Properties

Label 130.2.c.b
Level $130$
Weight $2$
Character orbit 130.c
Analytic conductor $1.038$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,2,Mod(129,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.129"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta_{2} q^{3} + q^{4} + (\beta_{3} - 1) q^{5} - \beta_{2} q^{6} + ( - \beta_{3} - \beta_1) q^{7} + q^{8} + (\beta_{3} + \beta_1 - 1) q^{9} + (\beta_{3} - 1) q^{10} + ( - \beta_{3} + \beta_{2} + \beta_1) q^{11}+ \cdots + ( - 3 \beta_{3} - \beta_{2} + 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} - 3 q^{5} - 2 q^{7} + 4 q^{8} - 2 q^{9} - 3 q^{10} - 4 q^{13} - 2 q^{14} - q^{15} + 4 q^{16} - 2 q^{18} - 3 q^{20} + q^{25} - 4 q^{26} - 2 q^{28} - 12 q^{29} - q^{30} + 4 q^{32}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 2\nu^{2} + \nu - 6 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - \nu^{2} + \nu - 3 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{3} - \nu^{2} + 4\nu + 9 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{2} + \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{3} + 3\beta_{2} + \beta _1 + 8 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
−1.18614 + 1.26217i
1.68614 + 0.396143i
1.68614 0.396143i
−1.18614 1.26217i
1.00000 2.52434i 1.00000 −2.18614 + 0.469882i 2.52434i 2.37228 1.00000 −3.37228 −2.18614 + 0.469882i
129.2 1.00000 0.792287i 1.00000 0.686141 2.12819i 0.792287i −3.37228 1.00000 2.37228 0.686141 2.12819i
129.3 1.00000 0.792287i 1.00000 0.686141 + 2.12819i 0.792287i −3.37228 1.00000 2.37228 0.686141 + 2.12819i
129.4 1.00000 2.52434i 1.00000 −2.18614 0.469882i 2.52434i 2.37228 1.00000 −3.37228 −2.18614 0.469882i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 130.2.c.b yes 4
3.b odd 2 1 1170.2.f.a 4
4.b odd 2 1 1040.2.f.c 4
5.b even 2 1 130.2.c.a 4
5.c odd 4 2 650.2.d.e 8
13.b even 2 1 130.2.c.a 4
13.d odd 4 2 1690.2.b.d 8
15.d odd 2 1 1170.2.f.b 4
20.d odd 2 1 1040.2.f.d 4
39.d odd 2 1 1170.2.f.b 4
52.b odd 2 1 1040.2.f.d 4
65.d even 2 1 inner 130.2.c.b yes 4
65.f even 4 2 8450.2.a.cj 4
65.g odd 4 2 1690.2.b.d 8
65.h odd 4 2 650.2.d.e 8
65.k even 4 2 8450.2.a.cn 4
195.e odd 2 1 1170.2.f.a 4
260.g odd 2 1 1040.2.f.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.c.a 4 5.b even 2 1
130.2.c.a 4 13.b even 2 1
130.2.c.b yes 4 1.a even 1 1 trivial
130.2.c.b yes 4 65.d even 2 1 inner
650.2.d.e 8 5.c odd 4 2
650.2.d.e 8 65.h odd 4 2
1040.2.f.c 4 4.b odd 2 1
1040.2.f.c 4 260.g odd 2 1
1040.2.f.d 4 20.d odd 2 1
1040.2.f.d 4 52.b odd 2 1
1170.2.f.a 4 3.b odd 2 1
1170.2.f.a 4 195.e odd 2 1
1170.2.f.b 4 15.d odd 2 1
1170.2.f.b 4 39.d odd 2 1
1690.2.b.d 8 13.d odd 4 2
1690.2.b.d 8 65.g odd 4 2
8450.2.a.cj 4 65.f even 4 2
8450.2.a.cn 4 65.k even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + T_{7} - 8 \) acting on \(S_{2}^{\mathrm{new}}(130, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 7T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{4} + 3 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} + T - 8)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 28T^{2} + 64 \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 43T^{2} + 256 \) Copy content Toggle raw display
$19$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 44)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 6 T - 24)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + T - 74)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 112T^{2} + 1024 \) Copy content Toggle raw display
$43$ \( T^{4} + 87T^{2} + 36 \) Copy content Toggle raw display
$47$ \( (T^{2} + 15 T + 48)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 28T^{2} + 64 \) Copy content Toggle raw display
$59$ \( (T^{2} + 44)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 2 T - 32)^{2} \) Copy content Toggle raw display
$67$ \( (T - 4)^{4} \) Copy content Toggle raw display
$71$ \( T^{4} + 175T^{2} + 2500 \) Copy content Toggle raw display
$73$ \( (T - 10)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 2 T - 32)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 6 T - 24)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 76T^{2} + 256 \) Copy content Toggle raw display
$97$ \( (T^{2} - 2 T - 32)^{2} \) Copy content Toggle raw display
show more
show less