569 0.918436i \(-0.629453\pi\)
0.918436 + 0.395569i \(0.129453\pi\)
\(824\) 0 0
\(825\) 8.00000 6.00000i 0.278524 0.208893i
\(826\) 0 0
\(827\) 2.00000 0.0695468 0.0347734 0.999395i \(-0.488929\pi\)
0.0347734 + 0.999395i \(0.488929\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) 0 0
\(831\) 10.0000i 0.346896i
\(832\) 0 0
\(833\) 15.0000 + 15.0000i 0.519719 + 0.519719i
\(834\) 0 0
\(835\) −4.00000 2.00000i −0.138426 0.0692129i
\(836\) 0 0
\(837\) 8.00000i 0.276520i
\(838\) 0 0
\(839\) 13.0000 13.0000i 0.448810 0.448810i −0.446149 0.894959i \(-0.647205\pi\)
0.894959 + 0.446149i \(0.147205\pi\)
\(840\) 0 0
\(841\) 13.0000 0.448276
\(842\) 0 0
\(843\) 42.0000i 1.44656i
\(844\) 0 0
\(845\) −2.00000 + 29.0000i −0.0688021 + 0.997630i
\(846\) 0 0
\(847\) 18.0000i 0.618487i
\(848\) 0 0
\(849\) −30.0000 −1.02960
\(850\) 0 0
\(851\) −40.0000 + 40.0000i −1.37118 + 1.37118i
\(852\) 0 0
\(853\) 26.0000i 0.890223i −0.895475 0.445112i \(-0.853164\pi\)
0.895475 0.445112i \(-0.146836\pi\)
\(854\) 0 0
\(855\) 9.00000 3.00000i 0.307794 0.102598i
\(856\) 0 0
\(857\) −5.00000 5.00000i −0.170797 0.170797i 0.616533 0.787329i \(-0.288537\pi\)
−0.787329 + 0.616533i \(0.788537\pi\)
\(858\) 0 0
\(859\) 26.0000i 0.887109i −0.896248 0.443554i \(-0.853717\pi\)
0.896248 0.443554i \(-0.146283\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) 46.0000 1.56586 0.782929 0.622111i \(-0.213725\pi\)
0.782929 + 0.622111i \(0.213725\pi\)
\(864\) 0 0
\(865\) 45.0000 15.0000i 1.53005 0.510015i
\(866\) 0 0
\(867\) −33.0000 + 33.0000i −1.12074 + 1.12074i
\(868\) 0 0
\(869\) 14.0000 14.0000i 0.474917 0.474917i
\(870\) 0 0
\(871\) −36.0000 24.0000i −1.21981 0.813209i
\(872\) 0 0
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) −4.00000 22.0000i −0.135225 0.743736i
\(876\) 0 0
\(877\) 18.0000i 0.607817i −0.952701 0.303908i \(-0.901708\pi\)
0.952701 0.303908i \(-0.0982917\pi\)
\(878\) 0 0
\(879\) 26.0000 26.0000i 0.876958 0.876958i
\(880\) 0 0
\(881\) 20.0000i 0.673817i 0.941537 + 0.336909i \(0.109381\pi\)
−0.941537 + 0.336909i \(0.890619\pi\)
\(882\) 0 0
\(883\) 5.00000 5.00000i 0.168263 0.168263i −0.617952 0.786216i \(-0.712037\pi\)
0.786216 + 0.617952i \(0.212037\pi\)
\(884\) 0 0
\(885\) −12.0000 6.00000i −0.403376 0.201688i
\(886\) 0 0
\(887\) −23.0000 + 23.0000i −0.772264 + 0.772264i −0.978502 0.206238i \(-0.933878\pi\)
0.206238 + 0.978502i \(0.433878\pi\)
\(888\) 0 0
\(889\) −30.0000 30.0000i −1.00617 1.00617i
\(890\) 0 0
\(891\) −5.00000 5.00000i −0.167506 0.167506i
\(892\) 0 0
\(893\) −6.00000 6.00000i −0.200782 0.200782i
\(894\) 0 0
\(895\) −40.0000 20.0000i −1.33705 0.668526i
\(896\) 0 0
\(897\) −20.0000 + 30.0000i −0.667781 + 1.00167i
\(898\) 0 0
\(899\) 4.00000 + 4.00000i 0.133407 + 0.133407i
\(900\) 0 0
\(901\) 10.0000i 0.333148i
\(902\) 0 0
\(903\) 20.0000 0.665558
\(904\) 0 0
\(905\) −20.0000 + 40.0000i −0.664822 + 1.32964i
\(906\) 0 0
\(907\) 35.0000 + 35.0000i 1.16216 + 1.16216i 0.984003 + 0.178153i \(0.0570122\pi\)
0.178153 + 0.984003i \(0.442988\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) −6.00000 6.00000i −0.198571 0.198571i
\(914\) 0 0
\(915\) −2.00000 6.00000i −0.0661180 0.198354i
\(916\) 0 0
\(917\) −24.0000 −0.792550
\(918\) 0 0
\(919\) 14.0000i 0.461817i 0.972975 + 0.230909i \(0.0741699\pi\)
−0.972975 + 0.230909i \(0.925830\pi\)
\(920\) 0 0
\(921\) 2.00000 + 2.00000i 0.0659022 + 0.0659022i
\(922\) 0 0
\(923\) 1.00000 + 5.00000i 0.0329154 + 0.164577i
\(924\) 0 0
\(925\) 24.0000 + 32.0000i 0.789115 + 1.05215i
\(926\) 0 0
\(927\) 5.00000 + 5.00000i 0.164222 + 0.164222i
\(928\) 0 0
\(929\) −17.0000 17.0000i −0.557752 0.557752i 0.370915 0.928667i \(-0.379044\pi\)
−0.928667 + 0.370915i \(0.879044\pi\)
\(930\) 0 0
\(931\) 9.00000 + 9.00000i 0.294963 + 0.294963i
\(932\) 0 0
\(933\) −10.0000 + 10.0000i −0.327385 + 0.327385i
\(934\) 0 0
\(935\) 10.0000 20.0000i 0.327035 0.654070i
\(936\) 0 0
\(937\) 33.0000 33.0000i 1.07806 1.07806i 0.0813798 0.996683i \(-0.474067\pi\)
0.996683 0.0813798i \(-0.0259327\pi\)
\(938\) 0 0
\(939\) 18.0000i 0.587408i
\(940\) 0 0
\(941\) −29.0000 + 29.0000i −0.945373 + 0.945373i −0.998583 0.0532103i \(-0.983055\pi\)
0.0532103 + 0.998583i \(0.483055\pi\)
\(942\) 0 0
\(943\) 10.0000i 0.325645i
\(944\) 0 0
\(945\) −24.0000 + 8.00000i −0.780720 + 0.260240i
\(946\) 0 0
\(947\) −38.0000 −1.23483 −0.617417 0.786636i \(-0.711821\pi\)
−0.617417 + 0.786636i \(0.711821\pi\)
\(948\) 0 0
\(949\) −18.0000 12.0000i −0.584305 0.389536i
\(950\) 0 0
\(951\) −2.00000 + 2.00000i −0.0648544 + 0.0648544i
\(952\) 0 0
\(953\) 35.0000 35.0000i 1.13376 1.13376i 0.144215 0.989546i \(-0.453934\pi\)
0.989546 0.144215i \(-0.0460656\pi\)
\(954\) 0 0
\(955\) −16.0000 8.00000i −0.517748 0.258874i
\(956\) 0 0
\(957\) −8.00000 −0.258603
\(958\) 0 0
\(959\) −24.0000 −0.775000
\(960\) 0 0
\(961\) 29.0000i 0.935484i
\(962\) 0 0
\(963\) 13.0000 + 13.0000i 0.418919 + 0.418919i
\(964\) 0 0
\(965\) 14.0000 28.0000i 0.450676 0.901352i
\(966\) 0 0
\(967\) 48.0000i 1.54358i 0.635880 + 0.771788i \(0.280637\pi\)
−0.635880 + 0.771788i \(0.719363\pi\)
\(968\) 0 0
\(969\) −30.0000 + 30.0000i −0.963739 + 0.963739i
\(970\) 0 0
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) 28.0000i 0.897639i
\(974\) 0 0
\(975\) 19.0000 + 17.0000i 0.608487 + 0.544436i
\(976\) 0 0
\(977\) 22.0000i 0.703842i 0.936030 + 0.351921i \(0.114471\pi\)
−0.936030 + 0.351921i \(0.885529\pi\)
\(978\) 0 0
\(979\) −14.0000 −0.447442
\(980\) 0 0
\(981\) 13.0000 13.0000i 0.415058 0.415058i
\(982\) 0 0
\(983\) 24.0000i 0.765481i −0.923856 0.382741i \(-0.874980\pi\)
0.923856 0.382741i \(-0.125020\pi\)
\(984\) 0 0
\(985\) −18.0000 + 36.0000i −0.573528 + 1.14706i
\(986\) 0 0
\(987\) 4.00000 + 4.00000i 0.127321 + 0.127321i
\(988\) 0 0
\(989\) 50.0000i 1.58991i
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 0 0
\(993\) 18.0000 0.571213
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −17.0000 + 17.0000i −0.538395 + 0.538395i −0.923057 0.384662i \(-0.874318\pi\)
0.384662 + 0.923057i \(0.374318\pi\)
\(998\) 0 0
\(999\) 32.0000 32.0000i 1.01244 1.01244i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.cd.e.993.1 2
4.3 odd 2 130.2.j.b.83.1 yes 2
5.2 odd 4 1040.2.bg.f.577.1 2
12.11 even 2 1170.2.w.c.343.1 2
13.8 odd 4 1040.2.bg.f.593.1 2
20.3 even 4 650.2.g.b.57.1 2
20.7 even 4 130.2.g.c.57.1 2
20.19 odd 2 650.2.j.d.343.1 2
52.47 even 4 130.2.g.c.73.1 yes 2
60.47 odd 4 1170.2.m.a.577.1 2
65.47 even 4 inner 1040.2.cd.e.177.1 2
156.47 odd 4 1170.2.m.a.73.1 2
260.47 odd 4 130.2.j.b.47.1 yes 2
260.99 even 4 650.2.g.b.593.1 2
260.203 odd 4 650.2.j.d.307.1 2
780.47 even 4 1170.2.w.c.307.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.g.c.57.1 2 20.7 even 4
130.2.g.c.73.1 yes 2 52.47 even 4
130.2.j.b.47.1 yes 2 260.47 odd 4
130.2.j.b.83.1 yes 2 4.3 odd 2
650.2.g.b.57.1 2 20.3 even 4
650.2.g.b.593.1 2 260.99 even 4
650.2.j.d.307.1 2 260.203 odd 4
650.2.j.d.343.1 2 20.19 odd 2
1040.2.bg.f.577.1 2 5.2 odd 4
1040.2.bg.f.593.1 2 13.8 odd 4
1040.2.cd.e.177.1 2 65.47 even 4 inner
1040.2.cd.e.993.1 2 1.1 even 1 trivial
1170.2.m.a.73.1 2 156.47 odd 4
1170.2.m.a.577.1 2 60.47 odd 4
1170.2.w.c.307.1 2 780.47 even 4
1170.2.w.c.343.1 2 12.11 even 2