Properties

Label 1296.5.g.e.1135.1
Level $1296$
Weight $5$
Character 1296.1135
Analytic conductor $133.967$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1296,5,Mod(1135,1296)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1296.1135"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1296, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1296.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(133.967472157\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-19}, \sqrt{-39})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 29x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1135.1
Root \(-0.943050i\) of defining polynomial
Character \(\chi\) \(=\) 1296.1135
Dual form 1296.5.g.e.1135.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-15.2213 q^{5} -16.9749i q^{7} +173.895i q^{11} +43.6639 q^{13} +69.8853 q^{17} +453.786i q^{19} +500.565i q^{23} -393.312 q^{25} +290.533 q^{29} -1281.02i q^{31} +258.380i q^{35} -437.648 q^{37} +893.951 q^{41} -895.133i q^{43} -390.033i q^{47} +2112.85 q^{49} +2381.90 q^{53} -2646.91i q^{55} -474.518i q^{59} -2705.55 q^{61} -664.623 q^{65} +6781.91i q^{67} -5454.12i q^{71} -1054.36 q^{73} +2951.85 q^{77} +4360.21i q^{79} -874.402i q^{83} -1063.75 q^{85} +2992.18 q^{89} -741.191i q^{91} -6907.22i q^{95} -6541.85 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 48 q^{5} - 152 q^{13} - 156 q^{17} + 1040 q^{25} - 1560 q^{29} + 536 q^{37} - 2304 q^{41} - 9188 q^{49} - 2232 q^{53} + 3224 q^{61} - 10716 q^{65} - 7484 q^{73} - 5832 q^{77} - 13728 q^{85} + 20244 q^{89}+ \cdots - 8528 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1217\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −15.2213 −0.608853 −0.304426 0.952536i \(-0.598465\pi\)
−0.304426 + 0.952536i \(0.598465\pi\)
\(6\) 0 0
\(7\) − 16.9749i − 0.346426i −0.984884 0.173213i \(-0.944585\pi\)
0.984884 0.173213i \(-0.0554150\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 173.895i 1.43715i 0.695449 + 0.718575i \(0.255206\pi\)
−0.695449 + 0.718575i \(0.744794\pi\)
\(12\) 0 0
\(13\) 43.6639 0.258367 0.129183 0.991621i \(-0.458764\pi\)
0.129183 + 0.991621i \(0.458764\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 69.8853 0.241818 0.120909 0.992664i \(-0.461419\pi\)
0.120909 + 0.992664i \(0.461419\pi\)
\(18\) 0 0
\(19\) 453.786i 1.25703i 0.777799 + 0.628513i \(0.216336\pi\)
−0.777799 + 0.628513i \(0.783664\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 500.565i 0.946247i 0.880996 + 0.473123i \(0.156874\pi\)
−0.880996 + 0.473123i \(0.843126\pi\)
\(24\) 0 0
\(25\) −393.312 −0.629299
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 290.533 0.345461 0.172731 0.984969i \(-0.444741\pi\)
0.172731 + 0.984969i \(0.444741\pi\)
\(30\) 0 0
\(31\) − 1281.02i − 1.33301i −0.745502 0.666504i \(-0.767790\pi\)
0.745502 0.666504i \(-0.232210\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 258.380i 0.210923i
\(36\) 0 0
\(37\) −437.648 −0.319684 −0.159842 0.987143i \(-0.551099\pi\)
−0.159842 + 0.987143i \(0.551099\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 893.951 0.531797 0.265899 0.964001i \(-0.414331\pi\)
0.265899 + 0.964001i \(0.414331\pi\)
\(42\) 0 0
\(43\) − 895.133i − 0.484118i −0.970262 0.242059i \(-0.922177\pi\)
0.970262 0.242059i \(-0.0778227\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 390.033i − 0.176565i −0.996095 0.0882827i \(-0.971862\pi\)
0.996095 0.0882827i \(-0.0281379\pi\)
\(48\) 0 0
\(49\) 2112.85 0.879989
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2381.90 0.847954 0.423977 0.905673i \(-0.360634\pi\)
0.423977 + 0.905673i \(0.360634\pi\)
\(54\) 0 0
\(55\) − 2646.91i − 0.875013i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 474.518i − 0.136317i −0.997675 0.0681583i \(-0.978288\pi\)
0.997675 0.0681583i \(-0.0217123\pi\)
\(60\) 0 0
\(61\) −2705.55 −0.727103 −0.363551 0.931574i \(-0.618436\pi\)
−0.363551 + 0.931574i \(0.618436\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −664.623 −0.157307
\(66\) 0 0
\(67\) 6781.91i 1.51079i 0.655272 + 0.755393i \(0.272554\pi\)
−0.655272 + 0.755393i \(0.727446\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 5454.12i − 1.08195i −0.841038 0.540976i \(-0.818055\pi\)
0.841038 0.540976i \(-0.181945\pi\)
\(72\) 0 0
\(73\) −1054.36 −0.197853 −0.0989267 0.995095i \(-0.531541\pi\)
−0.0989267 + 0.995095i \(0.531541\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2951.85 0.497867
\(78\) 0 0
\(79\) 4360.21i 0.698640i 0.937004 + 0.349320i \(0.113587\pi\)
−0.937004 + 0.349320i \(0.886413\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 874.402i − 0.126927i −0.997984 0.0634636i \(-0.979785\pi\)
0.997984 0.0634636i \(-0.0202147\pi\)
\(84\) 0 0
\(85\) −1063.75 −0.147231
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2992.18 0.377753 0.188876 0.982001i \(-0.439515\pi\)
0.188876 + 0.982001i \(0.439515\pi\)
\(90\) 0 0
\(91\) − 741.191i − 0.0895050i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 6907.22i − 0.765343i
\(96\) 0 0
\(97\) −6541.85 −0.695276 −0.347638 0.937629i \(-0.613016\pi\)
−0.347638 + 0.937629i \(0.613016\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7530.05 −0.738168 −0.369084 0.929396i \(-0.620328\pi\)
−0.369084 + 0.929396i \(0.620328\pi\)
\(102\) 0 0
\(103\) − 11400.1i − 1.07457i −0.843401 0.537285i \(-0.819450\pi\)
0.843401 0.537285i \(-0.180550\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14838.1i 1.29602i 0.761632 + 0.648009i \(0.224398\pi\)
−0.761632 + 0.648009i \(0.775602\pi\)
\(108\) 0 0
\(109\) −8488.14 −0.714430 −0.357215 0.934022i \(-0.616274\pi\)
−0.357215 + 0.934022i \(0.616274\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5048.31 −0.395357 −0.197678 0.980267i \(-0.563340\pi\)
−0.197678 + 0.980267i \(0.563340\pi\)
\(114\) 0 0
\(115\) − 7619.25i − 0.576125i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 1186.29i − 0.0837720i
\(120\) 0 0
\(121\) −15598.6 −1.06540
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 15500.0 0.992003
\(126\) 0 0
\(127\) 19816.2i 1.22860i 0.789071 + 0.614302i \(0.210562\pi\)
−0.789071 + 0.614302i \(0.789438\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 22569.1i 1.31514i 0.753395 + 0.657568i \(0.228415\pi\)
−0.753395 + 0.657568i \(0.771585\pi\)
\(132\) 0 0
\(133\) 7702.97 0.435467
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −28814.1 −1.53520 −0.767599 0.640931i \(-0.778549\pi\)
−0.767599 + 0.640931i \(0.778549\pi\)
\(138\) 0 0
\(139\) 1894.45i 0.0980515i 0.998798 + 0.0490258i \(0.0156116\pi\)
−0.998798 + 0.0490258i \(0.984388\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7592.95i 0.371312i
\(144\) 0 0
\(145\) −4422.29 −0.210335
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5057.14 0.227789 0.113894 0.993493i \(-0.463667\pi\)
0.113894 + 0.993493i \(0.463667\pi\)
\(150\) 0 0
\(151\) 4755.03i 0.208545i 0.994549 + 0.104272i \(0.0332514\pi\)
−0.994549 + 0.104272i \(0.966749\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 19498.8i 0.811605i
\(156\) 0 0
\(157\) −31828.7 −1.29128 −0.645639 0.763643i \(-0.723409\pi\)
−0.645639 + 0.763643i \(0.723409\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8497.03 0.327805
\(162\) 0 0
\(163\) − 5158.03i − 0.194137i −0.995278 0.0970686i \(-0.969053\pi\)
0.995278 0.0970686i \(-0.0309466\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 27153.7i − 0.973635i −0.873504 0.486817i \(-0.838158\pi\)
0.873504 0.486817i \(-0.161842\pi\)
\(168\) 0 0
\(169\) −26654.5 −0.933247
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −49969.0 −1.66959 −0.834793 0.550565i \(-0.814412\pi\)
−0.834793 + 0.550565i \(0.814412\pi\)
\(174\) 0 0
\(175\) 6676.42i 0.218006i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 51470.2i − 1.60638i −0.595720 0.803192i \(-0.703133\pi\)
0.595720 0.803192i \(-0.296867\pi\)
\(180\) 0 0
\(181\) −32941.4 −1.00551 −0.502753 0.864430i \(-0.667680\pi\)
−0.502753 + 0.864430i \(0.667680\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6661.57 0.194641
\(186\) 0 0
\(187\) 12152.7i 0.347528i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 19641.7i − 0.538410i −0.963083 0.269205i \(-0.913239\pi\)
0.963083 0.269205i \(-0.0867609\pi\)
\(192\) 0 0
\(193\) −31311.8 −0.840608 −0.420304 0.907383i \(-0.638077\pi\)
−0.420304 + 0.907383i \(0.638077\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 53935.8 1.38978 0.694888 0.719118i \(-0.255454\pi\)
0.694888 + 0.719118i \(0.255454\pi\)
\(198\) 0 0
\(199\) − 60022.4i − 1.51568i −0.652441 0.757839i \(-0.726255\pi\)
0.652441 0.757839i \(-0.273745\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 4931.76i − 0.119677i
\(204\) 0 0
\(205\) −13607.1 −0.323786
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −78911.3 −1.80654
\(210\) 0 0
\(211\) 10362.4i 0.232754i 0.993205 + 0.116377i \(0.0371281\pi\)
−0.993205 + 0.116377i \(0.962872\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 13625.1i 0.294756i
\(216\) 0 0
\(217\) −21745.2 −0.461789
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3051.47 0.0624776
\(222\) 0 0
\(223\) − 32916.1i − 0.661910i −0.943647 0.330955i \(-0.892629\pi\)
0.943647 0.330955i \(-0.107371\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 69605.3i − 1.35080i −0.737453 0.675399i \(-0.763971\pi\)
0.737453 0.675399i \(-0.236029\pi\)
\(228\) 0 0
\(229\) −24729.1 −0.471560 −0.235780 0.971807i \(-0.575764\pi\)
−0.235780 + 0.971807i \(0.575764\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 85422.6 1.57348 0.786739 0.617285i \(-0.211768\pi\)
0.786739 + 0.617285i \(0.211768\pi\)
\(234\) 0 0
\(235\) 5936.81i 0.107502i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 59241.3i 1.03712i 0.855042 + 0.518559i \(0.173531\pi\)
−0.855042 + 0.518559i \(0.826469\pi\)
\(240\) 0 0
\(241\) −98255.5 −1.69170 −0.845849 0.533423i \(-0.820906\pi\)
−0.845849 + 0.533423i \(0.820906\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −32160.4 −0.535783
\(246\) 0 0
\(247\) 19814.1i 0.324773i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 39009.6i 0.619189i 0.950869 + 0.309595i \(0.100193\pi\)
−0.950869 + 0.309595i \(0.899807\pi\)
\(252\) 0 0
\(253\) −87045.8 −1.35990
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 47777.8 0.723369 0.361685 0.932301i \(-0.382202\pi\)
0.361685 + 0.932301i \(0.382202\pi\)
\(258\) 0 0
\(259\) 7429.02i 0.110747i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 129957.i 1.87883i 0.342782 + 0.939415i \(0.388631\pi\)
−0.342782 + 0.939415i \(0.611369\pi\)
\(264\) 0 0
\(265\) −36255.7 −0.516279
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 125441. 1.73354 0.866772 0.498705i \(-0.166191\pi\)
0.866772 + 0.498705i \(0.166191\pi\)
\(270\) 0 0
\(271\) 69954.5i 0.952526i 0.879303 + 0.476263i \(0.158009\pi\)
−0.879303 + 0.476263i \(0.841991\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 68395.0i − 0.904397i
\(276\) 0 0
\(277\) −62557.4 −0.815303 −0.407652 0.913138i \(-0.633652\pi\)
−0.407652 + 0.913138i \(0.633652\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −134250. −1.70021 −0.850104 0.526615i \(-0.823461\pi\)
−0.850104 + 0.526615i \(0.823461\pi\)
\(282\) 0 0
\(283\) − 117926.i − 1.47244i −0.676743 0.736219i \(-0.736609\pi\)
0.676743 0.736219i \(-0.263391\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 15174.7i − 0.184229i
\(288\) 0 0
\(289\) −78637.1 −0.941524
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 65257.2 0.760140 0.380070 0.924958i \(-0.375900\pi\)
0.380070 + 0.924958i \(0.375900\pi\)
\(294\) 0 0
\(295\) 7222.79i 0.0829967i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 21856.6i 0.244479i
\(300\) 0 0
\(301\) −15194.8 −0.167711
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 41182.0 0.442698
\(306\) 0 0
\(307\) 122733.i 1.30222i 0.758983 + 0.651110i \(0.225696\pi\)
−0.758983 + 0.651110i \(0.774304\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 51056.2i 0.527871i 0.964540 + 0.263936i \(0.0850207\pi\)
−0.964540 + 0.263936i \(0.914979\pi\)
\(312\) 0 0
\(313\) −132325. −1.35068 −0.675342 0.737505i \(-0.736004\pi\)
−0.675342 + 0.737505i \(0.736004\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −133273. −1.32624 −0.663120 0.748513i \(-0.730768\pi\)
−0.663120 + 0.748513i \(0.730768\pi\)
\(318\) 0 0
\(319\) 50522.3i 0.496480i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 31713.0i 0.303971i
\(324\) 0 0
\(325\) −17173.5 −0.162590
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6620.77 −0.0611669
\(330\) 0 0
\(331\) 106484.i 0.971915i 0.873982 + 0.485958i \(0.161529\pi\)
−0.873982 + 0.485958i \(0.838471\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 103230.i − 0.919846i
\(336\) 0 0
\(337\) −51135.6 −0.450260 −0.225130 0.974329i \(-0.572281\pi\)
−0.225130 + 0.974329i \(0.572281\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 222763. 1.91573
\(342\) 0 0
\(343\) − 76622.2i − 0.651278i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 14131.9i − 0.117366i −0.998277 0.0586830i \(-0.981310\pi\)
0.998277 0.0586830i \(-0.0186901\pi\)
\(348\) 0 0
\(349\) −4439.91 −0.0364522 −0.0182261 0.999834i \(-0.505802\pi\)
−0.0182261 + 0.999834i \(0.505802\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −89684.0 −0.719723 −0.359861 0.933006i \(-0.617176\pi\)
−0.359861 + 0.933006i \(0.617176\pi\)
\(354\) 0 0
\(355\) 83018.8i 0.658749i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 48287.3i 0.374666i 0.982297 + 0.187333i \(0.0599843\pi\)
−0.982297 + 0.187333i \(0.940016\pi\)
\(360\) 0 0
\(361\) −75600.9 −0.580113
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 16048.8 0.120464
\(366\) 0 0
\(367\) − 159123.i − 1.18141i −0.806888 0.590704i \(-0.798850\pi\)
0.806888 0.590704i \(-0.201150\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 40432.5i − 0.293754i
\(372\) 0 0
\(373\) −96570.2 −0.694105 −0.347053 0.937846i \(-0.612817\pi\)
−0.347053 + 0.937846i \(0.612817\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12685.8 0.0892556
\(378\) 0 0
\(379\) − 273247.i − 1.90229i −0.308748 0.951144i \(-0.599910\pi\)
0.308748 0.951144i \(-0.400090\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 86237.4i − 0.587892i −0.955822 0.293946i \(-0.905031\pi\)
0.955822 0.293946i \(-0.0949687\pi\)
\(384\) 0 0
\(385\) −44931.1 −0.303128
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −222348. −1.46938 −0.734690 0.678403i \(-0.762672\pi\)
−0.734690 + 0.678403i \(0.762672\pi\)
\(390\) 0 0
\(391\) 34982.1i 0.228819i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 66368.1i − 0.425369i
\(396\) 0 0
\(397\) −53463.7 −0.339218 −0.169609 0.985511i \(-0.554250\pi\)
−0.169609 + 0.985511i \(0.554250\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 62063.6 0.385965 0.192983 0.981202i \(-0.438184\pi\)
0.192983 + 0.981202i \(0.438184\pi\)
\(402\) 0 0
\(403\) − 55934.4i − 0.344404i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 76104.8i − 0.459434i
\(408\) 0 0
\(409\) −223564. −1.33646 −0.668228 0.743956i \(-0.732947\pi\)
−0.668228 + 0.743956i \(0.732947\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8054.89 −0.0472236
\(414\) 0 0
\(415\) 13309.5i 0.0772800i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 12540.2i − 0.0714291i −0.999362 0.0357145i \(-0.988629\pi\)
0.999362 0.0357145i \(-0.0113707\pi\)
\(420\) 0 0
\(421\) 13898.0 0.0784131 0.0392065 0.999231i \(-0.487517\pi\)
0.0392065 + 0.999231i \(0.487517\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −27486.7 −0.152175
\(426\) 0 0
\(427\) 45926.4i 0.251888i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 161097.i − 0.867229i −0.901099 0.433614i \(-0.857238\pi\)
0.901099 0.433614i \(-0.142762\pi\)
\(432\) 0 0
\(433\) −133403. −0.711524 −0.355762 0.934577i \(-0.615779\pi\)
−0.355762 + 0.934577i \(0.615779\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −227149. −1.18946
\(438\) 0 0
\(439\) 302327.i 1.56873i 0.620302 + 0.784363i \(0.287010\pi\)
−0.620302 + 0.784363i \(0.712990\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 226223.i 1.15273i 0.817191 + 0.576367i \(0.195530\pi\)
−0.817191 + 0.576367i \(0.804470\pi\)
\(444\) 0 0
\(445\) −45544.9 −0.229996
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2138.33 0.0106067 0.00530336 0.999986i \(-0.498312\pi\)
0.00530336 + 0.999986i \(0.498312\pi\)
\(450\) 0 0
\(451\) 155454.i 0.764273i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 11281.9i 0.0544953i
\(456\) 0 0
\(457\) 77351.2 0.370369 0.185185 0.982704i \(-0.440712\pi\)
0.185185 + 0.982704i \(0.440712\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11587.3 −0.0545230 −0.0272615 0.999628i \(-0.508679\pi\)
−0.0272615 + 0.999628i \(0.508679\pi\)
\(462\) 0 0
\(463\) − 151981.i − 0.708971i −0.935062 0.354485i \(-0.884656\pi\)
0.935062 0.354485i \(-0.115344\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 123392.i − 0.565789i −0.959151 0.282894i \(-0.908705\pi\)
0.959151 0.282894i \(-0.0912946\pi\)
\(468\) 0 0
\(469\) 115122. 0.523376
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 155659. 0.695750
\(474\) 0 0
\(475\) − 178479.i − 0.791044i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 91907.4i − 0.400571i −0.979738 0.200285i \(-0.935813\pi\)
0.979738 0.200285i \(-0.0641869\pi\)
\(480\) 0 0
\(481\) −19109.4 −0.0825957
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 99575.6 0.423321
\(486\) 0 0
\(487\) 257669.i 1.08644i 0.839591 + 0.543219i \(0.182795\pi\)
−0.839591 + 0.543219i \(0.817205\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 366045.i 1.51835i 0.650887 + 0.759175i \(0.274397\pi\)
−0.650887 + 0.759175i \(0.725603\pi\)
\(492\) 0 0
\(493\) 20304.0 0.0835386
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −92583.0 −0.374816
\(498\) 0 0
\(499\) − 116180.i − 0.466586i −0.972406 0.233293i \(-0.925050\pi\)
0.972406 0.233293i \(-0.0749502\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 272217.i 1.07592i 0.842971 + 0.537960i \(0.180805\pi\)
−0.842971 + 0.537960i \(0.819195\pi\)
\(504\) 0 0
\(505\) 114617. 0.449435
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −172673. −0.666481 −0.333240 0.942842i \(-0.608142\pi\)
−0.333240 + 0.942842i \(0.608142\pi\)
\(510\) 0 0
\(511\) 17897.7i 0.0685416i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 173525.i 0.654255i
\(516\) 0 0
\(517\) 67824.9 0.253751
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −277263. −1.02145 −0.510725 0.859744i \(-0.670623\pi\)
−0.510725 + 0.859744i \(0.670623\pi\)
\(522\) 0 0
\(523\) − 105568.i − 0.385948i −0.981204 0.192974i \(-0.938187\pi\)
0.981204 0.192974i \(-0.0618133\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 89524.4i − 0.322345i
\(528\) 0 0
\(529\) 29276.2 0.104617
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 39033.4 0.137399
\(534\) 0 0
\(535\) − 225856.i − 0.789084i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 367415.i 1.26468i
\(540\) 0 0
\(541\) 144736. 0.494518 0.247259 0.968949i \(-0.420470\pi\)
0.247259 + 0.968949i \(0.420470\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 129201. 0.434982
\(546\) 0 0
\(547\) − 521543.i − 1.74307i −0.490332 0.871536i \(-0.663124\pi\)
0.490332 0.871536i \(-0.336876\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 131840.i 0.434254i
\(552\) 0 0
\(553\) 74014.1 0.242027
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 65953.4 0.212582 0.106291 0.994335i \(-0.466102\pi\)
0.106291 + 0.994335i \(0.466102\pi\)
\(558\) 0 0
\(559\) − 39085.1i − 0.125080i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 263260.i − 0.830556i −0.909695 0.415278i \(-0.863684\pi\)
0.909695 0.415278i \(-0.136316\pi\)
\(564\) 0 0
\(565\) 76842.0 0.240714
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 574551. 1.77462 0.887308 0.461178i \(-0.152573\pi\)
0.887308 + 0.461178i \(0.152573\pi\)
\(570\) 0 0
\(571\) 257488.i 0.789740i 0.918737 + 0.394870i \(0.129210\pi\)
−0.918737 + 0.394870i \(0.870790\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 196878.i − 0.595472i
\(576\) 0 0
\(577\) −300676. −0.903124 −0.451562 0.892240i \(-0.649133\pi\)
−0.451562 + 0.892240i \(0.649133\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −14842.9 −0.0439709
\(582\) 0 0
\(583\) 414201.i 1.21864i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 587555.i − 1.70519i −0.522573 0.852594i \(-0.675028\pi\)
0.522573 0.852594i \(-0.324972\pi\)
\(588\) 0 0
\(589\) 581309. 1.67562
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −433537. −1.23287 −0.616434 0.787406i \(-0.711423\pi\)
−0.616434 + 0.787406i \(0.711423\pi\)
\(594\) 0 0
\(595\) 18057.0i 0.0510048i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 180877.i 0.504114i 0.967712 + 0.252057i \(0.0811071\pi\)
−0.967712 + 0.252057i \(0.918893\pi\)
\(600\) 0 0
\(601\) −9091.93 −0.0251714 −0.0125857 0.999921i \(-0.504006\pi\)
−0.0125857 + 0.999921i \(0.504006\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 237431. 0.648673
\(606\) 0 0
\(607\) 219816.i 0.596599i 0.954472 + 0.298300i \(0.0964194\pi\)
−0.954472 + 0.298300i \(0.903581\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 17030.4i − 0.0456186i
\(612\) 0 0
\(613\) 486280. 1.29409 0.647047 0.762450i \(-0.276004\pi\)
0.647047 + 0.762450i \(0.276004\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 372548. 0.978616 0.489308 0.872111i \(-0.337249\pi\)
0.489308 + 0.872111i \(0.337249\pi\)
\(618\) 0 0
\(619\) 593912.i 1.55003i 0.631942 + 0.775016i \(0.282258\pi\)
−0.631942 + 0.775016i \(0.717742\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 50791.9i − 0.130864i
\(624\) 0 0
\(625\) 9888.71 0.0253151
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −30585.1 −0.0773052
\(630\) 0 0
\(631\) − 356435.i − 0.895204i −0.894233 0.447602i \(-0.852278\pi\)
0.894233 0.447602i \(-0.147722\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 301628.i − 0.748039i
\(636\) 0 0
\(637\) 92255.5 0.227360
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 509005. 1.23881 0.619407 0.785070i \(-0.287373\pi\)
0.619407 + 0.785070i \(0.287373\pi\)
\(642\) 0 0
\(643\) 280745.i 0.679031i 0.940600 + 0.339516i \(0.110263\pi\)
−0.940600 + 0.339516i \(0.889737\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 636655.i − 1.52088i −0.649407 0.760441i \(-0.724983\pi\)
0.649407 0.760441i \(-0.275017\pi\)
\(648\) 0 0
\(649\) 82516.4 0.195907
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −649824. −1.52395 −0.761973 0.647609i \(-0.775769\pi\)
−0.761973 + 0.647609i \(0.775769\pi\)
\(654\) 0 0
\(655\) − 343531.i − 0.800725i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 412172.i 0.949090i 0.880231 + 0.474545i \(0.157387\pi\)
−0.880231 + 0.474545i \(0.842613\pi\)
\(660\) 0 0
\(661\) 600902. 1.37531 0.687655 0.726038i \(-0.258640\pi\)
0.687655 + 0.726038i \(0.258640\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −117249. −0.265135
\(666\) 0 0
\(667\) 145430.i 0.326892i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 470482.i − 1.04496i
\(672\) 0 0
\(673\) 210251. 0.464203 0.232102 0.972692i \(-0.425440\pi\)
0.232102 + 0.972692i \(0.425440\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 629967. 1.37449 0.687243 0.726428i \(-0.258821\pi\)
0.687243 + 0.726428i \(0.258821\pi\)
\(678\) 0 0
\(679\) 111047.i 0.240862i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 32843.1i − 0.0704048i −0.999380 0.0352024i \(-0.988792\pi\)
0.999380 0.0352024i \(-0.0112076\pi\)
\(684\) 0 0
\(685\) 438589. 0.934709
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 104003. 0.219083
\(690\) 0 0
\(691\) 301198.i 0.630807i 0.948958 + 0.315403i \(0.102140\pi\)
−0.948958 + 0.315403i \(0.897860\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 28836.1i − 0.0596989i
\(696\) 0 0
\(697\) 62474.0 0.128598
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −336422. −0.684618 −0.342309 0.939587i \(-0.611209\pi\)
−0.342309 + 0.939587i \(0.611209\pi\)
\(702\) 0 0
\(703\) − 198598.i − 0.401851i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 127822.i 0.255721i
\(708\) 0 0
\(709\) 338659. 0.673706 0.336853 0.941557i \(-0.390637\pi\)
0.336853 + 0.941557i \(0.390637\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 641233. 1.26135
\(714\) 0 0
\(715\) − 115575.i − 0.226074i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 908694.i 1.75776i 0.477042 + 0.878881i \(0.341709\pi\)
−0.477042 + 0.878881i \(0.658291\pi\)
\(720\) 0 0
\(721\) −193516. −0.372259
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −114270. −0.217398
\(726\) 0 0
\(727\) − 929452.i − 1.75856i −0.476302 0.879282i \(-0.658023\pi\)
0.476302 0.879282i \(-0.341977\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 62556.6i − 0.117068i
\(732\) 0 0
\(733\) 442345. 0.823290 0.411645 0.911344i \(-0.364954\pi\)
0.411645 + 0.911344i \(0.364954\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.17934e6 −2.17123
\(738\) 0 0
\(739\) 45905.6i 0.0840576i 0.999116 + 0.0420288i \(0.0133821\pi\)
−0.999116 + 0.0420288i \(0.986618\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 804334.i 1.45700i 0.685047 + 0.728499i \(0.259782\pi\)
−0.685047 + 0.728499i \(0.740218\pi\)
\(744\) 0 0
\(745\) −76976.3 −0.138690
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 251875. 0.448975
\(750\) 0 0
\(751\) − 379318.i − 0.672548i −0.941764 0.336274i \(-0.890833\pi\)
0.941764 0.336274i \(-0.109167\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 72377.8i − 0.126973i
\(756\) 0 0
\(757\) 1.06087e6 1.85126 0.925632 0.378424i \(-0.123534\pi\)
0.925632 + 0.378424i \(0.123534\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 212245. 0.366494 0.183247 0.983067i \(-0.441339\pi\)
0.183247 + 0.983067i \(0.441339\pi\)
\(762\) 0 0
\(763\) 144085.i 0.247497i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 20719.3i − 0.0352196i
\(768\) 0 0
\(769\) 375985. 0.635796 0.317898 0.948125i \(-0.397023\pi\)
0.317898 + 0.948125i \(0.397023\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −177912. −0.297747 −0.148873 0.988856i \(-0.547565\pi\)
−0.148873 + 0.988856i \(0.547565\pi\)
\(774\) 0 0
\(775\) 503840.i 0.838859i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 405663.i 0.668483i
\(780\) 0 0
\(781\) 948445. 1.55493
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 484475. 0.786198
\(786\) 0 0
\(787\) − 1.02528e6i − 1.65535i −0.561205 0.827677i \(-0.689662\pi\)
0.561205 0.827677i \(-0.310338\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 85694.6i 0.136962i
\(792\) 0 0
\(793\) −118135. −0.187859
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −609217. −0.959082 −0.479541 0.877520i \(-0.659197\pi\)
−0.479541 + 0.877520i \(0.659197\pi\)
\(798\) 0 0
\(799\) − 27257.6i − 0.0426966i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 183348.i − 0.284345i
\(804\) 0 0
\(805\) −129336. −0.199585
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.02958e6 −1.57313 −0.786566 0.617507i \(-0.788143\pi\)
−0.786566 + 0.617507i \(0.788143\pi\)
\(810\) 0 0
\(811\) 397632.i 0.604561i 0.953219 + 0.302280i \(0.0977479\pi\)
−0.953219 + 0.302280i \(0.902252\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 78512.0i 0.118201i
\(816\) 0 0
\(817\) 406199. 0.608548
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 444223. 0.659045 0.329523 0.944148i \(-0.393112\pi\)
0.329523 + 0.944148i \(0.393112\pi\)
\(822\) 0 0
\(823\) 448550.i 0.662234i 0.943590 + 0.331117i \(0.107425\pi\)
−0.943590 + 0.331117i \(0.892575\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 472019.i − 0.690158i −0.938574 0.345079i \(-0.887852\pi\)
0.938574 0.345079i \(-0.112148\pi\)
\(828\) 0 0
\(829\) 262562. 0.382053 0.191026 0.981585i \(-0.438818\pi\)
0.191026 + 0.981585i \(0.438818\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 147657. 0.212797
\(834\) 0 0
\(835\) 413315.i 0.592800i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 680311.i 0.966459i 0.875494 + 0.483230i \(0.160536\pi\)
−0.875494 + 0.483230i \(0.839464\pi\)
\(840\) 0 0
\(841\) −622872. −0.880657
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 405716. 0.568210
\(846\) 0 0
\(847\) 264784.i 0.369084i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 219071.i − 0.302500i
\(852\) 0 0
\(853\) 827500. 1.13729 0.568643 0.822584i \(-0.307468\pi\)
0.568643 + 0.822584i \(0.307468\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 609260. 0.829547 0.414773 0.909925i \(-0.363861\pi\)
0.414773 + 0.909925i \(0.363861\pi\)
\(858\) 0 0
\(859\) − 378716.i − 0.513247i −0.966511 0.256624i \(-0.917390\pi\)
0.966511 0.256624i \(-0.0826101\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 109339.i − 0.146810i −0.997302 0.0734050i \(-0.976613\pi\)
0.997302 0.0734050i \(-0.0233866\pi\)
\(864\) 0 0
\(865\) 760594. 1.01653
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −758220. −1.00405
\(870\) 0 0
\(871\) 296125.i 0.390336i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 263112.i − 0.343656i
\(876\) 0 0
\(877\) 902691. 1.17365 0.586827 0.809712i \(-0.300377\pi\)
0.586827 + 0.809712i \(0.300377\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.33896e6 −1.72510 −0.862552 0.505969i \(-0.831135\pi\)
−0.862552 + 0.505969i \(0.831135\pi\)
\(882\) 0 0
\(883\) − 914655.i − 1.17310i −0.809912 0.586551i \(-0.800485\pi\)
0.809912 0.586551i \(-0.199515\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 977441.i − 1.24235i −0.783673 0.621174i \(-0.786656\pi\)
0.783673 0.621174i \(-0.213344\pi\)
\(888\) 0 0
\(889\) 336377. 0.425621
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 176992. 0.221947
\(894\) 0 0
\(895\) 783443.i 0.978051i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 372178.i − 0.460502i
\(900\) 0 0
\(901\) 166460. 0.205050
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 501412. 0.612206
\(906\) 0 0
\(907\) − 848344.i − 1.03124i −0.856819 0.515618i \(-0.827563\pi\)
0.856819 0.515618i \(-0.172437\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 931493.i 1.12239i 0.827684 + 0.561194i \(0.189658\pi\)
−0.827684 + 0.561194i \(0.810342\pi\)
\(912\) 0 0
\(913\) 152054. 0.182414
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 383107. 0.455598
\(918\) 0 0
\(919\) − 599481.i − 0.709814i −0.934902 0.354907i \(-0.884513\pi\)
0.934902 0.354907i \(-0.115487\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 238148.i − 0.279540i
\(924\) 0 0
\(925\) 172132. 0.201177
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 278737. 0.322971 0.161486 0.986875i \(-0.448371\pi\)
0.161486 + 0.986875i \(0.448371\pi\)
\(930\) 0 0
\(931\) 958784.i 1.10617i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 184980.i − 0.211593i
\(936\) 0 0
\(937\) −20618.2 −0.0234840 −0.0117420 0.999931i \(-0.503738\pi\)
−0.0117420 + 0.999931i \(0.503738\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.14309e6 −1.29093 −0.645465 0.763790i \(-0.723337\pi\)
−0.645465 + 0.763790i \(0.723337\pi\)
\(942\) 0 0
\(943\) 447480.i 0.503211i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 936609.i − 1.04438i −0.852829 0.522190i \(-0.825115\pi\)
0.852829 0.522190i \(-0.174885\pi\)
\(948\) 0 0
\(949\) −46037.5 −0.0511187
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.17574e6 −1.29457 −0.647284 0.762249i \(-0.724095\pi\)
−0.647284 + 0.762249i \(0.724095\pi\)
\(954\) 0 0
\(955\) 298973.i 0.327812i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 489117.i 0.531833i
\(960\) 0 0
\(961\) −717491. −0.776908
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 476607. 0.511806
\(966\) 0 0
\(967\) 780606.i 0.834793i 0.908724 + 0.417396i \(0.137057\pi\)
−0.908724 + 0.417396i \(0.862943\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 299591.i 0.317753i 0.987298 + 0.158877i \(0.0507872\pi\)
−0.987298 + 0.158877i \(0.949213\pi\)
\(972\) 0 0
\(973\) 32158.1 0.0339676
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 730501. 0.765300 0.382650 0.923893i \(-0.375012\pi\)
0.382650 + 0.923893i \(0.375012\pi\)
\(978\) 0 0
\(979\) 520326.i 0.542888i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1.78186e6i − 1.84403i −0.387159 0.922013i \(-0.626544\pi\)
0.387159 0.922013i \(-0.373456\pi\)
\(984\) 0 0
\(985\) −820974. −0.846169
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 448072. 0.458095
\(990\) 0 0
\(991\) − 1.06455e6i − 1.08397i −0.840388 0.541986i \(-0.817673\pi\)
0.840388 0.541986i \(-0.182327\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 913620.i 0.922825i
\(996\) 0 0
\(997\) 996516. 1.00252 0.501261 0.865296i \(-0.332870\pi\)
0.501261 + 0.865296i \(0.332870\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1296.5.g.e.1135.1 yes 4
3.2 odd 2 1296.5.g.c.1135.3 4
4.3 odd 2 inner 1296.5.g.e.1135.2 yes 4
12.11 even 2 1296.5.g.c.1135.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1296.5.g.c.1135.3 4 3.2 odd 2
1296.5.g.c.1135.4 yes 4 12.11 even 2
1296.5.g.e.1135.1 yes 4 1.1 even 1 trivial
1296.5.g.e.1135.2 yes 4 4.3 odd 2 inner