Properties

Label 1295.2.j.a.186.5
Level $1295$
Weight $2$
Character 1295.186
Analytic conductor $10.341$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1295,2,Mod(186,1295)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1295.186"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1295 = 5 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1295.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3406270618\)
Analytic rank: \(0\)
Dimension: \(38\)
Relative dimension: \(19\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 186.5
Character \(\chi\) \(=\) 1295.186
Dual form 1295.2.j.a.926.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.597934 - 1.03565i) q^{2} +(-1.20438 + 2.08605i) q^{3} +(0.284950 - 0.493547i) q^{4} +(-0.500000 - 0.866025i) q^{5} +2.88056 q^{6} +(-1.59963 + 2.10741i) q^{7} -3.07326 q^{8} +(-1.40107 - 2.42672i) q^{9} +(-0.597934 + 1.03565i) q^{10} +(0.920878 - 1.59501i) q^{11} +(0.686376 + 1.18884i) q^{12} +2.88517 q^{13} +(3.13902 + 0.396571i) q^{14} +2.40876 q^{15} +(1.26771 + 2.19574i) q^{16} +(0.262482 - 0.454632i) q^{17} +(-1.67549 + 2.90204i) q^{18} +(2.04785 + 3.54697i) q^{19} -0.569899 q^{20} +(-2.46959 - 5.87504i) q^{21} -2.20250 q^{22} +(1.44561 + 2.50386i) q^{23} +(3.70138 - 6.41097i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(-1.72514 - 2.98803i) q^{26} -0.476604 q^{27} +(0.584291 + 1.39000i) q^{28} -8.93230 q^{29} +(-1.44028 - 2.49464i) q^{30} +(4.46210 - 7.72858i) q^{31} +(-1.55725 + 2.69723i) q^{32} +(2.21818 + 3.84199i) q^{33} -0.627788 q^{34} +(2.62489 + 0.331618i) q^{35} -1.59694 q^{36} +(-0.500000 - 0.866025i) q^{37} +(2.44895 - 4.24171i) q^{38} +(-3.47484 + 6.01861i) q^{39} +(1.53663 + 2.66152i) q^{40} -9.13818 q^{41} +(-4.60784 + 6.07053i) q^{42} -1.08465 q^{43} +(-0.524807 - 0.908993i) q^{44} +(-1.40107 + 2.42672i) q^{45} +(1.72875 - 2.99429i) q^{46} +(-2.80970 - 4.86655i) q^{47} -6.10722 q^{48} +(-1.88235 - 6.74216i) q^{49} +1.19587 q^{50} +(0.632257 + 1.09510i) q^{51} +(0.822128 - 1.42397i) q^{52} +(-4.57531 + 7.92467i) q^{53} +(0.284978 + 0.493596i) q^{54} -1.84176 q^{55} +(4.91609 - 6.47662i) q^{56} -9.86555 q^{57} +(5.34093 + 9.25075i) q^{58} +(3.19071 - 5.52647i) q^{59} +(0.686376 - 1.18884i) q^{60} +(-4.62308 - 8.00741i) q^{61} -10.6722 q^{62} +(7.35529 + 0.929239i) q^{63} +8.79536 q^{64} +(-1.44258 - 2.49863i) q^{65} +(2.65265 - 4.59452i) q^{66} +(2.98693 - 5.17351i) q^{67} +(-0.149588 - 0.259094i) q^{68} -6.96425 q^{69} +(-1.22607 - 2.91676i) q^{70} -4.62779 q^{71} +(4.30585 + 7.45795i) q^{72} +(3.66142 - 6.34176i) q^{73} +(-0.597934 + 1.03565i) q^{74} +(-1.20438 - 2.08605i) q^{75} +2.33413 q^{76} +(1.88827 + 4.49209i) q^{77} +8.31091 q^{78} +(-3.76889 - 6.52791i) q^{79} +(1.26771 - 2.19574i) q^{80} +(4.77722 - 8.27439i) q^{81} +(5.46403 + 9.46397i) q^{82} -2.75742 q^{83} +(-3.60332 - 0.455229i) q^{84} -0.524964 q^{85} +(0.648546 + 1.12332i) q^{86} +(10.7579 - 18.6332i) q^{87} +(-2.83010 + 4.90187i) q^{88} +(0.315779 + 0.546946i) q^{89} +3.35099 q^{90} +(-4.61521 + 6.08023i) q^{91} +1.64770 q^{92} +(10.7481 + 18.6163i) q^{93} +(-3.36004 + 5.81975i) q^{94} +(2.04785 - 3.54697i) q^{95} +(-3.75104 - 6.49700i) q^{96} -11.4070 q^{97} +(-5.85701 + 5.98083i) q^{98} -5.16085 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 3 q^{2} + q^{3} - 11 q^{4} - 19 q^{5} - 8 q^{6} - 18 q^{8} - 12 q^{9} + 3 q^{10} + 13 q^{11} + 4 q^{12} - 6 q^{13} - q^{14} - 2 q^{15} + 5 q^{16} + 2 q^{17} + 11 q^{18} + 12 q^{19} + 22 q^{20}+ \cdots - 142 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1295\mathbb{Z}\right)^\times\).

\(n\) \(556\) \(631\) \(1037\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.597934 1.03565i −0.422803 0.732317i 0.573409 0.819269i \(-0.305621\pi\)
−0.996212 + 0.0869524i \(0.972287\pi\)
\(3\) −1.20438 + 2.08605i −0.695350 + 1.20438i 0.274713 + 0.961526i \(0.411417\pi\)
−0.970063 + 0.242855i \(0.921916\pi\)
\(4\) 0.284950 0.493547i 0.142475 0.246774i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 2.88056 1.17598
\(7\) −1.59963 + 2.10741i −0.604604 + 0.796526i
\(8\) −3.07326 −1.08656
\(9\) −1.40107 2.42672i −0.467023 0.808907i
\(10\) −0.597934 + 1.03565i −0.189083 + 0.327502i
\(11\) 0.920878 1.59501i 0.277655 0.480913i −0.693146 0.720797i \(-0.743776\pi\)
0.970802 + 0.239884i \(0.0771094\pi\)
\(12\) 0.686376 + 1.18884i 0.198140 + 0.343188i
\(13\) 2.88517 0.800202 0.400101 0.916471i \(-0.368975\pi\)
0.400101 + 0.916471i \(0.368975\pi\)
\(14\) 3.13902 + 0.396571i 0.838938 + 0.105988i
\(15\) 2.40876 0.621940
\(16\) 1.26771 + 2.19574i 0.316927 + 0.548934i
\(17\) 0.262482 0.454632i 0.0636612 0.110264i −0.832438 0.554118i \(-0.813056\pi\)
0.896099 + 0.443854i \(0.146389\pi\)
\(18\) −1.67549 + 2.90204i −0.394918 + 0.684017i
\(19\) 2.04785 + 3.54697i 0.469808 + 0.813731i 0.999404 0.0345186i \(-0.0109898\pi\)
−0.529596 + 0.848250i \(0.677656\pi\)
\(20\) −0.569899 −0.127433
\(21\) −2.46959 5.87504i −0.538909 1.28204i
\(22\) −2.20250 −0.469574
\(23\) 1.44561 + 2.50386i 0.301430 + 0.522092i 0.976460 0.215698i \(-0.0692028\pi\)
−0.675030 + 0.737790i \(0.735869\pi\)
\(24\) 3.70138 6.41097i 0.755541 1.30863i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −1.72514 2.98803i −0.338328 0.586001i
\(27\) −0.476604 −0.0917225
\(28\) 0.584291 + 1.39000i 0.110421 + 0.262685i
\(29\) −8.93230 −1.65869 −0.829343 0.558740i \(-0.811285\pi\)
−0.829343 + 0.558740i \(0.811285\pi\)
\(30\) −1.44028 2.49464i −0.262958 0.455457i
\(31\) 4.46210 7.72858i 0.801417 1.38809i −0.117267 0.993100i \(-0.537413\pi\)
0.918684 0.394994i \(-0.129253\pi\)
\(32\) −1.55725 + 2.69723i −0.275285 + 0.476808i
\(33\) 2.21818 + 3.84199i 0.386135 + 0.668805i
\(34\) −0.627788 −0.107665
\(35\) 2.62489 + 0.331618i 0.443687 + 0.0560536i
\(36\) −1.59694 −0.266156
\(37\) −0.500000 0.866025i −0.0821995 0.142374i
\(38\) 2.44895 4.24171i 0.397273 0.688097i
\(39\) −3.47484 + 6.01861i −0.556420 + 0.963748i
\(40\) 1.53663 + 2.66152i 0.242963 + 0.420824i
\(41\) −9.13818 −1.42714 −0.713572 0.700582i \(-0.752924\pi\)
−0.713572 + 0.700582i \(0.752924\pi\)
\(42\) −4.60784 + 6.07053i −0.711006 + 0.936702i
\(43\) −1.08465 −0.165407 −0.0827034 0.996574i \(-0.526355\pi\)
−0.0827034 + 0.996574i \(0.526355\pi\)
\(44\) −0.524807 0.908993i −0.0791177 0.137036i
\(45\) −1.40107 + 2.42672i −0.208859 + 0.361754i
\(46\) 1.72875 2.99429i 0.254891 0.441484i
\(47\) −2.80970 4.86655i −0.409837 0.709859i 0.585034 0.811009i \(-0.301081\pi\)
−0.994871 + 0.101150i \(0.967748\pi\)
\(48\) −6.10722 −0.881501
\(49\) −1.88235 6.74216i −0.268907 0.963166i
\(50\) 1.19587 0.169121
\(51\) 0.632257 + 1.09510i 0.0885337 + 0.153345i
\(52\) 0.822128 1.42397i 0.114009 0.197469i
\(53\) −4.57531 + 7.92467i −0.628467 + 1.08854i 0.359393 + 0.933186i \(0.382984\pi\)
−0.987859 + 0.155350i \(0.950349\pi\)
\(54\) 0.284978 + 0.493596i 0.0387806 + 0.0671699i
\(55\) −1.84176 −0.248342
\(56\) 4.91609 6.47662i 0.656940 0.865475i
\(57\) −9.86555 −1.30672
\(58\) 5.34093 + 9.25075i 0.701298 + 1.21468i
\(59\) 3.19071 5.52647i 0.415395 0.719485i −0.580075 0.814563i \(-0.696977\pi\)
0.995470 + 0.0950781i \(0.0303101\pi\)
\(60\) 0.686376 1.18884i 0.0886107 0.153478i
\(61\) −4.62308 8.00741i −0.591925 1.02524i −0.993973 0.109626i \(-0.965035\pi\)
0.402048 0.915619i \(-0.368299\pi\)
\(62\) −10.6722 −1.35537
\(63\) 7.35529 + 0.929239i 0.926680 + 0.117073i
\(64\) 8.79536 1.09942
\(65\) −1.44258 2.49863i −0.178931 0.309917i
\(66\) 2.65265 4.59452i 0.326518 0.565546i
\(67\) 2.98693 5.17351i 0.364911 0.632044i −0.623851 0.781543i \(-0.714433\pi\)
0.988762 + 0.149499i \(0.0477661\pi\)
\(68\) −0.149588 0.259094i −0.0181402 0.0314198i
\(69\) −6.96425 −0.838397
\(70\) −1.22607 2.91676i −0.146543 0.348619i
\(71\) −4.62779 −0.549217 −0.274609 0.961556i \(-0.588548\pi\)
−0.274609 + 0.961556i \(0.588548\pi\)
\(72\) 4.30585 + 7.45795i 0.507449 + 0.878928i
\(73\) 3.66142 6.34176i 0.428536 0.742247i −0.568207 0.822886i \(-0.692363\pi\)
0.996743 + 0.0806388i \(0.0256960\pi\)
\(74\) −0.597934 + 1.03565i −0.0695084 + 0.120392i
\(75\) −1.20438 2.08605i −0.139070 0.240876i
\(76\) 2.33413 0.267743
\(77\) 1.88827 + 4.49209i 0.215188 + 0.511921i
\(78\) 8.31091 0.941025
\(79\) −3.76889 6.52791i −0.424034 0.734448i 0.572296 0.820047i \(-0.306053\pi\)
−0.996330 + 0.0855993i \(0.972720\pi\)
\(80\) 1.26771 2.19574i 0.141734 0.245491i
\(81\) 4.77722 8.27439i 0.530802 0.919376i
\(82\) 5.46403 + 9.46397i 0.603401 + 1.04512i
\(83\) −2.75742 −0.302666 −0.151333 0.988483i \(-0.548357\pi\)
−0.151333 + 0.988483i \(0.548357\pi\)
\(84\) −3.60332 0.455229i −0.393154 0.0496695i
\(85\) −0.524964 −0.0569403
\(86\) 0.648546 + 1.12332i 0.0699346 + 0.121130i
\(87\) 10.7579 18.6332i 1.15337 1.99769i
\(88\) −2.83010 + 4.90187i −0.301689 + 0.522541i
\(89\) 0.315779 + 0.546946i 0.0334725 + 0.0579761i 0.882276 0.470732i \(-0.156010\pi\)
−0.848804 + 0.528708i \(0.822677\pi\)
\(90\) 3.35099 0.353225
\(91\) −4.61521 + 6.08023i −0.483806 + 0.637382i
\(92\) 1.64770 0.171785
\(93\) 10.7481 + 18.6163i 1.11453 + 1.93042i
\(94\) −3.36004 + 5.81975i −0.346561 + 0.600262i
\(95\) 2.04785 3.54697i 0.210105 0.363912i
\(96\) −3.75104 6.49700i −0.382839 0.663097i
\(97\) −11.4070 −1.15821 −0.579105 0.815253i \(-0.696598\pi\)
−0.579105 + 0.815253i \(0.696598\pi\)
\(98\) −5.85701 + 5.98083i −0.591648 + 0.604155i
\(99\) −5.16085 −0.518685
\(100\) 0.284950 + 0.493547i 0.0284950 + 0.0493547i
\(101\) 4.48162 7.76239i 0.445938 0.772387i −0.552179 0.833725i \(-0.686204\pi\)
0.998117 + 0.0613386i \(0.0195370\pi\)
\(102\) 0.756096 1.30960i 0.0748647 0.129669i
\(103\) −0.131014 0.226922i −0.0129092 0.0223593i 0.859499 0.511138i \(-0.170776\pi\)
−0.872408 + 0.488779i \(0.837443\pi\)
\(104\) −8.86688 −0.869469
\(105\) −3.85314 + 5.07625i −0.376028 + 0.495391i
\(106\) 10.9429 1.06287
\(107\) −7.66863 13.2825i −0.741354 1.28406i −0.951879 0.306475i \(-0.900850\pi\)
0.210524 0.977589i \(-0.432483\pi\)
\(108\) −0.135808 + 0.235226i −0.0130681 + 0.0226347i
\(109\) −7.54143 + 13.0621i −0.722338 + 1.25113i 0.237722 + 0.971333i \(0.423599\pi\)
−0.960060 + 0.279793i \(0.909734\pi\)
\(110\) 1.10125 + 1.90742i 0.105000 + 0.181865i
\(111\) 2.40876 0.228630
\(112\) −6.65518 0.840789i −0.628856 0.0794471i
\(113\) −14.7260 −1.38531 −0.692654 0.721270i \(-0.743559\pi\)
−0.692654 + 0.721270i \(0.743559\pi\)
\(114\) 5.89895 + 10.2173i 0.552487 + 0.956936i
\(115\) 1.44561 2.50386i 0.134804 0.233487i
\(116\) −2.54525 + 4.40851i −0.236321 + 0.409320i
\(117\) −4.04232 7.00150i −0.373713 0.647289i
\(118\) −7.63133 −0.702521
\(119\) 0.538221 + 1.28040i 0.0493387 + 0.117374i
\(120\) −7.40276 −0.675776
\(121\) 3.80397 + 6.58867i 0.345815 + 0.598970i
\(122\) −5.52860 + 9.57581i −0.500536 + 0.866953i
\(123\) 11.0058 19.0627i 0.992364 1.71882i
\(124\) −2.54295 4.40451i −0.228363 0.395537i
\(125\) 1.00000 0.0894427
\(126\) −3.43561 8.17315i −0.306069 0.728122i
\(127\) −18.0723 −1.60366 −0.801829 0.597554i \(-0.796139\pi\)
−0.801829 + 0.597554i \(0.796139\pi\)
\(128\) −2.14455 3.71447i −0.189553 0.328316i
\(129\) 1.30633 2.26262i 0.115016 0.199213i
\(130\) −1.72514 + 2.98803i −0.151305 + 0.262068i
\(131\) −1.55954 2.70120i −0.136258 0.236005i 0.789820 0.613339i \(-0.210174\pi\)
−0.926077 + 0.377334i \(0.876841\pi\)
\(132\) 2.52827 0.220058
\(133\) −10.7507 1.35820i −0.932206 0.117771i
\(134\) −7.14394 −0.617142
\(135\) 0.238302 + 0.412751i 0.0205098 + 0.0355240i
\(136\) −0.806676 + 1.39720i −0.0691719 + 0.119809i
\(137\) −2.21449 + 3.83561i −0.189197 + 0.327699i −0.944983 0.327120i \(-0.893922\pi\)
0.755786 + 0.654819i \(0.227255\pi\)
\(138\) 4.16416 + 7.21254i 0.354477 + 0.613972i
\(139\) −4.46204 −0.378466 −0.189233 0.981932i \(-0.560600\pi\)
−0.189233 + 0.981932i \(0.560600\pi\)
\(140\) 0.911629 1.20101i 0.0770467 0.101504i
\(141\) 13.5358 1.13992
\(142\) 2.76711 + 4.79278i 0.232211 + 0.402201i
\(143\) 2.65689 4.60186i 0.222180 0.384827i
\(144\) 3.55229 6.15275i 0.296024 0.512729i
\(145\) 4.46615 + 7.73560i 0.370893 + 0.642406i
\(146\) −8.75715 −0.724747
\(147\) 16.3316 + 4.19346i 1.34700 + 0.345871i
\(148\) −0.569899 −0.0468454
\(149\) −10.6427 18.4338i −0.871887 1.51015i −0.860042 0.510223i \(-0.829563\pi\)
−0.0118456 0.999930i \(-0.503771\pi\)
\(150\) −1.44028 + 2.49464i −0.117598 + 0.203687i
\(151\) 1.71337 2.96764i 0.139432 0.241503i −0.787850 0.615867i \(-0.788806\pi\)
0.927282 + 0.374364i \(0.122139\pi\)
\(152\) −6.29356 10.9008i −0.510475 0.884169i
\(153\) −1.47102 −0.118925
\(154\) 3.52319 4.64156i 0.283906 0.374028i
\(155\) −8.92420 −0.716809
\(156\) 1.98031 + 3.43000i 0.158552 + 0.274620i
\(157\) −4.25359 + 7.36744i −0.339474 + 0.587986i −0.984334 0.176315i \(-0.943582\pi\)
0.644860 + 0.764301i \(0.276916\pi\)
\(158\) −4.50710 + 7.80653i −0.358566 + 0.621054i
\(159\) −11.0208 19.0886i −0.874009 1.51383i
\(160\) 3.11450 0.246223
\(161\) −7.58911 0.958778i −0.598105 0.0755623i
\(162\) −11.4258 −0.897700
\(163\) 3.68670 + 6.38555i 0.288765 + 0.500155i 0.973515 0.228622i \(-0.0734221\pi\)
−0.684750 + 0.728778i \(0.740089\pi\)
\(164\) −2.60392 + 4.51012i −0.203332 + 0.352181i
\(165\) 2.21818 3.84199i 0.172685 0.299099i
\(166\) 1.64875 + 2.85572i 0.127968 + 0.221647i
\(167\) 20.4447 1.58206 0.791029 0.611779i \(-0.209546\pi\)
0.791029 + 0.611779i \(0.209546\pi\)
\(168\) 7.58970 + 18.0555i 0.585558 + 1.39301i
\(169\) −4.67580 −0.359677
\(170\) 0.313894 + 0.543680i 0.0240746 + 0.0416984i
\(171\) 5.73835 9.93911i 0.438822 0.760062i
\(172\) −0.309069 + 0.535323i −0.0235663 + 0.0408180i
\(173\) −1.11735 1.93531i −0.0849505 0.147139i 0.820420 0.571762i \(-0.193740\pi\)
−0.905370 + 0.424623i \(0.860407\pi\)
\(174\) −25.7300 −1.95059
\(175\) −1.02525 2.43903i −0.0775019 0.184373i
\(176\) 4.66962 0.351986
\(177\) 7.68566 + 13.3120i 0.577690 + 1.00059i
\(178\) 0.377630 0.654075i 0.0283046 0.0490250i
\(179\) −4.25255 + 7.36563i −0.317851 + 0.550533i −0.980039 0.198804i \(-0.936294\pi\)
0.662189 + 0.749337i \(0.269628\pi\)
\(180\) 0.798468 + 1.38299i 0.0595143 + 0.103082i
\(181\) 17.1339 1.27355 0.636775 0.771050i \(-0.280268\pi\)
0.636775 + 0.771050i \(0.280268\pi\)
\(182\) 9.05660 + 1.14417i 0.671320 + 0.0848119i
\(183\) 22.2718 1.64638
\(184\) −4.44273 7.69503i −0.327522 0.567285i
\(185\) −0.500000 + 0.866025i −0.0367607 + 0.0636715i
\(186\) 12.8534 22.2627i 0.942454 1.63238i
\(187\) −0.483428 0.837321i −0.0353517 0.0612310i
\(188\) −3.20250 −0.233566
\(189\) 0.762391 1.00440i 0.0554558 0.0730593i
\(190\) −4.89791 −0.355332
\(191\) 7.09571 + 12.2901i 0.513427 + 0.889282i 0.999879 + 0.0155748i \(0.00495780\pi\)
−0.486451 + 0.873708i \(0.661709\pi\)
\(192\) −10.5930 + 18.3476i −0.764482 + 1.32412i
\(193\) 2.35475 4.07854i 0.169498 0.293580i −0.768745 0.639555i \(-0.779119\pi\)
0.938244 + 0.345975i \(0.112452\pi\)
\(194\) 6.82066 + 11.8137i 0.489695 + 0.848176i
\(195\) 6.94969 0.497677
\(196\) −3.86395 0.992148i −0.275996 0.0708677i
\(197\) −4.83669 −0.344600 −0.172300 0.985045i \(-0.555120\pi\)
−0.172300 + 0.985045i \(0.555120\pi\)
\(198\) 3.08585 + 5.34485i 0.219302 + 0.379842i
\(199\) −2.43798 + 4.22271i −0.172824 + 0.299340i −0.939406 0.342806i \(-0.888623\pi\)
0.766582 + 0.642146i \(0.221956\pi\)
\(200\) 1.53663 2.66152i 0.108656 0.188198i
\(201\) 7.19479 + 12.4617i 0.507482 + 0.878984i
\(202\) −10.7189 −0.754176
\(203\) 14.2884 18.8240i 1.00285 1.32119i
\(204\) 0.720645 0.0504553
\(205\) 4.56909 + 7.91389i 0.319119 + 0.552730i
\(206\) −0.156675 + 0.271369i −0.0109161 + 0.0189072i
\(207\) 4.05079 7.01617i 0.281549 0.487658i
\(208\) 3.65755 + 6.33507i 0.253606 + 0.439258i
\(209\) 7.54326 0.521778
\(210\) 7.56115 + 0.955246i 0.521769 + 0.0659182i
\(211\) 10.7161 0.737729 0.368865 0.929483i \(-0.379747\pi\)
0.368865 + 0.929483i \(0.379747\pi\)
\(212\) 2.60746 + 4.51626i 0.179081 + 0.310178i
\(213\) 5.57362 9.65379i 0.381898 0.661467i
\(214\) −9.17067 + 15.8841i −0.626894 + 1.08581i
\(215\) 0.542323 + 0.939330i 0.0369861 + 0.0640618i
\(216\) 1.46473 0.0996621
\(217\) 9.14957 + 21.7664i 0.621113 + 1.47760i
\(218\) 18.0371 1.22163
\(219\) 8.81949 + 15.2758i 0.595966 + 1.03224i
\(220\) −0.524807 + 0.908993i −0.0353825 + 0.0612843i
\(221\) 0.757305 1.31169i 0.0509418 0.0882339i
\(222\) −1.44028 2.49464i −0.0966654 0.167429i
\(223\) 9.10466 0.609693 0.304846 0.952402i \(-0.401395\pi\)
0.304846 + 0.952402i \(0.401395\pi\)
\(224\) −3.19315 7.59634i −0.213351 0.507552i
\(225\) 2.80214 0.186809
\(226\) 8.80519 + 15.2510i 0.585713 + 1.01448i
\(227\) 8.42042 14.5846i 0.558883 0.968014i −0.438707 0.898630i \(-0.644563\pi\)
0.997590 0.0693835i \(-0.0221032\pi\)
\(228\) −2.81118 + 4.86911i −0.186175 + 0.322465i
\(229\) 5.68323 + 9.84364i 0.375558 + 0.650486i 0.990410 0.138156i \(-0.0441176\pi\)
−0.614852 + 0.788643i \(0.710784\pi\)
\(230\) −3.45751 −0.227981
\(231\) −11.6449 1.47117i −0.766180 0.0967961i
\(232\) 27.4513 1.80226
\(233\) −3.73914 6.47639i −0.244959 0.424282i 0.717161 0.696908i \(-0.245441\pi\)
−0.962120 + 0.272626i \(0.912108\pi\)
\(234\) −4.83408 + 8.37288i −0.316014 + 0.547352i
\(235\) −2.80970 + 4.86655i −0.183285 + 0.317459i
\(236\) −1.81838 3.14953i −0.118367 0.205017i
\(237\) 18.1567 1.17941
\(238\) 1.00423 1.32301i 0.0650946 0.0857577i
\(239\) 28.2350 1.82637 0.913185 0.407546i \(-0.133615\pi\)
0.913185 + 0.407546i \(0.133615\pi\)
\(240\) 3.05361 + 5.28901i 0.197110 + 0.341404i
\(241\) −15.1343 + 26.2134i −0.974885 + 1.68855i −0.294572 + 0.955629i \(0.595177\pi\)
−0.680313 + 0.732921i \(0.738156\pi\)
\(242\) 4.54905 7.87918i 0.292424 0.506493i
\(243\) 10.7923 + 18.6928i 0.692325 + 1.19914i
\(244\) −5.26938 −0.337338
\(245\) −4.89771 + 5.00124i −0.312903 + 0.319518i
\(246\) −26.3231 −1.67830
\(247\) 5.90838 + 10.2336i 0.375941 + 0.651149i
\(248\) −13.7132 + 23.7519i −0.870789 + 1.50825i
\(249\) 3.32098 5.75211i 0.210459 0.364525i
\(250\) −0.597934 1.03565i −0.0378167 0.0655004i
\(251\) −29.5260 −1.86367 −0.931833 0.362888i \(-0.881791\pi\)
−0.931833 + 0.362888i \(0.881791\pi\)
\(252\) 2.55451 3.36540i 0.160919 0.212000i
\(253\) 5.32491 0.334774
\(254\) 10.8060 + 18.7166i 0.678032 + 1.17439i
\(255\) 0.632257 1.09510i 0.0395935 0.0685779i
\(256\) 6.23076 10.7920i 0.389423 0.674500i
\(257\) −3.75320 6.50073i −0.234118 0.405504i 0.724898 0.688856i \(-0.241887\pi\)
−0.959016 + 0.283352i \(0.908554\pi\)
\(258\) −3.12439 −0.194516
\(259\) 2.62489 + 0.331618i 0.163103 + 0.0206057i
\(260\) −1.64426 −0.101972
\(261\) 12.5148 + 21.6762i 0.774644 + 1.34172i
\(262\) −1.86500 + 3.23028i −0.115220 + 0.199567i
\(263\) 1.72151 2.98175i 0.106153 0.183863i −0.808056 0.589106i \(-0.799480\pi\)
0.914209 + 0.405244i \(0.132813\pi\)
\(264\) −6.81703 11.8074i −0.419559 0.726698i
\(265\) 9.15062 0.562118
\(266\) 5.02160 + 11.9461i 0.307894 + 0.732464i
\(267\) −1.52127 −0.0931005
\(268\) −1.70225 2.94838i −0.103981 0.180101i
\(269\) 9.89778 17.1435i 0.603479 1.04526i −0.388811 0.921317i \(-0.627114\pi\)
0.992290 0.123938i \(-0.0395524\pi\)
\(270\) 0.284978 0.493596i 0.0173432 0.0300393i
\(271\) −6.52979 11.3099i −0.396656 0.687029i 0.596655 0.802498i \(-0.296496\pi\)
−0.993311 + 0.115469i \(0.963163\pi\)
\(272\) 1.33100 0.0807039
\(273\) −7.12519 16.9505i −0.431236 1.02589i
\(274\) 5.29648 0.319972
\(275\) 0.920878 + 1.59501i 0.0555310 + 0.0961825i
\(276\) −1.98446 + 3.43718i −0.119450 + 0.206894i
\(277\) 12.9892 22.4979i 0.780443 1.35177i −0.151241 0.988497i \(-0.548327\pi\)
0.931684 0.363270i \(-0.118340\pi\)
\(278\) 2.66801 + 4.62112i 0.160016 + 0.277157i
\(279\) −25.0068 −1.49712
\(280\) −8.06696 1.01915i −0.482093 0.0609057i
\(281\) −9.29192 −0.554309 −0.277155 0.960825i \(-0.589391\pi\)
−0.277155 + 0.960825i \(0.589391\pi\)
\(282\) −8.09353 14.0184i −0.481963 0.834784i
\(283\) 5.17238 8.95883i 0.307466 0.532547i −0.670341 0.742053i \(-0.733852\pi\)
0.977807 + 0.209506i \(0.0671856\pi\)
\(284\) −1.31869 + 2.28403i −0.0782496 + 0.135532i
\(285\) 4.93277 + 8.54382i 0.292192 + 0.506092i
\(286\) −6.35458 −0.375754
\(287\) 14.6177 19.2579i 0.862857 1.13676i
\(288\) 8.72725 0.514258
\(289\) 8.36221 + 14.4838i 0.491894 + 0.851986i
\(290\) 5.34093 9.25075i 0.313630 0.543223i
\(291\) 13.7384 23.7957i 0.805361 1.39493i
\(292\) −2.08664 3.61416i −0.122111 0.211503i
\(293\) −17.6437 −1.03076 −0.515378 0.856963i \(-0.672348\pi\)
−0.515378 + 0.856963i \(0.672348\pi\)
\(294\) −5.42223 19.4212i −0.316231 1.13267i
\(295\) −6.38142 −0.371540
\(296\) 1.53663 + 2.66152i 0.0893148 + 0.154698i
\(297\) −0.438894 + 0.760187i −0.0254672 + 0.0441105i
\(298\) −12.7273 + 22.0444i −0.737274 + 1.27700i
\(299\) 4.17082 + 7.22407i 0.241205 + 0.417779i
\(300\) −1.37275 −0.0792559
\(301\) 1.73503 2.28579i 0.100006 0.131751i
\(302\) −4.09792 −0.235809
\(303\) 10.7952 + 18.6978i 0.620165 + 1.07416i
\(304\) −5.19214 + 8.99305i −0.297790 + 0.515787i
\(305\) −4.62308 + 8.00741i −0.264717 + 0.458503i
\(306\) 0.879574 + 1.52347i 0.0502819 + 0.0870908i
\(307\) −12.2919 −0.701535 −0.350768 0.936463i \(-0.614079\pi\)
−0.350768 + 0.936463i \(0.614079\pi\)
\(308\) 2.75512 + 0.348071i 0.156988 + 0.0198332i
\(309\) 0.631162 0.0359055
\(310\) 5.33608 + 9.24237i 0.303069 + 0.524931i
\(311\) −4.15014 + 7.18825i −0.235333 + 0.407608i −0.959369 0.282153i \(-0.908951\pi\)
0.724037 + 0.689762i \(0.242285\pi\)
\(312\) 10.6791 18.4967i 0.604585 1.04717i
\(313\) −0.987751 1.71084i −0.0558310 0.0967021i 0.836759 0.547571i \(-0.184447\pi\)
−0.892590 + 0.450869i \(0.851114\pi\)
\(314\) 10.1735 0.574122
\(315\) −2.87290 6.83449i −0.161870 0.385080i
\(316\) −4.29578 −0.241656
\(317\) 13.3017 + 23.0392i 0.747098 + 1.29401i 0.949208 + 0.314649i \(0.101887\pi\)
−0.202110 + 0.979363i \(0.564780\pi\)
\(318\) −13.1795 + 22.8275i −0.739068 + 1.28010i
\(319\) −8.22555 + 14.2471i −0.460543 + 0.797683i
\(320\) −4.39768 7.61701i −0.245838 0.425804i
\(321\) 36.9438 2.06200
\(322\) 3.54483 + 8.43296i 0.197545 + 0.469951i
\(323\) 2.15009 0.119634
\(324\) −2.72253 4.71557i −0.151252 0.261976i
\(325\) −1.44258 + 2.49863i −0.0800202 + 0.138599i
\(326\) 4.40881 7.63628i 0.244181 0.422935i
\(327\) −18.1655 31.4636i −1.00456 1.73994i
\(328\) 28.0840 1.55068
\(329\) 14.7503 + 1.86350i 0.813211 + 0.102738i
\(330\) −5.30529 −0.292047
\(331\) 12.7252 + 22.0407i 0.699442 + 1.21147i 0.968660 + 0.248390i \(0.0799014\pi\)
−0.269218 + 0.963079i \(0.586765\pi\)
\(332\) −0.785724 + 1.36091i −0.0431222 + 0.0746899i
\(333\) −1.40107 + 2.42672i −0.0767781 + 0.132984i
\(334\) −12.2246 21.1736i −0.668899 1.15857i
\(335\) −5.97385 −0.326386
\(336\) 9.76930 12.8704i 0.532959 0.702138i
\(337\) −21.4944 −1.17087 −0.585436 0.810718i \(-0.699077\pi\)
−0.585436 + 0.810718i \(0.699077\pi\)
\(338\) 2.79582 + 4.84250i 0.152073 + 0.263397i
\(339\) 17.7357 30.7192i 0.963274 1.66844i
\(340\) −0.149588 + 0.259094i −0.00811256 + 0.0140514i
\(341\) −8.21810 14.2342i −0.445035 0.770823i
\(342\) −13.7246 −0.742142
\(343\) 17.2196 + 6.81810i 0.929769 + 0.368143i
\(344\) 3.33340 0.179725
\(345\) 3.48212 + 6.03121i 0.187471 + 0.324710i
\(346\) −1.33620 + 2.31437i −0.0718347 + 0.124421i
\(347\) −5.19485 + 8.99774i −0.278874 + 0.483024i −0.971105 0.238652i \(-0.923295\pi\)
0.692231 + 0.721676i \(0.256628\pi\)
\(348\) −6.13091 10.6191i −0.328651 0.569241i
\(349\) 14.8759 0.796290 0.398145 0.917323i \(-0.369654\pi\)
0.398145 + 0.917323i \(0.369654\pi\)
\(350\) −1.91295 + 2.52018i −0.102251 + 0.134710i
\(351\) −1.37508 −0.0733965
\(352\) 2.86807 + 4.96764i 0.152869 + 0.264776i
\(353\) −10.8486 + 18.7904i −0.577414 + 1.00011i 0.418361 + 0.908281i \(0.362605\pi\)
−0.995775 + 0.0918295i \(0.970729\pi\)
\(354\) 9.19104 15.9193i 0.488498 0.846104i
\(355\) 2.31389 + 4.00778i 0.122809 + 0.212711i
\(356\) 0.359925 0.0190760
\(357\) −3.31921 0.419335i −0.175671 0.0221936i
\(358\) 10.1710 0.537553
\(359\) 4.45770 + 7.72097i 0.235268 + 0.407497i 0.959351 0.282217i \(-0.0910697\pi\)
−0.724082 + 0.689714i \(0.757736\pi\)
\(360\) 4.30585 7.45795i 0.226938 0.393068i
\(361\) 1.11266 1.92718i 0.0585609 0.101430i
\(362\) −10.2449 17.7447i −0.538461 0.932642i
\(363\) −18.3257 −0.961851
\(364\) 1.68578 + 4.01038i 0.0883588 + 0.210201i
\(365\) −7.32283 −0.383295
\(366\) −13.3171 23.0659i −0.696095 1.20567i
\(367\) 11.3741 19.7005i 0.593724 1.02836i −0.400002 0.916514i \(-0.630990\pi\)
0.993726 0.111846i \(-0.0356762\pi\)
\(368\) −3.66522 + 6.34834i −0.191063 + 0.330930i
\(369\) 12.8032 + 22.1758i 0.666509 + 1.15443i
\(370\) 1.19587 0.0621702
\(371\) −9.38170 22.3186i −0.487074 1.15872i
\(372\) 12.2507 0.635170
\(373\) −7.23641 12.5338i −0.374687 0.648977i 0.615593 0.788064i \(-0.288917\pi\)
−0.990280 + 0.139087i \(0.955583\pi\)
\(374\) −0.578116 + 1.00133i −0.0298937 + 0.0517773i
\(375\) −1.20438 + 2.08605i −0.0621940 + 0.107723i
\(376\) 8.63495 + 14.9562i 0.445314 + 0.771306i
\(377\) −25.7712 −1.32728
\(378\) −1.49607 0.189007i −0.0769495 0.00972149i
\(379\) 1.90563 0.0978857 0.0489429 0.998802i \(-0.484415\pi\)
0.0489429 + 0.998802i \(0.484415\pi\)
\(380\) −1.16707 2.02142i −0.0598692 0.103696i
\(381\) 21.7659 37.6997i 1.11510 1.93141i
\(382\) 8.48553 14.6974i 0.434158 0.751983i
\(383\) −9.53489 16.5149i −0.487210 0.843873i 0.512682 0.858579i \(-0.328652\pi\)
−0.999892 + 0.0147060i \(0.995319\pi\)
\(384\) 10.3314 0.527223
\(385\) 2.94613 3.88133i 0.150149 0.197811i
\(386\) −5.63194 −0.286658
\(387\) 1.51966 + 2.63213i 0.0772488 + 0.133799i
\(388\) −3.25043 + 5.62991i −0.165016 + 0.285816i
\(389\) −8.04073 + 13.9270i −0.407681 + 0.706125i −0.994629 0.103500i \(-0.966996\pi\)
0.586948 + 0.809624i \(0.300329\pi\)
\(390\) −4.15546 7.19746i −0.210420 0.364458i
\(391\) 1.51778 0.0767576
\(392\) 5.78495 + 20.7204i 0.292184 + 1.04654i
\(393\) 7.51312 0.378987
\(394\) 2.89202 + 5.00913i 0.145698 + 0.252357i
\(395\) −3.76889 + 6.52791i −0.189634 + 0.328455i
\(396\) −1.47058 + 2.54712i −0.0738995 + 0.127998i
\(397\) −1.82700 3.16446i −0.0916945 0.158819i 0.816530 0.577303i \(-0.195895\pi\)
−0.908224 + 0.418484i \(0.862562\pi\)
\(398\) 5.83101 0.292282
\(399\) 15.7813 20.7908i 0.790051 1.04084i
\(400\) −2.53542 −0.126771
\(401\) −9.69294 16.7887i −0.484042 0.838386i 0.515790 0.856715i \(-0.327499\pi\)
−0.999832 + 0.0183295i \(0.994165\pi\)
\(402\) 8.60403 14.9026i 0.429130 0.743275i
\(403\) 12.8739 22.2983i 0.641295 1.11076i
\(404\) −2.55407 4.42378i −0.127070 0.220091i
\(405\) −9.55444 −0.474764
\(406\) −28.0386 3.54229i −1.39153 0.175801i
\(407\) −1.84176 −0.0912924
\(408\) −1.94309 3.36553i −0.0961973 0.166619i
\(409\) 0.731144 1.26638i 0.0361527 0.0626184i −0.847383 0.530982i \(-0.821823\pi\)
0.883536 + 0.468364i \(0.155156\pi\)
\(410\) 5.46403 9.46397i 0.269849 0.467392i
\(411\) −5.33419 9.23908i −0.263116 0.455730i
\(412\) −0.149329 −0.00735692
\(413\) 6.54257 + 15.5645i 0.321939 + 0.765877i
\(414\) −9.68842 −0.476160
\(415\) 1.37871 + 2.38799i 0.0676781 + 0.117222i
\(416\) −4.49292 + 7.78197i −0.220284 + 0.381543i
\(417\) 5.37400 9.30804i 0.263166 0.455817i
\(418\) −4.51037 7.81220i −0.220610 0.382107i
\(419\) 24.3498 1.18957 0.594784 0.803886i \(-0.297238\pi\)
0.594784 + 0.803886i \(0.297238\pi\)
\(420\) 1.40742 + 3.34818i 0.0686750 + 0.163374i
\(421\) −29.2002 −1.42313 −0.711566 0.702620i \(-0.752014\pi\)
−0.711566 + 0.702620i \(0.752014\pi\)
\(422\) −6.40754 11.0982i −0.311914 0.540251i
\(423\) −7.87318 + 13.6367i −0.382807 + 0.663041i
\(424\) 14.0611 24.3546i 0.682868 1.18276i
\(425\) 0.262482 + 0.454632i 0.0127322 + 0.0220529i
\(426\) −13.3306 −0.645871
\(427\) 24.2701 + 3.06619i 1.17451 + 0.148383i
\(428\) −8.74069 −0.422497
\(429\) 6.39981 + 11.0848i 0.308986 + 0.535179i
\(430\) 0.648546 1.12332i 0.0312757 0.0541711i
\(431\) 13.1720 22.8146i 0.634473 1.09894i −0.352154 0.935942i \(-0.614551\pi\)
0.986627 0.162997i \(-0.0521160\pi\)
\(432\) −0.604195 1.04650i −0.0290693 0.0503496i
\(433\) 36.0542 1.73265 0.866327 0.499478i \(-0.166475\pi\)
0.866327 + 0.499478i \(0.166475\pi\)
\(434\) 17.0715 22.4906i 0.819460 1.07958i
\(435\) −21.5158 −1.03160
\(436\) 4.29786 + 7.44410i 0.205830 + 0.356508i
\(437\) −5.92076 + 10.2551i −0.283228 + 0.490566i
\(438\) 10.5469 18.2678i 0.503952 0.872871i
\(439\) 3.90807 + 6.76898i 0.186522 + 0.323066i 0.944088 0.329693i \(-0.106945\pi\)
−0.757566 + 0.652758i \(0.773612\pi\)
\(440\) 5.66019 0.269839
\(441\) −13.7241 + 14.0142i −0.653526 + 0.667342i
\(442\) −1.81127 −0.0861535
\(443\) 12.6540 + 21.9173i 0.601208 + 1.04132i 0.992639 + 0.121115i \(0.0386468\pi\)
−0.391431 + 0.920207i \(0.628020\pi\)
\(444\) 0.686376 1.18884i 0.0325740 0.0564197i
\(445\) 0.315779 0.546946i 0.0149694 0.0259277i
\(446\) −5.44399 9.42926i −0.257780 0.446488i
\(447\) 51.2717 2.42507
\(448\) −14.0693 + 18.5354i −0.664714 + 0.875717i
\(449\) 36.7785 1.73569 0.867843 0.496838i \(-0.165506\pi\)
0.867843 + 0.496838i \(0.165506\pi\)
\(450\) −1.67549 2.90204i −0.0789835 0.136803i
\(451\) −8.41514 + 14.5755i −0.396254 + 0.686331i
\(452\) −4.19617 + 7.26799i −0.197371 + 0.341857i
\(453\) 4.12709 + 7.14833i 0.193908 + 0.335858i
\(454\) −20.1394 −0.945190
\(455\) 7.57324 + 0.956773i 0.355039 + 0.0448542i
\(456\) 30.3194 1.41984
\(457\) −12.8129 22.1926i −0.599363 1.03813i −0.992915 0.118824i \(-0.962087\pi\)
0.393553 0.919302i \(-0.371246\pi\)
\(458\) 6.79640 11.7717i 0.317575 0.550056i
\(459\) −0.125100 + 0.216679i −0.00583917 + 0.0101137i
\(460\) −0.823850 1.42695i −0.0384122 0.0665319i
\(461\) −32.9731 −1.53571 −0.767856 0.640623i \(-0.778676\pi\)
−0.767856 + 0.640623i \(0.778676\pi\)
\(462\) 5.43927 + 12.9398i 0.253058 + 0.602012i
\(463\) −39.1489 −1.81940 −0.909702 0.415261i \(-0.863690\pi\)
−0.909702 + 0.415261i \(0.863690\pi\)
\(464\) −11.3235 19.6130i −0.525683 0.910509i
\(465\) 10.7481 18.6163i 0.498433 0.863311i
\(466\) −4.47152 + 7.74490i −0.207139 + 0.358776i
\(467\) −8.76824 15.1870i −0.405746 0.702772i 0.588662 0.808379i \(-0.299655\pi\)
−0.994408 + 0.105607i \(0.966321\pi\)
\(468\) −4.60743 −0.212978
\(469\) 6.12471 + 14.5704i 0.282813 + 0.672798i
\(470\) 6.72007 0.309974
\(471\) −10.2459 17.7464i −0.472106 0.817712i
\(472\) −9.80588 + 16.9843i −0.451352 + 0.781765i
\(473\) −0.998826 + 1.73002i −0.0459261 + 0.0795463i
\(474\) −10.8565 18.8041i −0.498657 0.863699i
\(475\) −4.09569 −0.187923
\(476\) 0.785304 + 0.0992123i 0.0359944 + 0.00454739i
\(477\) 25.6413 1.17403
\(478\) −16.8827 29.2416i −0.772195 1.33748i
\(479\) −2.90941 + 5.03925i −0.132934 + 0.230249i −0.924807 0.380438i \(-0.875773\pi\)
0.791872 + 0.610687i \(0.209107\pi\)
\(480\) −3.75104 + 6.49700i −0.171211 + 0.296546i
\(481\) −1.44258 2.49863i −0.0657762 0.113928i
\(482\) 36.1972 1.64874
\(483\) 11.1402 14.6765i 0.506898 0.667805i
\(484\) 4.33576 0.197080
\(485\) 5.70352 + 9.87879i 0.258984 + 0.448573i
\(486\) 12.9061 22.3541i 0.585435 1.01400i
\(487\) −9.31958 + 16.1420i −0.422311 + 0.731463i −0.996165 0.0874940i \(-0.972114\pi\)
0.573855 + 0.818957i \(0.305447\pi\)
\(488\) 14.2079 + 24.6089i 0.643163 + 1.11399i
\(489\) −17.7608 −0.803170
\(490\) 8.10806 + 2.08191i 0.366285 + 0.0940511i
\(491\) 17.3309 0.782134 0.391067 0.920362i \(-0.372106\pi\)
0.391067 + 0.920362i \(0.372106\pi\)
\(492\) −6.27222 10.8638i −0.282774 0.489778i
\(493\) −2.34457 + 4.06091i −0.105594 + 0.182894i
\(494\) 7.06564 12.2381i 0.317898 0.550616i
\(495\) 2.58043 + 4.46943i 0.115982 + 0.200886i
\(496\) 22.6266 1.01596
\(497\) 7.40276 9.75264i 0.332059 0.437466i
\(498\) −7.94291 −0.355930
\(499\) 15.1532 + 26.2461i 0.678349 + 1.17494i 0.975478 + 0.220098i \(0.0706377\pi\)
−0.297128 + 0.954838i \(0.596029\pi\)
\(500\) 0.284950 0.493547i 0.0127433 0.0220721i
\(501\) −24.6232 + 42.6486i −1.10008 + 1.90540i
\(502\) 17.6546 + 30.5787i 0.787964 + 1.36479i
\(503\) −12.9328 −0.576645 −0.288323 0.957533i \(-0.593098\pi\)
−0.288323 + 0.957533i \(0.593098\pi\)
\(504\) −22.6047 2.85579i −1.00689 0.127207i
\(505\) −8.96324 −0.398859
\(506\) −3.18394 5.51475i −0.141544 0.245161i
\(507\) 5.63145 9.75395i 0.250101 0.433188i
\(508\) −5.14969 + 8.91953i −0.228481 + 0.395740i
\(509\) −3.23052 5.59543i −0.143190 0.248013i 0.785506 0.618854i \(-0.212403\pi\)
−0.928696 + 0.370841i \(0.879069\pi\)
\(510\) −1.51219 −0.0669610
\(511\) 7.50776 + 17.8606i 0.332124 + 0.790106i
\(512\) −23.4805 −1.03770
\(513\) −0.976011 1.69050i −0.0430920 0.0746375i
\(514\) −4.48833 + 7.77401i −0.197972 + 0.342897i
\(515\) −0.131014 + 0.226922i −0.00577315 + 0.00999940i
\(516\) −0.744474 1.28947i −0.0327737 0.0567656i
\(517\) −10.3496 −0.455174
\(518\) −1.22607 2.91676i −0.0538704 0.128155i
\(519\) 5.38286 0.236281
\(520\) 4.43344 + 7.67894i 0.194419 + 0.336744i
\(521\) −13.3750 + 23.1661i −0.585969 + 1.01493i 0.408785 + 0.912631i \(0.365952\pi\)
−0.994754 + 0.102297i \(0.967381\pi\)
\(522\) 14.9660 25.9219i 0.655044 1.13457i
\(523\) 13.9114 + 24.0952i 0.608302 + 1.05361i 0.991520 + 0.129952i \(0.0414825\pi\)
−0.383218 + 0.923658i \(0.625184\pi\)
\(524\) −1.77756 −0.0776531
\(525\) 6.32273 + 0.798789i 0.275947 + 0.0348620i
\(526\) −4.11741 −0.179527
\(527\) −2.34244 4.05723i −0.102038 0.176736i
\(528\) −5.62400 + 9.74105i −0.244753 + 0.423925i
\(529\) 7.32044 12.6794i 0.318280 0.551277i
\(530\) −5.47147 9.47686i −0.237665 0.411648i
\(531\) −17.8816 −0.775996
\(532\) −3.73375 + 4.91897i −0.161879 + 0.213264i
\(533\) −26.3652 −1.14200
\(534\) 0.909622 + 1.57551i 0.0393632 + 0.0681791i
\(535\) −7.66863 + 13.2825i −0.331544 + 0.574251i
\(536\) −9.17960 + 15.8995i −0.396498 + 0.686755i
\(537\) −10.2434 17.7421i −0.442035 0.765627i
\(538\) −23.6729 −1.02061
\(539\) −12.4872 3.20635i −0.537862 0.138107i
\(540\) 0.271616 0.0116885
\(541\) −0.664784 1.15144i −0.0285813 0.0495042i 0.851381 0.524548i \(-0.175766\pi\)
−0.879962 + 0.475044i \(0.842432\pi\)
\(542\) −7.80877 + 13.5252i −0.335415 + 0.580956i
\(543\) −20.6357 + 35.7421i −0.885563 + 1.53384i
\(544\) 0.817499 + 1.41595i 0.0350500 + 0.0607084i
\(545\) 15.0829 0.646079
\(546\) −13.2944 + 17.5145i −0.568948 + 0.749551i
\(547\) −25.1115 −1.07369 −0.536845 0.843681i \(-0.680384\pi\)
−0.536845 + 0.843681i \(0.680384\pi\)
\(548\) 1.26204 + 2.18591i 0.0539116 + 0.0933776i
\(549\) −12.9545 + 22.4379i −0.552885 + 0.957625i
\(550\) 1.10125 1.90742i 0.0469574 0.0813326i
\(551\) −18.2920 31.6826i −0.779264 1.34972i
\(552\) 21.4029 0.910970
\(553\) 19.7858 + 2.49966i 0.841379 + 0.106297i
\(554\) −31.0667 −1.31990
\(555\) −1.20438 2.08605i −0.0511231 0.0885479i
\(556\) −1.27146 + 2.20223i −0.0539218 + 0.0933953i
\(557\) −19.6884 + 34.1013i −0.834223 + 1.44492i 0.0604384 + 0.998172i \(0.480750\pi\)
−0.894661 + 0.446745i \(0.852583\pi\)
\(558\) 14.9524 + 25.8984i 0.632987 + 1.09637i
\(559\) −3.12938 −0.132359
\(560\) 2.59945 + 6.18395i 0.109847 + 0.261320i
\(561\) 2.32893 0.0983273
\(562\) 5.55595 + 9.62319i 0.234364 + 0.405930i
\(563\) −1.01036 + 1.74999i −0.0425814 + 0.0737532i −0.886531 0.462670i \(-0.846892\pi\)
0.843949 + 0.536423i \(0.180225\pi\)
\(564\) 3.85703 6.68056i 0.162410 0.281303i
\(565\) 7.36301 + 12.7531i 0.309764 + 0.536527i
\(566\) −12.3710 −0.519991
\(567\) 9.79572 + 23.3035i 0.411382 + 0.978657i
\(568\) 14.2224 0.596758
\(569\) −22.5846 39.1177i −0.946797 1.63990i −0.752112 0.659035i \(-0.770965\pi\)
−0.194685 0.980866i \(-0.562368\pi\)
\(570\) 5.89895 10.2173i 0.247080 0.427955i
\(571\) −3.89308 + 6.74301i −0.162920 + 0.282186i −0.935915 0.352226i \(-0.885425\pi\)
0.772994 + 0.634413i \(0.218758\pi\)
\(572\) −1.51416 2.62260i −0.0633101 0.109656i
\(573\) −34.1838 −1.42805
\(574\) −28.6849 3.62394i −1.19728 0.151260i
\(575\) −2.89121 −0.120572
\(576\) −12.3229 21.3439i −0.513454 0.889329i
\(577\) −3.53363 + 6.12042i −0.147107 + 0.254796i −0.930157 0.367162i \(-0.880329\pi\)
0.783050 + 0.621958i \(0.213663\pi\)
\(578\) 10.0001 17.3207i 0.415949 0.720445i
\(579\) 5.67203 + 9.82424i 0.235721 + 0.408281i
\(580\) 5.09051 0.211372
\(581\) 4.41085 5.81100i 0.182993 0.241081i
\(582\) −32.8587 −1.36204
\(583\) 8.42660 + 14.5953i 0.348994 + 0.604475i
\(584\) −11.2525 + 19.4899i −0.465631 + 0.806497i
\(585\) −4.04232 + 7.00150i −0.167129 + 0.289477i
\(586\) 10.5498 + 18.2727i 0.435807 + 0.754840i
\(587\) 39.3373 1.62363 0.811813 0.583918i \(-0.198481\pi\)
0.811813 + 0.583918i \(0.198481\pi\)
\(588\) 6.72334 6.86547i 0.277266 0.283127i
\(589\) 36.5508 1.50605
\(590\) 3.81567 + 6.60893i 0.157089 + 0.272085i
\(591\) 5.82522 10.0896i 0.239618 0.415030i
\(592\) 1.26771 2.19574i 0.0521025 0.0902442i
\(593\) 0.786941 + 1.36302i 0.0323158 + 0.0559726i 0.881731 0.471753i \(-0.156378\pi\)
−0.849415 + 0.527725i \(0.823045\pi\)
\(594\) 1.04972 0.0430705
\(595\) 0.839750 1.10631i 0.0344264 0.0453545i
\(596\) −12.1306 −0.496888
\(597\) −5.87252 10.1715i −0.240346 0.416292i
\(598\) 4.98775 8.63904i 0.203964 0.353276i
\(599\) 11.7156 20.2920i 0.478687 0.829111i −0.521014 0.853548i \(-0.674446\pi\)
0.999701 + 0.0244375i \(0.00777946\pi\)
\(600\) 3.70138 + 6.41097i 0.151108 + 0.261727i
\(601\) −21.6912 −0.884801 −0.442400 0.896818i \(-0.645873\pi\)
−0.442400 + 0.896818i \(0.645873\pi\)
\(602\) −3.40472 0.430139i −0.138766 0.0175312i
\(603\) −16.7396 −0.681687
\(604\) −0.976445 1.69125i −0.0397310 0.0688161i
\(605\) 3.80397 6.58867i 0.154653 0.267867i
\(606\) 12.9096 22.3601i 0.524416 0.908315i
\(607\) −22.8744 39.6196i −0.928442 1.60811i −0.785930 0.618315i \(-0.787816\pi\)
−0.142511 0.989793i \(-0.545518\pi\)
\(608\) −12.7560 −0.517325
\(609\) 22.0591 + 52.4776i 0.893882 + 2.12650i
\(610\) 11.0572 0.447693
\(611\) −8.10647 14.0408i −0.327953 0.568031i
\(612\) −0.419167 + 0.726018i −0.0169438 + 0.0293476i
\(613\) −9.58874 + 16.6082i −0.387286 + 0.670798i −0.992083 0.125581i \(-0.959921\pi\)
0.604798 + 0.796379i \(0.293254\pi\)
\(614\) 7.34974 + 12.7301i 0.296611 + 0.513746i
\(615\) −22.0117 −0.887597
\(616\) −5.80314 13.8054i −0.233815 0.556234i
\(617\) −12.4394 −0.500793 −0.250397 0.968143i \(-0.580561\pi\)
−0.250397 + 0.968143i \(0.580561\pi\)
\(618\) −0.377393 0.653664i −0.0151810 0.0262942i
\(619\) −10.0151 + 17.3466i −0.402540 + 0.697220i −0.994032 0.109091i \(-0.965206\pi\)
0.591492 + 0.806311i \(0.298539\pi\)
\(620\) −2.54295 + 4.40451i −0.102127 + 0.176889i
\(621\) −0.688982 1.19335i −0.0276479 0.0478875i
\(622\) 9.92604 0.397998
\(623\) −1.65777 0.209436i −0.0664171 0.00839088i
\(624\) −17.6204 −0.705379
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −1.18122 + 2.04593i −0.0472111 + 0.0817719i
\(627\) −9.08496 + 15.7356i −0.362819 + 0.628420i
\(628\) 2.42412 + 4.19870i 0.0967329 + 0.167546i
\(629\) −0.524964 −0.0209317
\(630\) −5.36035 + 7.06190i −0.213561 + 0.281353i
\(631\) −20.1530 −0.802277 −0.401139 0.916017i \(-0.631385\pi\)
−0.401139 + 0.916017i \(0.631385\pi\)
\(632\) 11.5828 + 20.0620i 0.460739 + 0.798023i
\(633\) −12.9063 + 22.3544i −0.512980 + 0.888507i
\(634\) 15.9071 27.5519i 0.631751 1.09423i
\(635\) 9.03615 + 15.6511i 0.358589 + 0.621094i
\(636\) −12.5615 −0.498097
\(637\) −5.43090 19.4523i −0.215180 0.770727i
\(638\) 19.6734 0.778876
\(639\) 6.48385 + 11.2303i 0.256497 + 0.444266i
\(640\) −2.14455 + 3.71447i −0.0847708 + 0.146827i
\(641\) 6.11274 10.5876i 0.241439 0.418184i −0.719686 0.694300i \(-0.755714\pi\)
0.961124 + 0.276116i \(0.0890474\pi\)
\(642\) −22.0900 38.2610i −0.871822 1.51004i
\(643\) 3.58210 0.141264 0.0706321 0.997502i \(-0.477498\pi\)
0.0706321 + 0.997502i \(0.477498\pi\)
\(644\) −2.63571 + 3.47238i −0.103862 + 0.136831i
\(645\) −2.61265 −0.102873
\(646\) −1.28561 2.22675i −0.0505817 0.0876102i
\(647\) 14.3745 24.8974i 0.565122 0.978820i −0.431917 0.901914i \(-0.642163\pi\)
0.997038 0.0769060i \(-0.0245041\pi\)
\(648\) −14.6816 + 25.4293i −0.576749 + 0.998959i
\(649\) −5.87651 10.1784i −0.230673 0.399537i
\(650\) 3.45028 0.135331
\(651\) −56.4253 7.12855i −2.21148 0.279390i
\(652\) 4.20210 0.164567
\(653\) 11.9874 + 20.7628i 0.469104 + 0.812513i 0.999376 0.0353149i \(-0.0112434\pi\)
−0.530272 + 0.847828i \(0.677910\pi\)
\(654\) −21.7236 + 37.6263i −0.849459 + 1.47131i
\(655\) −1.55954 + 2.70120i −0.0609363 + 0.105545i
\(656\) −11.5845 20.0650i −0.452300 0.783407i
\(657\) −20.5196 −0.800545
\(658\) −6.88978 16.3904i −0.268592 0.638966i
\(659\) −0.772192 −0.0300803 −0.0150402 0.999887i \(-0.504788\pi\)
−0.0150402 + 0.999887i \(0.504788\pi\)
\(660\) −1.26414 2.18955i −0.0492064 0.0852281i
\(661\) 1.95992 3.39467i 0.0762319 0.132037i −0.825389 0.564564i \(-0.809044\pi\)
0.901621 + 0.432526i \(0.142378\pi\)
\(662\) 15.2177 26.3578i 0.591453 1.02443i
\(663\) 1.82417 + 3.15955i 0.0708448 + 0.122707i
\(664\) 8.47426 0.328865
\(665\) 4.19912 + 9.98950i 0.162835 + 0.387376i
\(666\) 3.35099 0.129848
\(667\) −12.9126 22.3653i −0.499977 0.865986i
\(668\) 5.82570 10.0904i 0.225403 0.390410i
\(669\) −10.9655 + 18.9928i −0.423950 + 0.734303i
\(670\) 3.57197 + 6.18683i 0.137997 + 0.239018i
\(671\) −17.0292 −0.657404
\(672\) 19.6921 + 2.48782i 0.759640 + 0.0959699i
\(673\) −26.7340 −1.03052 −0.515261 0.857033i \(-0.672305\pi\)
−0.515261 + 0.857033i \(0.672305\pi\)
\(674\) 12.8522 + 22.2607i 0.495049 + 0.857450i
\(675\) 0.238302 0.412751i 0.00917225 0.0158868i
\(676\) −1.33237 + 2.30773i −0.0512449 + 0.0887588i
\(677\) −6.64761 11.5140i −0.255488 0.442519i 0.709540 0.704666i \(-0.248903\pi\)
−0.965028 + 0.262147i \(0.915570\pi\)
\(678\) −42.4192 −1.62910
\(679\) 18.2471 24.0393i 0.700259 0.922544i
\(680\) 1.61335 0.0618692
\(681\) 20.2828 + 35.1308i 0.777238 + 1.34622i
\(682\) −9.82776 + 17.0222i −0.376324 + 0.651813i
\(683\) −13.5534 + 23.4752i −0.518607 + 0.898254i 0.481159 + 0.876633i \(0.340216\pi\)
−0.999766 + 0.0216206i \(0.993117\pi\)
\(684\) −3.27028 5.66429i −0.125042 0.216579i
\(685\) 4.42898 0.169223
\(686\) −3.23498 21.9103i −0.123512 0.836538i
\(687\) −27.3791 −1.04458
\(688\) −1.37501 2.38159i −0.0524219 0.0907974i
\(689\) −13.2005 + 22.8640i −0.502900 + 0.871049i
\(690\) 4.16416 7.21254i 0.158527 0.274577i
\(691\) 6.38217 + 11.0542i 0.242789 + 0.420523i 0.961508 0.274778i \(-0.0886043\pi\)
−0.718718 + 0.695301i \(0.755271\pi\)
\(692\) −1.27355 −0.0484132
\(693\) 8.25547 10.8760i 0.313599 0.413146i
\(694\) 12.4247 0.471635
\(695\) 2.23102 + 3.86424i 0.0846275 + 0.146579i
\(696\) −33.0618 + 57.2647i −1.25320 + 2.17061i
\(697\) −2.39861 + 4.15451i −0.0908537 + 0.157363i
\(698\) −8.89482 15.4063i −0.336674 0.583136i
\(699\) 18.0134 0.681330
\(700\) −1.49592 0.188989i −0.0565405 0.00714310i
\(701\) 33.0588 1.24861 0.624306 0.781180i \(-0.285382\pi\)
0.624306 + 0.781180i \(0.285382\pi\)
\(702\) 0.822209 + 1.42411i 0.0310323 + 0.0537495i
\(703\) 2.04785 3.54697i 0.0772360 0.133777i
\(704\) 8.09945 14.0287i 0.305260 0.528725i
\(705\) −6.76791 11.7224i −0.254894 0.441490i
\(706\) 25.9471 0.976530
\(707\) 9.18959 + 21.8616i 0.345610 + 0.822189i
\(708\) 8.76010 0.329225
\(709\) −14.0312 24.3028i −0.526953 0.912709i −0.999507 0.0314074i \(-0.990001\pi\)
0.472554 0.881302i \(-0.343332\pi\)
\(710\) 2.76711 4.79278i 0.103848 0.179870i
\(711\) −10.5610 + 18.2921i −0.396067 + 0.686008i
\(712\) −0.970472 1.68091i −0.0363700 0.0629947i
\(713\) 25.8018 0.966283
\(714\) 1.55038 + 3.68828i 0.0580215 + 0.138030i
\(715\) −5.31378 −0.198724
\(716\) 2.42352 + 4.19767i 0.0905714 + 0.156874i
\(717\) −34.0057 + 58.8996i −1.26997 + 2.19965i
\(718\) 5.33082 9.23326i 0.198945 0.344582i
\(719\) −11.0299 19.1044i −0.411346 0.712473i 0.583691 0.811976i \(-0.301608\pi\)
−0.995037 + 0.0995033i \(0.968275\pi\)
\(720\) −7.10459 −0.264772
\(721\) 0.687792 + 0.0868930i 0.0256147 + 0.00323606i
\(722\) −2.66118 −0.0990389
\(723\) −36.4549 63.1418i −1.35577 2.34827i
\(724\) 4.88229 8.45637i 0.181449 0.314278i
\(725\) 4.46615 7.73560i 0.165869 0.287293i
\(726\) 10.9576 + 18.9791i 0.406674 + 0.704379i
\(727\) 25.4510 0.943924 0.471962 0.881619i \(-0.343546\pi\)
0.471962 + 0.881619i \(0.343546\pi\)
\(728\) 14.1837 18.6861i 0.525685 0.692554i
\(729\) −23.3288 −0.864029
\(730\) 4.37857 + 7.58391i 0.162058 + 0.280693i
\(731\) −0.284700 + 0.493115i −0.0105300 + 0.0182385i
\(732\) 6.34634 10.9922i 0.234568 0.406283i
\(733\) 20.0686 + 34.7598i 0.741249 + 1.28388i 0.951927 + 0.306326i \(0.0990996\pi\)
−0.210678 + 0.977556i \(0.567567\pi\)
\(734\) −27.2039 −1.00411
\(735\) −4.53413 16.2403i −0.167244 0.599031i
\(736\) −9.00467 −0.331917
\(737\) −5.50119 9.52833i −0.202639 0.350981i
\(738\) 15.3110 26.5194i 0.563604 0.976191i
\(739\) 9.97031 17.2691i 0.366764 0.635254i −0.622294 0.782784i \(-0.713799\pi\)
0.989058 + 0.147530i \(0.0471324\pi\)
\(740\) 0.284950 + 0.493547i 0.0104750 + 0.0181432i
\(741\) −28.4638 −1.04564
\(742\) −17.5047 + 23.0612i −0.642617 + 0.846605i
\(743\) −45.7278 −1.67759 −0.838795 0.544447i \(-0.816740\pi\)
−0.838795 + 0.544447i \(0.816740\pi\)
\(744\) −33.0318 57.2128i −1.21101 2.09752i
\(745\) −10.6427 + 18.4338i −0.389920 + 0.675361i
\(746\) −8.65379 + 14.9888i −0.316838 + 0.548779i
\(747\) 3.86333 + 6.69148i 0.141352 + 0.244828i
\(748\) −0.551010 −0.0201469
\(749\) 40.2586 + 5.08611i 1.47102 + 0.185842i
\(750\) 2.88056 0.105183
\(751\) −2.62430 4.54543i −0.0957622 0.165865i 0.814164 0.580635i \(-0.197196\pi\)
−0.909926 + 0.414770i \(0.863862\pi\)
\(752\) 7.12377 12.3387i 0.259777 0.449947i
\(753\) 35.5606 61.5927i 1.29590 2.24456i
\(754\) 15.4095 + 26.6900i 0.561180 + 0.971992i
\(755\) −3.42673 −0.124712
\(756\) −0.278476 0.662479i −0.0101281 0.0240941i
\(757\) 19.2418 0.699356 0.349678 0.936870i \(-0.386291\pi\)
0.349678 + 0.936870i \(0.386291\pi\)
\(758\) −1.13944 1.97357i −0.0413864 0.0716834i
\(759\) −6.41322 + 11.1080i −0.232785 + 0.403196i
\(760\) −6.29356 + 10.9008i −0.228292 + 0.395413i
\(761\) 8.59247 + 14.8826i 0.311477 + 0.539494i 0.978682 0.205380i \(-0.0658430\pi\)
−0.667205 + 0.744874i \(0.732510\pi\)
\(762\) −52.0584 −1.88588
\(763\) −15.4638 36.7875i −0.559826 1.33180i
\(764\) 8.08768 0.292602
\(765\) 0.735511 + 1.27394i 0.0265924 + 0.0460595i
\(766\) −11.4025 + 19.7497i −0.411988 + 0.713584i
\(767\) 9.20573 15.9448i 0.332400 0.575733i
\(768\) 15.0084 + 25.9954i 0.541570 + 0.938027i
\(769\) 30.0343 1.08306 0.541532 0.840680i \(-0.317844\pi\)
0.541532 + 0.840680i \(0.317844\pi\)
\(770\) −5.78130 0.730387i −0.208344 0.0263213i
\(771\) 18.0811 0.651175
\(772\) −1.34197 2.32436i −0.0482985 0.0836555i
\(773\) 2.03360 3.52229i 0.0731434 0.126688i −0.827134 0.562005i \(-0.810030\pi\)
0.900277 + 0.435317i \(0.143364\pi\)
\(774\) 1.81732 3.14768i 0.0653221 0.113141i
\(775\) 4.46210 + 7.72858i 0.160283 + 0.277619i
\(776\) 35.0568 1.25847
\(777\) −3.85314 + 5.07625i −0.138230 + 0.182109i
\(778\) 19.2313 0.689476
\(779\) −18.7136 32.4129i −0.670483 1.16131i
\(780\) 1.98031 3.43000i 0.0709065 0.122814i
\(781\) −4.26162 + 7.38135i −0.152493 + 0.264125i
\(782\) −0.907534 1.57190i −0.0324534 0.0562109i
\(783\) 4.25717 0.152139
\(784\) 12.4177 12.6802i 0.443491 0.452866i
\(785\) 8.50719 0.303635
\(786\) −4.49235 7.78098i −0.160237 0.277538i
\(787\) 25.1838 43.6196i 0.897705 1.55487i 0.0672833 0.997734i \(-0.478567\pi\)
0.830421 0.557136i \(-0.188100\pi\)
\(788\) −1.37821 + 2.38714i −0.0490968 + 0.0850382i
\(789\) 4.14672 + 7.18233i 0.147627 + 0.255698i
\(790\) 9.01420 0.320711
\(791\) 23.5562 31.0338i 0.837563 1.10343i
\(792\) 15.8606 0.563583
\(793\) −13.3384 23.1027i −0.473660 0.820402i
\(794\) −2.18485 + 3.78427i −0.0775374 + 0.134299i
\(795\) −11.0208 + 19.0886i −0.390869 + 0.677004i
\(796\) 1.38940 + 2.40652i 0.0492461 + 0.0852968i
\(797\) 31.6341 1.12054 0.560269 0.828311i \(-0.310698\pi\)
0.560269 + 0.828311i \(0.310698\pi\)
\(798\) −30.9681 3.91239i −1.09626 0.138497i
\(799\) −2.94999 −0.104363
\(800\) −1.55725 2.69723i −0.0550570 0.0953616i
\(801\) 0.884857 1.53262i 0.0312649 0.0541524i
\(802\) −11.5915 + 20.0770i −0.409309 + 0.708944i
\(803\) −6.74344 11.6800i −0.237971 0.412177i
\(804\) 8.20061 0.289213
\(805\) 2.96423 + 7.05175i 0.104475 + 0.248541i
\(806\) −30.7910 −1.08457
\(807\) 23.8414 + 41.2945i 0.839257 + 1.45364i
\(808\) −13.7732 + 23.8559i −0.484539 + 0.839246i
\(809\) −13.2132 + 22.8859i −0.464551 + 0.804625i −0.999181 0.0404606i \(-0.987117\pi\)
0.534630 + 0.845086i \(0.320451\pi\)
\(810\) 5.71292 + 9.89508i 0.200732 + 0.347678i
\(811\) −0.880739 −0.0309269 −0.0154635 0.999880i \(-0.504922\pi\)
−0.0154635 + 0.999880i \(0.504922\pi\)
\(812\) −5.21906 12.4159i −0.183153 0.435712i
\(813\) 31.4574 1.10326
\(814\) 1.10125 + 1.90742i 0.0385987 + 0.0668550i
\(815\) 3.68670 6.38555i 0.129140 0.223676i
\(816\) −1.60303 + 2.77654i −0.0561174 + 0.0971983i
\(817\) −2.22119 3.84721i −0.0777095 0.134597i
\(818\) −1.74870 −0.0611420
\(819\) 21.2213 + 2.68101i 0.741531 + 0.0936821i
\(820\) 5.20784 0.181866
\(821\) 5.40459 + 9.36102i 0.188621 + 0.326702i 0.944791 0.327674i \(-0.106265\pi\)
−0.756169 + 0.654376i \(0.772931\pi\)
\(822\) −6.37898 + 11.0487i −0.222493 + 0.385369i
\(823\) −3.96623 + 6.86971i −0.138254 + 0.239463i −0.926836 0.375467i \(-0.877482\pi\)
0.788582 + 0.614930i \(0.210816\pi\)
\(824\) 0.402639 + 0.697392i 0.0140266 + 0.0242948i
\(825\) −4.43635 −0.154454
\(826\) 12.2073 16.0823i 0.424747 0.559576i
\(827\) −8.86830 −0.308381 −0.154190 0.988041i \(-0.549277\pi\)
−0.154190 + 0.988041i \(0.549277\pi\)
\(828\) −2.30854 3.99851i −0.0802273 0.138958i
\(829\) −3.76566 + 6.52232i −0.130787 + 0.226530i −0.923980 0.382440i \(-0.875084\pi\)
0.793193 + 0.608970i \(0.208417\pi\)
\(830\) 1.64875 2.85572i 0.0572290 0.0991236i
\(831\) 31.2878 + 54.1921i 1.08536 + 1.87990i
\(832\) 25.3761 0.879758
\(833\) −3.55929 0.913919i −0.123322 0.0316654i
\(834\) −12.8532 −0.445070
\(835\) −10.2223 17.7056i −0.353759 0.612728i
\(836\) 2.14945 3.72296i 0.0743403 0.128761i
\(837\) −2.12665 + 3.68347i −0.0735079 + 0.127319i
\(838\) −14.5596 25.2180i −0.502953 0.871140i
\(839\) 38.6053 1.33280 0.666401 0.745593i \(-0.267834\pi\)
0.666401 + 0.745593i \(0.267834\pi\)
\(840\) 11.8417 15.6006i 0.408577 0.538273i
\(841\) 50.7859 1.75124
\(842\) 17.4598 + 30.2413i 0.601705 + 1.04218i
\(843\) 11.1910 19.3834i 0.385439 0.667600i
\(844\) 3.05356 5.28892i 0.105108 0.182052i
\(845\) 2.33790 + 4.04936i 0.0804262 + 0.139302i
\(846\) 18.8306 0.647408
\(847\) −19.9700 2.52293i −0.686176 0.0866888i
\(848\) −23.2006 −0.796713
\(849\) 12.4590 + 21.5797i 0.427593 + 0.740613i
\(850\) 0.313894 0.543680i 0.0107665 0.0186481i
\(851\) 1.44561 2.50386i 0.0495548 0.0858313i
\(852\) −3.17640 5.50169i −0.108822 0.188485i
\(853\) −11.4380 −0.391629 −0.195815 0.980641i \(-0.562735\pi\)
−0.195815 + 0.980641i \(0.562735\pi\)
\(854\) −11.3364 26.9688i −0.387925 0.922854i
\(855\) −11.4767 −0.392495
\(856\) 23.5677 + 40.8205i 0.805527 + 1.39521i
\(857\) 8.67949 15.0333i 0.296486 0.513528i −0.678844 0.734283i \(-0.737519\pi\)
0.975329 + 0.220755i \(0.0708520\pi\)
\(858\) 7.65333 13.2560i 0.261280 0.452551i
\(859\) 13.5200 + 23.4173i 0.461296 + 0.798987i 0.999026 0.0441295i \(-0.0140514\pi\)
−0.537730 + 0.843117i \(0.680718\pi\)
\(860\) 0.618138 0.0210783
\(861\) 22.5676 + 53.6871i 0.769101 + 1.82965i
\(862\) −31.5039 −1.07303
\(863\) −4.67783 8.10224i −0.159235 0.275804i 0.775358 0.631522i \(-0.217570\pi\)
−0.934593 + 0.355719i \(0.884236\pi\)
\(864\) 0.742191 1.28551i 0.0252498 0.0437340i
\(865\) −1.11735 + 1.93531i −0.0379910 + 0.0658024i
\(866\) −21.5580 37.3396i −0.732572 1.26885i
\(867\) −40.2851 −1.36816
\(868\) 13.3499 + 1.68657i 0.453125 + 0.0572460i
\(869\) −13.8828 −0.470940
\(870\) 12.8650 + 22.2829i 0.436165 + 0.755460i
\(871\) 8.61778 14.9264i 0.292002 0.505763i
\(872\) 23.1768 40.1434i 0.784865 1.35943i
\(873\) 15.9821 + 27.6817i 0.540911 + 0.936885i
\(874\) 14.1609 0.478999
\(875\) −1.59963 + 2.10741i −0.0540775 + 0.0712434i
\(876\) 10.0524 0.339640
\(877\) −12.7315 22.0515i −0.429911 0.744628i 0.566954 0.823749i \(-0.308122\pi\)
−0.996865 + 0.0791218i \(0.974788\pi\)
\(878\) 4.67354 8.09480i 0.157724 0.273186i
\(879\) 21.2497 36.8056i 0.716736 1.24142i
\(880\) −2.33481 4.04401i −0.0787064 0.136323i
\(881\) −41.3942 −1.39461 −0.697303 0.716776i \(-0.745617\pi\)
−0.697303 + 0.716776i \(0.745617\pi\)
\(882\) 22.7199 + 5.83380i 0.765019 + 0.196434i
\(883\) −37.6354 −1.26653 −0.633265 0.773935i \(-0.718286\pi\)
−0.633265 + 0.773935i \(0.718286\pi\)
\(884\) −0.431587 0.747531i −0.0145159 0.0251422i
\(885\) 7.68566 13.3120i 0.258351 0.447476i
\(886\) 15.1325 26.2102i 0.508385 0.880549i
\(887\) 9.64450 + 16.7048i 0.323831 + 0.560891i 0.981275 0.192612i \(-0.0616959\pi\)
−0.657444 + 0.753503i \(0.728363\pi\)
\(888\) −7.40276 −0.248420
\(889\) 28.9090 38.0857i 0.969578 1.27735i
\(890\) −0.755261 −0.0253164
\(891\) −8.79847 15.2394i −0.294760 0.510539i
\(892\) 2.59437 4.49358i 0.0868659 0.150456i
\(893\) 11.5077 19.9319i 0.385090 0.666995i
\(894\) −30.6571 53.0996i −1.02533 1.77592i
\(895\) 8.50510 0.284294
\(896\) 11.2584 + 1.42234i 0.376117 + 0.0475171i
\(897\) −20.0930 −0.670887
\(898\) −21.9911 38.0898i −0.733854 1.27107i
\(899\) −39.8568 + 69.0340i −1.32930 + 2.30241i
\(900\) 0.798468 1.38299i 0.0266156 0.0460996i
\(901\) 2.40187 + 4.16016i 0.0800180 + 0.138595i
\(902\) 20.1268 0.670149
\(903\) 2.67863 + 6.37233i 0.0891393 + 0.212058i
\(904\) 45.2569 1.50522
\(905\) −8.56693 14.8384i −0.284774 0.493244i
\(906\) 4.93546 8.54846i 0.163970 0.284004i
\(907\) −20.4705 + 35.4560i −0.679712 + 1.17730i 0.295355 + 0.955387i \(0.404562\pi\)
−0.975067 + 0.221909i \(0.928771\pi\)
\(908\) −4.79879 8.31175i −0.159253 0.275835i
\(909\) −25.1162 −0.833052
\(910\) −3.53741 8.41533i −0.117264 0.278966i
\(911\) −15.7726 −0.522571 −0.261285 0.965262i \(-0.584146\pi\)
−0.261285 + 0.965262i \(0.584146\pi\)
\(912\) −12.5066 21.6621i −0.414136 0.717305i
\(913\) −2.53924 + 4.39810i −0.0840367 + 0.145556i
\(914\) −15.3225 + 26.5394i −0.506825 + 0.877846i
\(915\) −11.1359 19.2880i −0.368142 0.637640i
\(916\) 6.47774 0.214030
\(917\) 8.18723 + 1.03434i 0.270366 + 0.0341570i
\(918\) 0.299206 0.00987527
\(919\) 3.14936 + 5.45486i 0.103888 + 0.179939i 0.913283 0.407325i \(-0.133538\pi\)
−0.809395 + 0.587264i \(0.800205\pi\)
\(920\) −4.44273 + 7.69503i −0.146472 + 0.253698i
\(921\) 14.8041 25.6415i 0.487812 0.844916i
\(922\) 19.7158 + 34.1487i 0.649304 + 1.12463i
\(923\) −13.3519 −0.439485
\(924\) −4.04431 + 5.32811i −0.133048 + 0.175282i
\(925\) 1.00000 0.0328798
\(926\) 23.4085 + 40.5447i 0.769250 + 1.33238i
\(927\) −0.367118 + 0.635868i −0.0120578 + 0.0208846i
\(928\) 13.9098 24.0925i 0.456612 0.790875i
\(929\) 8.06947 + 13.9767i 0.264751 + 0.458562i 0.967498 0.252877i \(-0.0813770\pi\)
−0.702747 + 0.711439i \(0.748044\pi\)
\(930\) −25.7067 −0.842956
\(931\) 20.0595 20.4836i 0.657424 0.671321i
\(932\) −4.26187 −0.139602
\(933\) −9.99670 17.3148i −0.327277 0.566861i
\(934\) −10.4857 + 18.1617i −0.343101 + 0.594269i
\(935\) −0.483428 + 0.837321i −0.0158098 + 0.0273833i
\(936\) 12.4231 + 21.5174i 0.406062 + 0.703320i
\(937\) −15.7234 −0.513660 −0.256830 0.966457i \(-0.582678\pi\)
−0.256830 + 0.966457i \(0.582678\pi\)
\(938\) 11.4277 15.0552i 0.373127 0.491570i
\(939\) 4.75852 0.155288
\(940\) 1.60125 + 2.77344i 0.0522269 + 0.0904597i
\(941\) 4.64750 8.04970i 0.151504 0.262413i −0.780277 0.625435i \(-0.784922\pi\)
0.931781 + 0.363022i \(0.118255\pi\)
\(942\) −12.2527 + 21.2224i −0.399216 + 0.691462i
\(943\) −13.2102 22.8808i −0.430184 0.745100i
\(944\) 16.1796 0.526600
\(945\) −1.25103 0.158050i −0.0406961 0.00514138i
\(946\) 2.38893 0.0776707
\(947\) −0.283020 0.490205i −0.00919692 0.0159295i 0.861390 0.507944i \(-0.169594\pi\)
−0.870587 + 0.492014i \(0.836261\pi\)
\(948\) 5.17375 8.96121i 0.168036 0.291046i
\(949\) 10.5638 18.2971i 0.342916 0.593947i
\(950\) 2.44895 + 4.24171i 0.0794545 + 0.137619i
\(951\) −64.0813 −2.07798
\(952\) −1.65409 3.93501i −0.0536095 0.127534i
\(953\) 18.1890 0.589201 0.294600 0.955621i \(-0.404813\pi\)
0.294600 + 0.955621i \(0.404813\pi\)
\(954\) −15.3318 26.5555i −0.496385 0.859765i
\(955\) 7.09571 12.2901i 0.229612 0.397699i
\(956\) 8.04555 13.9353i 0.260212 0.450700i
\(957\) −19.8134 34.3178i −0.640477 1.10934i
\(958\) 6.95855 0.224820
\(959\) −4.54083 10.8024i −0.146631 0.348828i
\(960\) 21.1859 0.683773
\(961\) −24.3207 42.1246i −0.784537 1.35886i
\(962\) −1.72514 + 2.98803i −0.0556208 + 0.0963380i
\(963\) −21.4886 + 37.2193i −0.692459 + 1.19937i
\(964\) 8.62502 + 14.9390i 0.277793 + 0.481152i
\(965\) −4.70949 −0.151604
\(966\) −21.8609 2.76182i −0.703363 0.0888601i
\(967\) −45.4584 −1.46184 −0.730921 0.682462i \(-0.760909\pi\)
−0.730921 + 0.682462i \(0.760909\pi\)
\(968\) −11.6906 20.2487i −0.375750 0.650818i
\(969\) −2.58953 + 4.48520i −0.0831877 + 0.144085i
\(970\) 6.82066 11.8137i 0.218998 0.379316i
\(971\) 2.84914 + 4.93485i 0.0914332 + 0.158367i 0.908114 0.418722i \(-0.137522\pi\)
−0.816681 + 0.577089i \(0.804189\pi\)
\(972\) 12.3010 0.394555
\(973\) 7.13763 9.40335i 0.228822 0.301458i
\(974\) 22.2900 0.714217
\(975\) −3.47484 6.01861i −0.111284 0.192750i
\(976\) 11.7214 20.3021i 0.375194 0.649855i
\(977\) −0.992149 + 1.71845i −0.0317417 + 0.0549782i −0.881460 0.472259i \(-0.843439\pi\)
0.849718 + 0.527237i \(0.176772\pi\)
\(978\) 10.6198 + 18.3940i 0.339583 + 0.588175i
\(979\) 1.16318 0.0371753
\(980\) 1.07275 + 3.84235i 0.0342677 + 0.122739i
\(981\) 42.2643 1.34939
\(982\) −10.3628 17.9488i −0.330689 0.572770i
\(983\) 2.18575 3.78583i 0.0697146 0.120749i −0.829061 0.559158i \(-0.811124\pi\)
0.898776 + 0.438409i \(0.144458\pi\)
\(984\) −33.8238 + 58.5846i −1.07826 + 1.86761i
\(985\) 2.41835 + 4.18870i 0.0770549 + 0.133463i
\(986\) 5.60759 0.178582
\(987\) −21.6523 + 28.5255i −0.689202 + 0.907977i
\(988\) 6.73436 0.214249
\(989\) −1.56797 2.71580i −0.0498586 0.0863575i
\(990\) 3.08585 5.34485i 0.0980747 0.169870i
\(991\) 4.47479 7.75056i 0.142146 0.246204i −0.786158 0.618025i \(-0.787933\pi\)
0.928305 + 0.371821i \(0.121266\pi\)
\(992\) 13.8972 + 24.0706i 0.441236 + 0.764244i
\(993\) −61.3041 −1.94543
\(994\) −14.5267 1.83525i −0.460759 0.0582105i
\(995\) 4.87596 0.154578
\(996\) −1.89262 3.27812i −0.0599701 0.103871i
\(997\) 6.36737 11.0286i 0.201657 0.349280i −0.747406 0.664368i \(-0.768701\pi\)
0.949062 + 0.315088i \(0.102034\pi\)
\(998\) 18.1212 31.3868i 0.573617 0.993533i
\(999\) 0.238302 + 0.412751i 0.00753954 + 0.0130589i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1295.2.j.a.186.5 38
7.2 even 3 inner 1295.2.j.a.926.5 yes 38
7.3 odd 6 9065.2.a.s.1.15 19
7.4 even 3 9065.2.a.r.1.15 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.j.a.186.5 38 1.1 even 1 trivial
1295.2.j.a.926.5 yes 38 7.2 even 3 inner
9065.2.a.r.1.15 19 7.4 even 3
9065.2.a.s.1.15 19 7.3 odd 6