Defining parameters
Level: | \( N \) | \(=\) | \( 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 13.e (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(11\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(13, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 24 | 0 |
Cusp forms | 20 | 20 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(13, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
13.10.e.a | $20$ | $6.695$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(-3\) | \(-163\) | \(0\) | \(1023\) | \(q+(\beta _{1}-\beta _{2})q^{2}+(2^{4}\beta _{5}-\beta _{6})q^{3}+(2^{8}+\cdots)q^{4}+\cdots\) |