Properties

Label 13.10.e
Level 1313
Weight 1010
Character orbit 13.e
Rep. character χ13(4,)\chi_{13}(4,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 2020
Newform subspaces 11
Sturm bound 1111
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 13 13
Weight: k k == 10 10
Character orbit: [χ][\chi] == 13.e (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 1 1
Sturm bound: 1111
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M10(13,[χ])M_{10}(13, [\chi]).

Total New Old
Modular forms 24 24 0
Cusp forms 20 20 0
Eisenstein series 4 4 0

Trace form

20q3q2163q3+2559q43288q6+1023q764763q9+44195q1094599q11427652q12+187013q13+473556q14+754950q15594809q1649656q17+1557570597q98+O(q100) 20 q - 3 q^{2} - 163 q^{3} + 2559 q^{4} - 3288 q^{6} + 1023 q^{7} - 64763 q^{9} + 44195 q^{10} - 94599 q^{11} - 427652 q^{12} + 187013 q^{13} + 473556 q^{14} + 754950 q^{15} - 594809 q^{16} - 49656 q^{17}+ \cdots - 1557570597 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(13,[χ])S_{10}^{\mathrm{new}}(13, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
13.10.e.a 13.e 13.e 2020 6.6956.695 Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots) None 13.10.e.a 3-3 163-163 00 10231023 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(β1β2)q2+(24β5β6)q3+(28+)q4+q+(\beta _{1}-\beta _{2})q^{2}+(2^{4}\beta _{5}-\beta _{6})q^{3}+(2^{8}+\cdots)q^{4}+\cdots