Properties

Label 1295.2.j.a.186.3
Level $1295$
Weight $2$
Character 1295.186
Analytic conductor $10.341$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1295,2,Mod(186,1295)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1295.186"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1295 = 5 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1295.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3406270618\)
Analytic rank: \(0\)
Dimension: \(38\)
Relative dimension: \(19\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 186.3
Character \(\chi\) \(=\) 1295.186
Dual form 1295.2.j.a.926.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.966124 - 1.67338i) q^{2} +(1.39627 - 2.41841i) q^{3} +(-0.866792 + 1.50133i) q^{4} +(-0.500000 - 0.866025i) q^{5} -5.39588 q^{6} +(-1.04689 - 2.42982i) q^{7} -0.514782 q^{8} +(-2.39913 - 4.15542i) q^{9} +(-0.966124 + 1.67338i) q^{10} +(2.17821 - 3.77276i) q^{11} +(2.42055 + 4.19251i) q^{12} +0.574369 q^{13} +(-3.05458 + 4.09934i) q^{14} -2.79254 q^{15} +(2.23093 + 3.86408i) q^{16} +(-2.85705 + 4.94855i) q^{17} +(-4.63572 + 8.02930i) q^{18} +(-1.51551 - 2.62493i) q^{19} +1.73358 q^{20} +(-7.33803 - 0.860886i) q^{21} -8.41767 q^{22} +(0.282673 + 0.489604i) q^{23} +(-0.718774 + 1.24495i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(-0.554911 - 0.961135i) q^{26} -5.02172 q^{27} +(4.55539 + 0.534431i) q^{28} +0.750761 q^{29} +(2.69794 + 4.67297i) q^{30} +(3.88317 - 6.72584i) q^{31} +(3.79592 - 6.57473i) q^{32} +(-6.08272 - 10.5356i) q^{33} +11.0411 q^{34} +(-1.58084 + 2.12154i) q^{35} +8.31819 q^{36} +(-0.500000 - 0.866025i) q^{37} +(-2.92834 + 5.07203i) q^{38} +(0.801973 - 1.38906i) q^{39} +(0.257391 + 0.445815i) q^{40} +9.36744 q^{41} +(5.64886 + 13.1110i) q^{42} -6.47497 q^{43} +(3.77610 + 6.54040i) q^{44} +(-2.39913 + 4.15542i) q^{45} +(0.546194 - 0.946036i) q^{46} +(2.60943 + 4.51966i) q^{47} +12.4599 q^{48} +(-4.80806 + 5.08749i) q^{49} +1.93225 q^{50} +(7.97841 + 13.8190i) q^{51} +(-0.497858 + 0.862315i) q^{52} +(-1.30332 + 2.25741i) q^{53} +(4.85161 + 8.40323i) q^{54} -4.35641 q^{55} +(0.538918 + 1.25083i) q^{56} -8.46422 q^{57} +(-0.725328 - 1.25631i) q^{58} +(-1.40960 + 2.44150i) q^{59} +(2.42055 - 4.19251i) q^{60} +(-5.28313 - 9.15066i) q^{61} -15.0065 q^{62} +(-7.58531 + 10.1797i) q^{63} -5.74562 q^{64} +(-0.287184 - 0.497418i) q^{65} +(-11.7533 + 20.3574i) q^{66} +(3.07973 - 5.33425i) q^{67} +(-4.95293 - 8.57873i) q^{68} +1.57875 q^{69} +(5.07743 + 0.595675i) q^{70} +7.73849 q^{71} +(1.23503 + 2.13914i) q^{72} +(0.562977 - 0.975104i) q^{73} +(-0.966124 + 1.67338i) q^{74} +(1.39627 + 2.41841i) q^{75} +5.25452 q^{76} +(-11.4475 - 1.34300i) q^{77} -3.09922 q^{78} +(6.64754 + 11.5139i) q^{79} +(2.23093 - 3.86408i) q^{80} +(0.185725 - 0.321686i) q^{81} +(-9.05011 - 15.6752i) q^{82} +7.67133 q^{83} +(7.65302 - 10.2706i) q^{84} +5.71410 q^{85} +(6.25563 + 10.8351i) q^{86} +(1.04826 - 1.81565i) q^{87} +(-1.12130 + 1.94215i) q^{88} +(1.56342 + 2.70793i) q^{89} +9.27144 q^{90} +(-0.601298 - 1.39561i) q^{91} -0.980074 q^{92} +(-10.8439 - 18.7822i) q^{93} +(5.04206 - 8.73310i) q^{94} +(-1.51551 + 2.62493i) q^{95} +(-10.6003 - 18.3602i) q^{96} -10.3503 q^{97} +(13.1585 + 3.13055i) q^{98} -20.9032 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 3 q^{2} + q^{3} - 11 q^{4} - 19 q^{5} - 8 q^{6} - 18 q^{8} - 12 q^{9} + 3 q^{10} + 13 q^{11} + 4 q^{12} - 6 q^{13} - q^{14} - 2 q^{15} + 5 q^{16} + 2 q^{17} + 11 q^{18} + 12 q^{19} + 22 q^{20}+ \cdots - 142 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1295\mathbb{Z}\right)^\times\).

\(n\) \(556\) \(631\) \(1037\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.966124 1.67338i −0.683153 1.18326i −0.974013 0.226490i \(-0.927275\pi\)
0.290860 0.956765i \(-0.406058\pi\)
\(3\) 1.39627 2.41841i 0.806136 1.39627i −0.109385 0.993999i \(-0.534888\pi\)
0.915521 0.402269i \(-0.131778\pi\)
\(4\) −0.866792 + 1.50133i −0.433396 + 0.750664i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −5.39588 −2.20286
\(7\) −1.04689 2.42982i −0.395686 0.918386i
\(8\) −0.514782 −0.182003
\(9\) −2.39913 4.15542i −0.799711 1.38514i
\(10\) −0.966124 + 1.67338i −0.305515 + 0.529168i
\(11\) 2.17821 3.77276i 0.656754 1.13753i −0.324697 0.945818i \(-0.605262\pi\)
0.981451 0.191713i \(-0.0614042\pi\)
\(12\) 2.42055 + 4.19251i 0.698752 + 1.21027i
\(13\) 0.574369 0.159301 0.0796506 0.996823i \(-0.474620\pi\)
0.0796506 + 0.996823i \(0.474620\pi\)
\(14\) −3.05458 + 4.09934i −0.816372 + 1.09560i
\(15\) −2.79254 −0.721030
\(16\) 2.23093 + 3.86408i 0.557732 + 0.966020i
\(17\) −2.85705 + 4.94855i −0.692936 + 1.20020i 0.277935 + 0.960600i \(0.410350\pi\)
−0.970872 + 0.239601i \(0.922983\pi\)
\(18\) −4.63572 + 8.02930i −1.09265 + 1.89252i
\(19\) −1.51551 2.62493i −0.347681 0.602201i 0.638156 0.769907i \(-0.279697\pi\)
−0.985837 + 0.167706i \(0.946364\pi\)
\(20\) 1.73358 0.387641
\(21\) −7.33803 0.860886i −1.60129 0.187861i
\(22\) −8.41767 −1.79465
\(23\) 0.282673 + 0.489604i 0.0589413 + 0.102089i 0.893990 0.448086i \(-0.147894\pi\)
−0.835049 + 0.550175i \(0.814561\pi\)
\(24\) −0.718774 + 1.24495i −0.146719 + 0.254125i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −0.554911 0.961135i −0.108827 0.188494i
\(27\) −5.02172 −0.966431
\(28\) 4.55539 + 0.534431i 0.860888 + 0.100998i
\(29\) 0.750761 0.139413 0.0697064 0.997568i \(-0.477794\pi\)
0.0697064 + 0.997568i \(0.477794\pi\)
\(30\) 2.69794 + 4.67297i 0.492574 + 0.853163i
\(31\) 3.88317 6.72584i 0.697437 1.20800i −0.271915 0.962321i \(-0.587657\pi\)
0.969352 0.245675i \(-0.0790096\pi\)
\(32\) 3.79592 6.57473i 0.671031 1.16226i
\(33\) −6.08272 10.5356i −1.05887 1.83401i
\(34\) 11.0411 1.89353
\(35\) −1.58084 + 2.12154i −0.267211 + 0.358606i
\(36\) 8.31819 1.38637
\(37\) −0.500000 0.866025i −0.0821995 0.142374i
\(38\) −2.92834 + 5.07203i −0.475039 + 0.822791i
\(39\) 0.801973 1.38906i 0.128418 0.222427i
\(40\) 0.257391 + 0.445815i 0.0406971 + 0.0704895i
\(41\) 9.36744 1.46295 0.731474 0.681869i \(-0.238833\pi\)
0.731474 + 0.681869i \(0.238833\pi\)
\(42\) 5.64886 + 13.1110i 0.871639 + 2.02307i
\(43\) −6.47497 −0.987424 −0.493712 0.869626i \(-0.664360\pi\)
−0.493712 + 0.869626i \(0.664360\pi\)
\(44\) 3.77610 + 6.54040i 0.569269 + 0.986003i
\(45\) −2.39913 + 4.15542i −0.357642 + 0.619453i
\(46\) 0.546194 0.946036i 0.0805319 0.139485i
\(47\) 2.60943 + 4.51966i 0.380624 + 0.659260i 0.991152 0.132735i \(-0.0423759\pi\)
−0.610528 + 0.791995i \(0.709043\pi\)
\(48\) 12.4599 1.79843
\(49\) −4.80806 + 5.08749i −0.686866 + 0.726784i
\(50\) 1.93225 0.273261
\(51\) 7.97841 + 13.8190i 1.11720 + 1.93505i
\(52\) −0.497858 + 0.862315i −0.0690405 + 0.119582i
\(53\) −1.30332 + 2.25741i −0.179024 + 0.310079i −0.941547 0.336883i \(-0.890627\pi\)
0.762522 + 0.646962i \(0.223961\pi\)
\(54\) 4.85161 + 8.40323i 0.660220 + 1.14353i
\(55\) −4.35641 −0.587418
\(56\) 0.538918 + 1.25083i 0.0720160 + 0.167149i
\(57\) −8.46422 −1.12111
\(58\) −0.725328 1.25631i −0.0952403 0.164961i
\(59\) −1.40960 + 2.44150i −0.183515 + 0.317857i −0.943075 0.332580i \(-0.892081\pi\)
0.759560 + 0.650437i \(0.225414\pi\)
\(60\) 2.42055 4.19251i 0.312491 0.541251i
\(61\) −5.28313 9.15066i −0.676436 1.17162i −0.976047 0.217560i \(-0.930190\pi\)
0.299611 0.954061i \(-0.403143\pi\)
\(62\) −15.0065 −1.90582
\(63\) −7.58531 + 10.1797i −0.955659 + 1.28252i
\(64\) −5.74562 −0.718203
\(65\) −0.287184 0.497418i −0.0356208 0.0616971i
\(66\) −11.7533 + 20.3574i −1.44673 + 2.50582i
\(67\) 3.07973 5.33425i 0.376249 0.651682i −0.614264 0.789100i \(-0.710547\pi\)
0.990513 + 0.137418i \(0.0438804\pi\)
\(68\) −4.95293 8.57873i −0.600631 1.04032i
\(69\) 1.57875 0.190059
\(70\) 5.07743 + 0.595675i 0.606869 + 0.0711968i
\(71\) 7.73849 0.918390 0.459195 0.888336i \(-0.348138\pi\)
0.459195 + 0.888336i \(0.348138\pi\)
\(72\) 1.23503 + 2.13914i 0.145550 + 0.252100i
\(73\) 0.562977 0.975104i 0.0658915 0.114127i −0.831198 0.555977i \(-0.812344\pi\)
0.897089 + 0.441850i \(0.145678\pi\)
\(74\) −0.966124 + 1.67338i −0.112310 + 0.194526i
\(75\) 1.39627 + 2.41841i 0.161227 + 0.279254i
\(76\) 5.25452 0.602734
\(77\) −11.4475 1.34300i −1.30456 0.153049i
\(78\) −3.09922 −0.350918
\(79\) 6.64754 + 11.5139i 0.747907 + 1.29541i 0.948824 + 0.315804i \(0.102274\pi\)
−0.200918 + 0.979608i \(0.564392\pi\)
\(80\) 2.23093 3.86408i 0.249425 0.432017i
\(81\) 0.185725 0.321686i 0.0206362 0.0357429i
\(82\) −9.05011 15.6752i −0.999417 1.73104i
\(83\) 7.67133 0.842038 0.421019 0.907052i \(-0.361673\pi\)
0.421019 + 0.907052i \(0.361673\pi\)
\(84\) 7.65302 10.2706i 0.835013 1.12061i
\(85\) 5.71410 0.619781
\(86\) 6.25563 + 10.8351i 0.674561 + 1.16837i
\(87\) 1.04826 1.81565i 0.112386 0.194658i
\(88\) −1.12130 + 1.94215i −0.119531 + 0.207034i
\(89\) 1.56342 + 2.70793i 0.165723 + 0.287040i 0.936912 0.349566i \(-0.113671\pi\)
−0.771189 + 0.636606i \(0.780338\pi\)
\(90\) 9.27144 0.977295
\(91\) −0.601298 1.39561i −0.0630332 0.146300i
\(92\) −0.980074 −0.102180
\(93\) −10.8439 18.7822i −1.12446 1.94762i
\(94\) 5.04206 8.73310i 0.520049 0.900751i
\(95\) −1.51551 + 2.62493i −0.155488 + 0.269313i
\(96\) −10.6003 18.3602i −1.08188 1.87388i
\(97\) −10.3503 −1.05091 −0.525455 0.850821i \(-0.676105\pi\)
−0.525455 + 0.850821i \(0.676105\pi\)
\(98\) 13.1585 + 3.13055i 1.32921 + 0.316233i
\(99\) −20.9032 −2.10085
\(100\) −0.866792 1.50133i −0.0866792 0.150133i
\(101\) 4.35282 7.53930i 0.433121 0.750188i −0.564019 0.825762i \(-0.690745\pi\)
0.997140 + 0.0755736i \(0.0240788\pi\)
\(102\) 15.4163 26.7018i 1.52644 2.64387i
\(103\) −5.36077 9.28513i −0.528213 0.914891i −0.999459 0.0328894i \(-0.989529\pi\)
0.471246 0.882002i \(-0.343804\pi\)
\(104\) −0.295675 −0.0289933
\(105\) 2.92347 + 6.78537i 0.285301 + 0.662184i
\(106\) 5.03666 0.489204
\(107\) 0.256690 + 0.444600i 0.0248152 + 0.0429811i 0.878166 0.478355i \(-0.158767\pi\)
−0.853351 + 0.521337i \(0.825434\pi\)
\(108\) 4.35279 7.53925i 0.418847 0.725465i
\(109\) −6.27102 + 10.8617i −0.600654 + 1.04036i 0.392068 + 0.919936i \(0.371760\pi\)
−0.992722 + 0.120428i \(0.961573\pi\)
\(110\) 4.20883 + 7.28992i 0.401297 + 0.695066i
\(111\) −2.79254 −0.265056
\(112\) 7.05350 9.46600i 0.666493 0.894453i
\(113\) −5.82254 −0.547739 −0.273869 0.961767i \(-0.588304\pi\)
−0.273869 + 0.961767i \(0.588304\pi\)
\(114\) 8.17749 + 14.1638i 0.765892 + 1.32656i
\(115\) 0.282673 0.489604i 0.0263594 0.0456558i
\(116\) −0.650754 + 1.12714i −0.0604209 + 0.104652i
\(117\) −1.37799 2.38674i −0.127395 0.220654i
\(118\) 5.44740 0.501474
\(119\) 15.0151 + 1.76155i 1.37643 + 0.161481i
\(120\) 1.43755 0.131230
\(121\) −3.98916 6.90943i −0.362651 0.628130i
\(122\) −10.2083 + 17.6813i −0.924219 + 1.60079i
\(123\) 13.0795 22.6543i 1.17934 2.04267i
\(124\) 6.73179 + 11.6598i 0.604533 + 1.04708i
\(125\) 1.00000 0.0894427
\(126\) 24.3628 + 2.85821i 2.17041 + 0.254629i
\(127\) 3.39345 0.301120 0.150560 0.988601i \(-0.451892\pi\)
0.150560 + 0.988601i \(0.451892\pi\)
\(128\) −2.04086 3.53487i −0.180388 0.312442i
\(129\) −9.04080 + 15.6591i −0.795998 + 1.37871i
\(130\) −0.554911 + 0.961135i −0.0486689 + 0.0842971i
\(131\) 6.86969 + 11.8986i 0.600207 + 1.03959i 0.992789 + 0.119873i \(0.0382486\pi\)
−0.392582 + 0.919717i \(0.628418\pi\)
\(132\) 21.0898 1.83563
\(133\) −4.79156 + 6.43042i −0.415481 + 0.557588i
\(134\) −11.9016 −1.02814
\(135\) 2.51086 + 4.34894i 0.216100 + 0.374297i
\(136\) 1.47076 2.54743i 0.126116 0.218440i
\(137\) 5.32705 9.22672i 0.455121 0.788292i −0.543574 0.839361i \(-0.682929\pi\)
0.998695 + 0.0510688i \(0.0162628\pi\)
\(138\) −1.52527 2.64184i −0.129839 0.224888i
\(139\) −3.90433 −0.331161 −0.165581 0.986196i \(-0.552950\pi\)
−0.165581 + 0.986196i \(0.552950\pi\)
\(140\) −1.81486 4.21230i −0.153384 0.356004i
\(141\) 14.5738 1.22734
\(142\) −7.47634 12.9494i −0.627401 1.08669i
\(143\) 1.25109 2.16696i 0.104622 0.181210i
\(144\) 10.7046 18.5409i 0.892048 1.54507i
\(145\) −0.375380 0.650178i −0.0311737 0.0539943i
\(146\) −2.17562 −0.180056
\(147\) 5.59028 + 18.7314i 0.461079 + 1.54494i
\(148\) 1.73358 0.142500
\(149\) 5.77030 + 9.99445i 0.472721 + 0.818778i 0.999513 0.0312171i \(-0.00993833\pi\)
−0.526791 + 0.849995i \(0.676605\pi\)
\(150\) 2.69794 4.67297i 0.220286 0.381546i
\(151\) 5.69053 9.85629i 0.463089 0.802093i −0.536024 0.844203i \(-0.680074\pi\)
0.999113 + 0.0421094i \(0.0134078\pi\)
\(152\) 0.780156 + 1.35127i 0.0632790 + 0.109602i
\(153\) 27.4177 2.21659
\(154\) 8.81234 + 20.4534i 0.710118 + 1.64818i
\(155\) −7.76633 −0.623807
\(156\) 1.39029 + 2.40805i 0.111312 + 0.192798i
\(157\) −2.20186 + 3.81373i −0.175728 + 0.304369i −0.940413 0.340035i \(-0.889561\pi\)
0.764685 + 0.644404i \(0.222894\pi\)
\(158\) 12.8447 22.2477i 1.02187 1.76993i
\(159\) 3.63956 + 6.30391i 0.288636 + 0.499932i
\(160\) −7.59185 −0.600188
\(161\) 0.893723 1.19940i 0.0704352 0.0945262i
\(162\) −0.717735 −0.0563906
\(163\) −3.00223 5.20001i −0.235153 0.407297i 0.724164 0.689627i \(-0.242226\pi\)
−0.959317 + 0.282331i \(0.908892\pi\)
\(164\) −8.11962 + 14.0636i −0.634036 + 1.09818i
\(165\) −6.08272 + 10.5356i −0.473539 + 0.820194i
\(166\) −7.41146 12.8370i −0.575241 0.996346i
\(167\) −24.8848 −1.92564 −0.962821 0.270142i \(-0.912929\pi\)
−0.962821 + 0.270142i \(0.912929\pi\)
\(168\) 3.77749 + 0.443169i 0.291440 + 0.0341912i
\(169\) −12.6701 −0.974623
\(170\) −5.52053 9.56183i −0.423405 0.733359i
\(171\) −7.27180 + 12.5951i −0.556089 + 0.963174i
\(172\) 5.61245 9.72105i 0.427945 0.741223i
\(173\) 7.28045 + 12.6101i 0.553523 + 0.958729i 0.998017 + 0.0629475i \(0.0200501\pi\)
−0.444494 + 0.895782i \(0.646617\pi\)
\(174\) −4.05101 −0.307106
\(175\) 2.62773 + 0.308281i 0.198638 + 0.0233039i
\(176\) 19.4377 1.46517
\(177\) 3.93637 + 6.81799i 0.295875 + 0.512471i
\(178\) 3.02092 5.23239i 0.226428 0.392184i
\(179\) 10.8848 18.8531i 0.813571 1.40915i −0.0967788 0.995306i \(-0.530854\pi\)
0.910350 0.413840i \(-0.135813\pi\)
\(180\) −4.15910 7.20377i −0.310001 0.536937i
\(181\) −2.56463 −0.190627 −0.0953136 0.995447i \(-0.530385\pi\)
−0.0953136 + 0.995447i \(0.530385\pi\)
\(182\) −1.75446 + 2.35453i −0.130049 + 0.174530i
\(183\) −29.5067 −2.18120
\(184\) −0.145515 0.252039i −0.0107275 0.0185806i
\(185\) −0.500000 + 0.866025i −0.0367607 + 0.0636715i
\(186\) −20.9531 + 36.2918i −1.53635 + 2.66104i
\(187\) 12.4465 + 21.5579i 0.910177 + 1.57647i
\(188\) −9.04732 −0.659843
\(189\) 5.25717 + 12.2019i 0.382403 + 0.887556i
\(190\) 5.85667 0.424888
\(191\) −0.645116 1.11737i −0.0466790 0.0808503i 0.841742 0.539880i \(-0.181530\pi\)
−0.888421 + 0.459030i \(0.848197\pi\)
\(192\) −8.02244 + 13.8953i −0.578969 + 1.00280i
\(193\) 5.68256 9.84248i 0.409039 0.708477i −0.585743 0.810497i \(-0.699197\pi\)
0.994782 + 0.102020i \(0.0325305\pi\)
\(194\) 9.99964 + 17.3199i 0.717933 + 1.24350i
\(195\) −1.60395 −0.114861
\(196\) −3.47040 11.6283i −0.247886 0.830591i
\(197\) −8.16979 −0.582073 −0.291037 0.956712i \(-0.594000\pi\)
−0.291037 + 0.956712i \(0.594000\pi\)
\(198\) 20.1951 + 34.9789i 1.43520 + 2.48585i
\(199\) 10.7850 18.6802i 0.764532 1.32421i −0.175962 0.984397i \(-0.556304\pi\)
0.940494 0.339811i \(-0.110363\pi\)
\(200\) 0.257391 0.445815i 0.0182003 0.0315238i
\(201\) −8.60026 14.8961i −0.606616 1.05069i
\(202\) −16.8214 −1.18355
\(203\) −0.785961 1.82421i −0.0551636 0.128035i
\(204\) −27.6625 −1.93676
\(205\) −4.68372 8.11244i −0.327125 0.566597i
\(206\) −10.3583 + 17.9412i −0.721700 + 1.25002i
\(207\) 1.35634 2.34925i 0.0942721 0.163284i
\(208\) 1.28137 + 2.21941i 0.0888473 + 0.153888i
\(209\) −13.2043 −0.913364
\(210\) 8.53004 11.4476i 0.588629 0.789957i
\(211\) 3.53744 0.243528 0.121764 0.992559i \(-0.461145\pi\)
0.121764 + 0.992559i \(0.461145\pi\)
\(212\) −2.25941 3.91341i −0.155177 0.268774i
\(213\) 10.8050 18.7148i 0.740347 1.28232i
\(214\) 0.495989 0.859078i 0.0339051 0.0587254i
\(215\) 3.23748 + 5.60749i 0.220795 + 0.382428i
\(216\) 2.58509 0.175893
\(217\) −20.4078 2.39421i −1.38537 0.162530i
\(218\) 24.2343 1.64136
\(219\) −1.57213 2.72302i −0.106235 0.184004i
\(220\) 3.77610 6.54040i 0.254585 0.440954i
\(221\) −1.64100 + 2.84229i −0.110386 + 0.191193i
\(222\) 2.69794 + 4.67297i 0.181074 + 0.313629i
\(223\) 24.2011 1.62062 0.810312 0.585998i \(-0.199298\pi\)
0.810312 + 0.585998i \(0.199298\pi\)
\(224\) −19.9493 2.34042i −1.33292 0.156376i
\(225\) 4.79826 0.319884
\(226\) 5.62530 + 9.74330i 0.374189 + 0.648115i
\(227\) −12.0354 + 20.8460i −0.798819 + 1.38359i 0.121567 + 0.992583i \(0.461208\pi\)
−0.920386 + 0.391011i \(0.872125\pi\)
\(228\) 7.33672 12.7076i 0.485886 0.841579i
\(229\) −13.8176 23.9328i −0.913092 1.58152i −0.809671 0.586884i \(-0.800354\pi\)
−0.103421 0.994638i \(-0.532979\pi\)
\(230\) −1.09239 −0.0720299
\(231\) −19.2317 + 25.8095i −1.26535 + 1.69814i
\(232\) −0.386478 −0.0253736
\(233\) −4.69008 8.12345i −0.307257 0.532185i 0.670504 0.741906i \(-0.266078\pi\)
−0.977761 + 0.209721i \(0.932745\pi\)
\(234\) −2.66261 + 4.61178i −0.174060 + 0.301481i
\(235\) 2.60943 4.51966i 0.170220 0.294830i
\(236\) −2.44366 4.23255i −0.159069 0.275516i
\(237\) 37.1270 2.41166
\(238\) −11.5587 26.8278i −0.749241 1.73899i
\(239\) 22.7846 1.47382 0.736908 0.675993i \(-0.236285\pi\)
0.736908 + 0.675993i \(0.236285\pi\)
\(240\) −6.22995 10.7906i −0.402141 0.696529i
\(241\) −12.1682 + 21.0759i −0.783820 + 1.35762i 0.145882 + 0.989302i \(0.453398\pi\)
−0.929702 + 0.368313i \(0.879935\pi\)
\(242\) −7.70805 + 13.3507i −0.495492 + 0.858218i
\(243\) −8.05123 13.9451i −0.516486 0.894581i
\(244\) 18.3175 1.17266
\(245\) 6.80993 + 1.62016i 0.435070 + 0.103508i
\(246\) −50.5455 −3.22267
\(247\) −0.870459 1.50768i −0.0553860 0.0959314i
\(248\) −1.99898 + 3.46234i −0.126936 + 0.219859i
\(249\) 10.7112 18.5524i 0.678797 1.17571i
\(250\) −0.966124 1.67338i −0.0611031 0.105834i
\(251\) −25.8151 −1.62943 −0.814716 0.579860i \(-0.803107\pi\)
−0.814716 + 0.579860i \(0.803107\pi\)
\(252\) −8.70820 20.2117i −0.548565 1.27322i
\(253\) 2.46288 0.154840
\(254\) −3.27850 5.67852i −0.205711 0.356302i
\(255\) 7.97841 13.8190i 0.499628 0.865381i
\(256\) −9.68907 + 16.7820i −0.605567 + 1.04887i
\(257\) 12.7433 + 22.0721i 0.794906 + 1.37682i 0.922899 + 0.385043i \(0.125813\pi\)
−0.127993 + 0.991775i \(0.540853\pi\)
\(258\) 34.9381 2.17515
\(259\) −1.58084 + 2.12154i −0.0982289 + 0.131826i
\(260\) 0.995716 0.0617517
\(261\) −1.80117 3.11973i −0.111490 0.193106i
\(262\) 13.2739 22.9911i 0.820067 1.42040i
\(263\) −4.64797 + 8.05052i −0.286606 + 0.496416i −0.972997 0.230816i \(-0.925860\pi\)
0.686391 + 0.727232i \(0.259194\pi\)
\(264\) 3.13128 + 5.42353i 0.192717 + 0.333795i
\(265\) 2.60663 0.160124
\(266\) 15.3897 + 1.80550i 0.943606 + 0.110702i
\(267\) 8.73184 0.534380
\(268\) 5.33897 + 9.24737i 0.326130 + 0.564873i
\(269\) 3.28626 5.69196i 0.200367 0.347045i −0.748280 0.663383i \(-0.769120\pi\)
0.948647 + 0.316338i \(0.102453\pi\)
\(270\) 4.85161 8.40323i 0.295259 0.511404i
\(271\) 0.0434468 + 0.0752521i 0.00263921 + 0.00457124i 0.867342 0.497713i \(-0.165827\pi\)
−0.864703 + 0.502284i \(0.832493\pi\)
\(272\) −25.4955 −1.54589
\(273\) −4.21474 0.494466i −0.255087 0.0299264i
\(274\) −20.5864 −1.24367
\(275\) 2.17821 + 3.77276i 0.131351 + 0.227506i
\(276\) −1.36845 + 2.37022i −0.0823708 + 0.142670i
\(277\) 6.78442 11.7510i 0.407636 0.706046i −0.586988 0.809595i \(-0.699687\pi\)
0.994624 + 0.103549i \(0.0330199\pi\)
\(278\) 3.77207 + 6.53342i 0.226234 + 0.391848i
\(279\) −37.2649 −2.23099
\(280\) 0.813790 1.09213i 0.0486333 0.0652673i
\(281\) −25.6191 −1.52831 −0.764155 0.645033i \(-0.776844\pi\)
−0.764155 + 0.645033i \(0.776844\pi\)
\(282\) −14.0801 24.3875i −0.838460 1.45226i
\(283\) 5.14255 8.90716i 0.305693 0.529475i −0.671723 0.740803i \(-0.734445\pi\)
0.977415 + 0.211327i \(0.0677786\pi\)
\(284\) −6.70766 + 11.6180i −0.398026 + 0.689402i
\(285\) 4.23211 + 7.33023i 0.250689 + 0.434205i
\(286\) −4.83484 −0.285890
\(287\) −9.80664 22.7612i −0.578867 1.34355i
\(288\) −36.4277 −2.14652
\(289\) −7.82545 13.5541i −0.460321 0.797299i
\(290\) −0.725328 + 1.25631i −0.0425927 + 0.0737728i
\(291\) −14.4518 + 25.0312i −0.847177 + 1.46735i
\(292\) 0.975967 + 1.69043i 0.0571142 + 0.0989247i
\(293\) −13.3664 −0.780876 −0.390438 0.920629i \(-0.627676\pi\)
−0.390438 + 0.920629i \(0.627676\pi\)
\(294\) 25.9437 27.4515i 1.51307 1.60100i
\(295\) 2.81920 0.164140
\(296\) 0.257391 + 0.445815i 0.0149606 + 0.0259124i
\(297\) −10.9383 + 18.9458i −0.634707 + 1.09934i
\(298\) 11.1497 19.3118i 0.645882 1.11870i
\(299\) 0.162358 + 0.281213i 0.00938942 + 0.0162630i
\(300\) −4.84110 −0.279501
\(301\) 6.77855 + 15.7330i 0.390709 + 0.906836i
\(302\) −21.9910 −1.26544
\(303\) −12.1554 21.0538i −0.698310 1.20951i
\(304\) 6.76197 11.7121i 0.387826 0.671734i
\(305\) −5.28313 + 9.15066i −0.302511 + 0.523965i
\(306\) −26.4890 45.8802i −1.51427 2.62280i
\(307\) −23.6376 −1.34907 −0.674536 0.738242i \(-0.735656\pi\)
−0.674536 + 0.738242i \(0.735656\pi\)
\(308\) 11.9389 16.0223i 0.680280 0.912956i
\(309\) −29.9403 −1.70324
\(310\) 7.50324 + 12.9960i 0.426155 + 0.738123i
\(311\) 12.5983 21.8208i 0.714382 1.23735i −0.248815 0.968551i \(-0.580041\pi\)
0.963197 0.268795i \(-0.0866255\pi\)
\(312\) −0.412841 + 0.715062i −0.0233725 + 0.0404824i
\(313\) 0.113744 + 0.197011i 0.00642921 + 0.0111357i 0.869222 0.494422i \(-0.164620\pi\)
−0.862793 + 0.505558i \(0.831287\pi\)
\(314\) 8.50908 0.480195
\(315\) 12.6085 + 1.47921i 0.710411 + 0.0833442i
\(316\) −23.0481 −1.29656
\(317\) 3.44990 + 5.97540i 0.193766 + 0.335612i 0.946495 0.322718i \(-0.104597\pi\)
−0.752730 + 0.658330i \(0.771263\pi\)
\(318\) 7.03254 12.1807i 0.394365 0.683060i
\(319\) 1.63531 2.83244i 0.0915599 0.158586i
\(320\) 2.87281 + 4.97586i 0.160595 + 0.278159i
\(321\) 1.43363 0.0800176
\(322\) −2.87050 0.336762i −0.159967 0.0187670i
\(323\) 17.3195 0.963683
\(324\) 0.321970 + 0.557669i 0.0178872 + 0.0309816i
\(325\) −0.287184 + 0.497418i −0.0159301 + 0.0275918i
\(326\) −5.80105 + 10.0477i −0.321291 + 0.556492i
\(327\) 17.5120 + 30.3318i 0.968418 + 1.67735i
\(328\) −4.82219 −0.266261
\(329\) 8.25019 11.0720i 0.454848 0.610419i
\(330\) 23.5067 1.29400
\(331\) 3.03323 + 5.25371i 0.166721 + 0.288770i 0.937265 0.348617i \(-0.113349\pi\)
−0.770544 + 0.637387i \(0.780015\pi\)
\(332\) −6.64945 + 11.5172i −0.364936 + 0.632087i
\(333\) −2.39913 + 4.15542i −0.131472 + 0.227716i
\(334\) 24.0418 + 41.6416i 1.31551 + 2.27853i
\(335\) −6.15946 −0.336527
\(336\) −13.0441 30.2753i −0.711613 1.65165i
\(337\) 4.00130 0.217965 0.108982 0.994044i \(-0.465241\pi\)
0.108982 + 0.994044i \(0.465241\pi\)
\(338\) 12.2409 + 21.2018i 0.665817 + 1.15323i
\(339\) −8.12983 + 14.0813i −0.441552 + 0.764790i
\(340\) −4.95293 + 8.57873i −0.268611 + 0.465247i
\(341\) −16.9167 29.3005i −0.916089 1.58671i
\(342\) 28.1019 1.51957
\(343\) 17.3952 + 6.35671i 0.939251 + 0.343230i
\(344\) 3.33320 0.179714
\(345\) −0.789374 1.36724i −0.0424985 0.0736095i
\(346\) 14.0676 24.3659i 0.756281 1.30992i
\(347\) −9.69945 + 16.7999i −0.520694 + 0.901868i 0.479017 + 0.877806i \(0.340993\pi\)
−0.999710 + 0.0240624i \(0.992340\pi\)
\(348\) 1.81725 + 3.14758i 0.0974150 + 0.168728i
\(349\) −18.9027 −1.01184 −0.505918 0.862581i \(-0.668846\pi\)
−0.505918 + 0.862581i \(0.668846\pi\)
\(350\) −2.02284 4.69502i −0.108126 0.250959i
\(351\) −2.88432 −0.153954
\(352\) −16.5366 28.6422i −0.881404 1.52664i
\(353\) 15.3169 26.5297i 0.815237 1.41203i −0.0939212 0.995580i \(-0.529940\pi\)
0.909158 0.416452i \(-0.136726\pi\)
\(354\) 7.60604 13.1740i 0.404256 0.700193i
\(355\) −3.86924 6.70173i −0.205358 0.355691i
\(356\) −5.42065 −0.287294
\(357\) 25.2253 33.8531i 1.33506 1.79169i
\(358\) −42.0644 −2.22317
\(359\) −4.59758 7.96324i −0.242651 0.420284i 0.718818 0.695199i \(-0.244684\pi\)
−0.961469 + 0.274915i \(0.911350\pi\)
\(360\) 1.23503 2.13914i 0.0650918 0.112742i
\(361\) 4.90648 8.49827i 0.258236 0.447277i
\(362\) 2.47775 + 4.29158i 0.130228 + 0.225561i
\(363\) −22.2798 −1.16938
\(364\) 2.61647 + 0.306960i 0.137140 + 0.0160891i
\(365\) −1.12595 −0.0589351
\(366\) 28.5071 + 49.3758i 1.49009 + 2.58091i
\(367\) −5.68864 + 9.85300i −0.296944 + 0.514323i −0.975435 0.220286i \(-0.929301\pi\)
0.678491 + 0.734609i \(0.262634\pi\)
\(368\) −1.26124 + 2.18454i −0.0657469 + 0.113877i
\(369\) −22.4737 38.9256i −1.16994 2.02639i
\(370\) 1.93225 0.100453
\(371\) 6.84953 + 0.803576i 0.355610 + 0.0417196i
\(372\) 37.5976 1.94934
\(373\) 4.92858 + 8.53655i 0.255192 + 0.442006i 0.964948 0.262442i \(-0.0845280\pi\)
−0.709756 + 0.704448i \(0.751195\pi\)
\(374\) 24.0497 41.6553i 1.24358 2.15394i
\(375\) 1.39627 2.41841i 0.0721030 0.124886i
\(376\) −1.34329 2.32664i −0.0692747 0.119987i
\(377\) 0.431213 0.0222086
\(378\) 15.3393 20.5858i 0.788967 1.05882i
\(379\) −24.2545 −1.24587 −0.622934 0.782275i \(-0.714059\pi\)
−0.622934 + 0.782275i \(0.714059\pi\)
\(380\) −2.62726 4.55054i −0.134775 0.233438i
\(381\) 4.73817 8.20675i 0.242744 0.420445i
\(382\) −1.24652 + 2.15904i −0.0637777 + 0.110466i
\(383\) −8.95443 15.5095i −0.457550 0.792500i 0.541281 0.840842i \(-0.317940\pi\)
−0.998831 + 0.0483419i \(0.984606\pi\)
\(384\) −11.3984 −0.581670
\(385\) 4.56066 + 10.5853i 0.232433 + 0.539477i
\(386\) −21.9602 −1.11775
\(387\) 15.5343 + 26.9062i 0.789653 + 1.36772i
\(388\) 8.97153 15.5391i 0.455460 0.788880i
\(389\) −19.1826 + 33.2253i −0.972599 + 1.68459i −0.284956 + 0.958541i \(0.591979\pi\)
−0.687642 + 0.726050i \(0.741354\pi\)
\(390\) 1.54961 + 2.68400i 0.0784676 + 0.135910i
\(391\) −3.23044 −0.163370
\(392\) 2.47510 2.61895i 0.125012 0.132277i
\(393\) 38.3677 1.93540
\(394\) 7.89303 + 13.6711i 0.397645 + 0.688741i
\(395\) 6.64754 11.5139i 0.334474 0.579326i
\(396\) 18.1187 31.3826i 0.910501 1.57703i
\(397\) −13.7583 23.8300i −0.690507 1.19599i −0.971672 0.236334i \(-0.924054\pi\)
0.281165 0.959659i \(-0.409279\pi\)
\(398\) −41.6788 −2.08917
\(399\) 8.86107 + 20.5665i 0.443608 + 1.02961i
\(400\) −4.46185 −0.223093
\(401\) 8.47760 + 14.6836i 0.423351 + 0.733266i 0.996265 0.0863500i \(-0.0275203\pi\)
−0.572914 + 0.819616i \(0.694187\pi\)
\(402\) −16.6178 + 28.7830i −0.828823 + 1.43556i
\(403\) 2.23037 3.86311i 0.111103 0.192435i
\(404\) 7.54597 + 13.0700i 0.375426 + 0.650257i
\(405\) −0.371451 −0.0184575
\(406\) −2.29326 + 3.07763i −0.113813 + 0.152740i
\(407\) −4.35641 −0.215939
\(408\) −4.10715 7.11379i −0.203334 0.352185i
\(409\) 8.06694 13.9723i 0.398884 0.690888i −0.594704 0.803945i \(-0.702731\pi\)
0.993589 + 0.113057i \(0.0360641\pi\)
\(410\) −9.05011 + 15.6752i −0.446953 + 0.774145i
\(411\) −14.8760 25.7660i −0.733778 1.27094i
\(412\) 18.5867 0.915701
\(413\) 7.40811 + 0.869107i 0.364529 + 0.0427660i
\(414\) −5.24157 −0.257609
\(415\) −3.83566 6.64357i −0.188285 0.326120i
\(416\) 2.18026 3.77632i 0.106896 0.185149i
\(417\) −5.45150 + 9.44227i −0.266961 + 0.462390i
\(418\) 12.7570 + 22.0958i 0.623967 + 1.08074i
\(419\) −24.0766 −1.17622 −0.588110 0.808781i \(-0.700128\pi\)
−0.588110 + 0.808781i \(0.700128\pi\)
\(420\) −12.7211 1.49242i −0.620726 0.0728225i
\(421\) 38.4325 1.87309 0.936544 0.350551i \(-0.114006\pi\)
0.936544 + 0.350551i \(0.114006\pi\)
\(422\) −3.41761 5.91947i −0.166367 0.288155i
\(423\) 12.5207 21.6865i 0.608778 1.05443i
\(424\) 0.670925 1.16208i 0.0325830 0.0564354i
\(425\) −2.85705 4.94855i −0.138587 0.240040i
\(426\) −41.7559 −2.02308
\(427\) −16.7036 + 22.4168i −0.808345 + 1.08482i
\(428\) −0.889988 −0.0430192
\(429\) −3.49372 6.05131i −0.168679 0.292160i
\(430\) 6.25563 10.8351i 0.301673 0.522513i
\(431\) 6.01946 10.4260i 0.289947 0.502203i −0.683850 0.729623i \(-0.739696\pi\)
0.973797 + 0.227420i \(0.0730289\pi\)
\(432\) −11.2031 19.4043i −0.539009 0.933591i
\(433\) −21.0820 −1.01314 −0.506569 0.862200i \(-0.669086\pi\)
−0.506569 + 0.862200i \(0.669086\pi\)
\(434\) 15.7101 + 36.4631i 0.754107 + 1.75028i
\(435\) −2.09653 −0.100521
\(436\) −10.8713 18.8297i −0.520642 0.901779i
\(437\) 0.856785 1.48400i 0.0409856 0.0709891i
\(438\) −3.03775 + 5.26154i −0.145149 + 0.251406i
\(439\) −12.6768 21.9568i −0.605029 1.04794i −0.992047 0.125869i \(-0.959828\pi\)
0.387018 0.922072i \(-0.373505\pi\)
\(440\) 2.24260 0.106912
\(441\) 32.6758 + 7.77395i 1.55599 + 0.370188i
\(442\) 6.34163 0.301641
\(443\) 15.8208 + 27.4024i 0.751667 + 1.30193i 0.947014 + 0.321191i \(0.104083\pi\)
−0.195348 + 0.980734i \(0.562583\pi\)
\(444\) 2.42055 4.19251i 0.114874 0.198968i
\(445\) 1.56342 2.70793i 0.0741134 0.128368i
\(446\) −23.3813 40.4975i −1.10713 1.91761i
\(447\) 32.2276 1.52431
\(448\) 6.01501 + 13.9608i 0.284183 + 0.659588i
\(449\) 10.7005 0.504986 0.252493 0.967599i \(-0.418750\pi\)
0.252493 + 0.967599i \(0.418750\pi\)
\(450\) −4.63572 8.02930i −0.218530 0.378505i
\(451\) 20.4042 35.3411i 0.960797 1.66415i
\(452\) 5.04693 8.74154i 0.237388 0.411168i
\(453\) −15.8910 27.5240i −0.746625 1.29319i
\(454\) 46.5108 2.18286
\(455\) −0.907987 + 1.21855i −0.0425671 + 0.0571263i
\(456\) 4.35723 0.204046
\(457\) 9.68219 + 16.7700i 0.452914 + 0.784470i 0.998566 0.0535424i \(-0.0170512\pi\)
−0.545652 + 0.838012i \(0.683718\pi\)
\(458\) −26.6990 + 46.2441i −1.24756 + 2.16084i
\(459\) 14.3473 24.8503i 0.669675 1.15991i
\(460\) 0.490037 + 0.848769i 0.0228481 + 0.0395741i
\(461\) −23.3884 −1.08931 −0.544654 0.838661i \(-0.683339\pi\)
−0.544654 + 0.838661i \(0.683339\pi\)
\(462\) 61.7691 + 7.24665i 2.87376 + 0.337145i
\(463\) 16.2360 0.754553 0.377276 0.926101i \(-0.376861\pi\)
0.377276 + 0.926101i \(0.376861\pi\)
\(464\) 1.67489 + 2.90100i 0.0777550 + 0.134676i
\(465\) −10.8439 + 18.7822i −0.502873 + 0.871002i
\(466\) −9.06239 + 15.6965i −0.419807 + 0.727128i
\(467\) 5.59720 + 9.69464i 0.259008 + 0.448614i 0.965976 0.258630i \(-0.0832712\pi\)
−0.706969 + 0.707245i \(0.749938\pi\)
\(468\) 4.77771 0.220850
\(469\) −16.1854 1.89884i −0.747372 0.0876805i
\(470\) −10.0841 −0.465146
\(471\) 6.14878 + 10.6500i 0.283321 + 0.490726i
\(472\) 0.725638 1.25684i 0.0334002 0.0578509i
\(473\) −14.1038 + 24.4285i −0.648494 + 1.12322i
\(474\) −35.8693 62.1274i −1.64753 2.85361i
\(475\) 3.03101 0.139072
\(476\) −15.6596 + 21.0157i −0.717758 + 0.963253i
\(477\) 12.5073 0.572671
\(478\) −22.0128 38.1273i −1.00684 1.74390i
\(479\) 3.31820 5.74729i 0.151612 0.262600i −0.780208 0.625520i \(-0.784887\pi\)
0.931820 + 0.362920i \(0.118220\pi\)
\(480\) −10.6003 + 18.3602i −0.483833 + 0.838024i
\(481\) −0.287184 0.497418i −0.0130945 0.0226803i
\(482\) 47.0238 2.14187
\(483\) −1.65277 3.83608i −0.0752036 0.174548i
\(484\) 13.8311 0.628686
\(485\) 5.17513 + 8.96359i 0.234991 + 0.407016i
\(486\) −15.5570 + 26.9455i −0.705678 + 1.22227i
\(487\) 19.0731 33.0356i 0.864284 1.49698i −0.00347149 0.999994i \(-0.501105\pi\)
0.867756 0.496991i \(-0.165562\pi\)
\(488\) 2.71966 + 4.71060i 0.123113 + 0.213239i
\(489\) −16.7677 −0.758260
\(490\) −3.86810 12.9608i −0.174743 0.585511i
\(491\) −19.7649 −0.891979 −0.445990 0.895038i \(-0.647148\pi\)
−0.445990 + 0.895038i \(0.647148\pi\)
\(492\) 22.6743 + 39.2731i 1.02224 + 1.77057i
\(493\) −2.14496 + 3.71518i −0.0966042 + 0.167323i
\(494\) −1.68194 + 2.91321i −0.0756742 + 0.131072i
\(495\) 10.4516 + 18.1027i 0.469765 + 0.813657i
\(496\) 34.6522 1.55593
\(497\) −8.10131 18.8031i −0.363394 0.843436i
\(498\) −41.3935 −1.85489
\(499\) 16.7689 + 29.0447i 0.750681 + 1.30022i 0.947493 + 0.319777i \(0.103608\pi\)
−0.196812 + 0.980441i \(0.563059\pi\)
\(500\) −0.866792 + 1.50133i −0.0387641 + 0.0671414i
\(501\) −34.7458 + 60.1815i −1.55233 + 2.68871i
\(502\) 24.9406 + 43.1983i 1.11315 + 1.92804i
\(503\) 14.1183 0.629502 0.314751 0.949174i \(-0.398079\pi\)
0.314751 + 0.949174i \(0.398079\pi\)
\(504\) 3.90478 5.24033i 0.173933 0.233423i
\(505\) −8.70563 −0.387396
\(506\) −2.37945 4.12132i −0.105779 0.183215i
\(507\) −17.6909 + 30.6415i −0.785679 + 1.36084i
\(508\) −2.94142 + 5.09468i −0.130504 + 0.226040i
\(509\) 21.2156 + 36.7464i 0.940363 + 1.62876i 0.764779 + 0.644293i \(0.222848\pi\)
0.175585 + 0.984464i \(0.443818\pi\)
\(510\) −30.8326 −1.36529
\(511\) −2.95870 0.347110i −0.130885 0.0153552i
\(512\) 29.2800 1.29400
\(513\) 7.61045 + 13.1817i 0.336010 + 0.581986i
\(514\) 24.6233 42.6487i 1.08609 1.88115i
\(515\) −5.36077 + 9.28513i −0.236224 + 0.409152i
\(516\) −15.6730 27.1464i −0.689964 1.19505i
\(517\) 22.7355 0.999905
\(518\) 5.07743 + 0.595675i 0.223089 + 0.0261725i
\(519\) 40.6619 1.78486
\(520\) 0.147837 + 0.256062i 0.00648310 + 0.0112291i
\(521\) 1.06393 1.84279i 0.0466118 0.0807340i −0.841778 0.539824i \(-0.818491\pi\)
0.888390 + 0.459090i \(0.151824\pi\)
\(522\) −3.48032 + 6.02809i −0.152329 + 0.263842i
\(523\) 9.41291 + 16.3036i 0.411598 + 0.712909i 0.995065 0.0992285i \(-0.0316375\pi\)
−0.583467 + 0.812137i \(0.698304\pi\)
\(524\) −23.8184 −1.04051
\(525\) 4.41457 5.92448i 0.192667 0.258566i
\(526\) 17.9621 0.783183
\(527\) 22.1888 + 38.4321i 0.966559 + 1.67413i
\(528\) 27.1402 47.0082i 1.18113 2.04577i
\(529\) 11.3402 19.6418i 0.493052 0.853991i
\(530\) −2.51833 4.36188i −0.109389 0.189468i
\(531\) 13.5273 0.587034
\(532\) −5.50088 12.7675i −0.238493 0.553543i
\(533\) 5.38036 0.233049
\(534\) −8.43604 14.6117i −0.365063 0.632308i
\(535\) 0.256690 0.444600i 0.0110977 0.0192217i
\(536\) −1.58539 + 2.74598i −0.0684785 + 0.118608i
\(537\) −30.3963 52.6480i −1.31170 2.27193i
\(538\) −12.6997 −0.547524
\(539\) 8.72095 + 29.2213i 0.375638 + 1.25865i
\(540\) −8.70557 −0.374628
\(541\) −12.8749 22.2999i −0.553533 0.958748i −0.998016 0.0629603i \(-0.979946\pi\)
0.444483 0.895787i \(-0.353387\pi\)
\(542\) 0.0839500 0.145406i 0.00360596 0.00624571i
\(543\) −3.58091 + 6.20231i −0.153671 + 0.266167i
\(544\) 21.6903 + 37.5687i 0.929963 + 1.61074i
\(545\) 12.5420 0.537242
\(546\) 3.24453 + 7.53055i 0.138853 + 0.322278i
\(547\) −13.8316 −0.591397 −0.295698 0.955281i \(-0.595552\pi\)
−0.295698 + 0.955281i \(0.595552\pi\)
\(548\) 9.23489 + 15.9953i 0.394495 + 0.683285i
\(549\) −25.3499 + 43.9073i −1.08191 + 1.87392i
\(550\) 4.20883 7.28992i 0.179465 0.310843i
\(551\) −1.13778 1.97070i −0.0484712 0.0839546i
\(552\) −0.812712 −0.0345913
\(553\) 21.0174 28.2060i 0.893753 1.19944i
\(554\) −26.2184 −1.11391
\(555\) 1.39627 + 2.41841i 0.0592683 + 0.102656i
\(556\) 3.38424 5.86168i 0.143524 0.248591i
\(557\) 8.80961 15.2587i 0.373275 0.646531i −0.616792 0.787126i \(-0.711568\pi\)
0.990067 + 0.140595i \(0.0449015\pi\)
\(558\) 36.0025 + 62.3582i 1.52411 + 2.63983i
\(559\) −3.71902 −0.157298
\(560\) −11.7245 1.37550i −0.495453 0.0581257i
\(561\) 69.5145 2.93491
\(562\) 24.7513 + 42.8705i 1.04407 + 1.80838i
\(563\) −16.8848 + 29.2453i −0.711608 + 1.23254i 0.252645 + 0.967559i \(0.418699\pi\)
−0.964253 + 0.264982i \(0.914634\pi\)
\(564\) −12.6325 + 21.8801i −0.531924 + 0.921319i
\(565\) 2.91127 + 5.04247i 0.122478 + 0.212138i
\(566\) −19.8734 −0.835340
\(567\) −0.976072 0.114511i −0.0409912 0.00480902i
\(568\) −3.98364 −0.167150
\(569\) 19.6678 + 34.0656i 0.824517 + 1.42811i 0.902287 + 0.431135i \(0.141887\pi\)
−0.0777700 + 0.996971i \(0.524780\pi\)
\(570\) 8.17749 14.1638i 0.342517 0.593257i
\(571\) −3.06175 + 5.30311i −0.128130 + 0.221928i −0.922952 0.384915i \(-0.874231\pi\)
0.794822 + 0.606843i \(0.207564\pi\)
\(572\) 2.16887 + 3.75660i 0.0906852 + 0.157071i
\(573\) −3.60302 −0.150518
\(574\) −28.6136 + 38.4003i −1.19431 + 1.60280i
\(575\) −0.565346 −0.0235765
\(576\) 13.7845 + 23.8755i 0.574355 + 0.994812i
\(577\) 17.6420 30.5569i 0.734447 1.27210i −0.220518 0.975383i \(-0.570775\pi\)
0.954965 0.296717i \(-0.0958918\pi\)
\(578\) −15.1207 + 26.1899i −0.628939 + 1.08935i
\(579\) −15.8688 27.4855i −0.659483 1.14226i
\(580\) 1.30151 0.0540421
\(581\) −8.03100 18.6400i −0.333182 0.773316i
\(582\) 55.8488 2.31501
\(583\) 5.67779 + 9.83421i 0.235150 + 0.407291i
\(584\) −0.289810 + 0.501967i −0.0119924 + 0.0207715i
\(585\) −1.37799 + 2.38674i −0.0569727 + 0.0986796i
\(586\) 12.9136 + 22.3671i 0.533458 + 0.923976i
\(587\) 29.8115 1.23045 0.615226 0.788351i \(-0.289065\pi\)
0.615226 + 0.788351i \(0.289065\pi\)
\(588\) −32.9675 7.84334i −1.35956 0.323454i
\(589\) −23.5399 −0.969943
\(590\) −2.72370 4.71759i −0.112133 0.194220i
\(591\) −11.4072 + 19.7579i −0.469230 + 0.812730i
\(592\) 2.23093 3.86408i 0.0916906 0.158813i
\(593\) −13.6878 23.7080i −0.562091 0.973570i −0.997314 0.0732474i \(-0.976664\pi\)
0.435223 0.900323i \(-0.356670\pi\)
\(594\) 42.2712 1.73441
\(595\) −5.98201 13.8842i −0.245238 0.569198i
\(596\) −20.0066 −0.819502
\(597\) −30.1176 52.1653i −1.23263 2.13498i
\(598\) 0.313717 0.543373i 0.0128288 0.0222202i
\(599\) 15.6684 27.1385i 0.640194 1.10885i −0.345195 0.938531i \(-0.612187\pi\)
0.985389 0.170318i \(-0.0544794\pi\)
\(600\) −0.718774 1.24495i −0.0293438 0.0508250i
\(601\) 8.15855 0.332794 0.166397 0.986059i \(-0.446787\pi\)
0.166397 + 0.986059i \(0.446787\pi\)
\(602\) 19.7783 26.5431i 0.806105 1.08182i
\(603\) −29.5547 −1.20356
\(604\) 9.86501 + 17.0867i 0.401402 + 0.695248i
\(605\) −3.98916 + 6.90943i −0.162182 + 0.280908i
\(606\) −23.4873 + 40.6811i −0.954105 + 1.65256i
\(607\) −13.2916 23.0217i −0.539489 0.934422i −0.998932 0.0462146i \(-0.985284\pi\)
0.459443 0.888207i \(-0.348049\pi\)
\(608\) −23.0110 −0.933219
\(609\) −5.50911 0.646320i −0.223240 0.0261902i
\(610\) 20.4167 0.826646
\(611\) 1.49877 + 2.59595i 0.0606338 + 0.105021i
\(612\) −23.7655 + 41.1630i −0.960663 + 1.66392i
\(613\) −2.04531 + 3.54258i −0.0826094 + 0.143084i −0.904370 0.426749i \(-0.859659\pi\)
0.821761 + 0.569833i \(0.192992\pi\)
\(614\) 22.8369 + 39.5547i 0.921622 + 1.59630i
\(615\) −26.1589 −1.05483
\(616\) 5.89296 + 0.691352i 0.237434 + 0.0278554i
\(617\) −19.7115 −0.793554 −0.396777 0.917915i \(-0.629871\pi\)
−0.396777 + 0.917915i \(0.629871\pi\)
\(618\) 28.9261 + 50.1014i 1.16358 + 2.01537i
\(619\) −12.2991 + 21.3027i −0.494342 + 0.856226i −0.999979 0.00652074i \(-0.997924\pi\)
0.505636 + 0.862747i \(0.331258\pi\)
\(620\) 6.73179 11.6598i 0.270355 0.468269i
\(621\) −1.41950 2.45865i −0.0569627 0.0986623i
\(622\) −48.6860 −1.95213
\(623\) 4.94306 6.63373i 0.198039 0.265775i
\(624\) 7.15657 0.286492
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0.219782 0.380674i 0.00878427 0.0152148i
\(627\) −18.4368 + 31.9335i −0.736295 + 1.27530i
\(628\) −3.81711 6.61143i −0.152319 0.263825i
\(629\) 5.71410 0.227836
\(630\) −9.70614 22.5279i −0.386702 0.897535i
\(631\) 25.0708 0.998053 0.499026 0.866587i \(-0.333691\pi\)
0.499026 + 0.866587i \(0.333691\pi\)
\(632\) −3.42204 5.92714i −0.136121 0.235769i
\(633\) 4.93922 8.55498i 0.196316 0.340030i
\(634\) 6.66606 11.5460i 0.264743 0.458548i
\(635\) −1.69673 2.93882i −0.0673325 0.116623i
\(636\) −12.6190 −0.500375
\(637\) −2.76160 + 2.92209i −0.109419 + 0.115778i
\(638\) −6.31966 −0.250198
\(639\) −18.5657 32.1567i −0.734446 1.27210i
\(640\) −2.04086 + 3.53487i −0.0806721 + 0.139728i
\(641\) 11.3347 19.6322i 0.447692 0.775425i −0.550543 0.834807i \(-0.685579\pi\)
0.998235 + 0.0593813i \(0.0189128\pi\)
\(642\) −1.38507 2.39901i −0.0546643 0.0946813i
\(643\) 4.37475 0.172523 0.0862617 0.996273i \(-0.472508\pi\)
0.0862617 + 0.996273i \(0.472508\pi\)
\(644\) 1.02603 + 2.38140i 0.0404311 + 0.0938405i
\(645\) 18.0816 0.711962
\(646\) −16.7328 28.9820i −0.658343 1.14028i
\(647\) 2.32724 4.03090i 0.0914934 0.158471i −0.816646 0.577138i \(-0.804169\pi\)
0.908140 + 0.418667i \(0.137503\pi\)
\(648\) −0.0956081 + 0.165598i −0.00375584 + 0.00650531i
\(649\) 6.14081 + 10.6362i 0.241048 + 0.417507i
\(650\) 1.10982 0.0435308
\(651\) −34.2850 + 46.0115i −1.34373 + 1.80333i
\(652\) 10.4092 0.407657
\(653\) 6.71055 + 11.6230i 0.262604 + 0.454844i 0.966933 0.255030i \(-0.0820854\pi\)
−0.704329 + 0.709874i \(0.748752\pi\)
\(654\) 33.8376 58.6085i 1.32316 2.29177i
\(655\) 6.86969 11.8986i 0.268421 0.464919i
\(656\) 20.8981 + 36.1965i 0.815933 + 1.41324i
\(657\) −5.40262 −0.210776
\(658\) −26.4983 3.10874i −1.03301 0.121191i
\(659\) 46.9584 1.82924 0.914620 0.404315i \(-0.132490\pi\)
0.914620 + 0.404315i \(0.132490\pi\)
\(660\) −10.5449 18.2643i −0.410460 0.710937i
\(661\) 19.2808 33.3953i 0.749936 1.29893i −0.197917 0.980219i \(-0.563418\pi\)
0.947853 0.318708i \(-0.103249\pi\)
\(662\) 5.86096 10.1515i 0.227793 0.394548i
\(663\) 4.58255 + 7.93721i 0.177971 + 0.308256i
\(664\) −3.94906 −0.153253
\(665\) 7.96468 + 0.934404i 0.308857 + 0.0362346i
\(666\) 9.27144 0.359261
\(667\) 0.212220 + 0.367575i 0.00821718 + 0.0142326i
\(668\) 21.5699 37.3602i 0.834565 1.44551i
\(669\) 33.7912 58.5281i 1.30644 2.26283i
\(670\) 5.95080 + 10.3071i 0.229900 + 0.398198i
\(671\) −46.0310 −1.77701
\(672\) −33.5147 + 44.9777i −1.29286 + 1.73505i
\(673\) −30.7969 −1.18713 −0.593567 0.804784i \(-0.702281\pi\)
−0.593567 + 0.804784i \(0.702281\pi\)
\(674\) −3.86575 6.69568i −0.148903 0.257908i
\(675\) 2.51086 4.34894i 0.0966431 0.167391i
\(676\) 10.9823 19.0220i 0.422398 0.731614i
\(677\) −19.8537 34.3876i −0.763040 1.32162i −0.941277 0.337637i \(-0.890373\pi\)
0.178236 0.983988i \(-0.442961\pi\)
\(678\) 31.4177 1.20659
\(679\) 10.8355 + 25.1493i 0.415830 + 0.965142i
\(680\) −2.94152 −0.112802
\(681\) 33.6094 + 58.2131i 1.28791 + 2.23073i
\(682\) −32.6872 + 56.6159i −1.25166 + 2.16793i
\(683\) −18.0821 + 31.3192i −0.691894 + 1.19840i 0.279323 + 0.960197i \(0.409890\pi\)
−0.971217 + 0.238198i \(0.923443\pi\)
\(684\) −12.6063 21.8347i −0.482013 0.834871i
\(685\) −10.6541 −0.407072
\(686\) −6.16874 35.2500i −0.235524 1.34585i
\(687\) −77.1723 −2.94431
\(688\) −14.4452 25.0198i −0.550718 0.953871i
\(689\) −0.748584 + 1.29659i −0.0285188 + 0.0493960i
\(690\) −1.52527 + 2.64184i −0.0580659 + 0.100573i
\(691\) 17.7928 + 30.8180i 0.676868 + 1.17237i 0.975919 + 0.218133i \(0.0699967\pi\)
−0.299051 + 0.954237i \(0.596670\pi\)
\(692\) −25.2425 −0.959578
\(693\) 21.8833 + 50.7911i 0.831277 + 1.92939i
\(694\) 37.4835 1.42285
\(695\) 1.95217 + 3.38125i 0.0740499 + 0.128258i
\(696\) −0.539628 + 0.934663i −0.0204545 + 0.0354283i
\(697\) −26.7632 + 46.3553i −1.01373 + 1.75583i
\(698\) 18.2623 + 31.6313i 0.691239 + 1.19726i
\(699\) −26.1944 −0.990764
\(700\) −2.74053 + 3.67787i −0.103582 + 0.139010i
\(701\) 40.8015 1.54105 0.770526 0.637408i \(-0.219994\pi\)
0.770526 + 0.637408i \(0.219994\pi\)
\(702\) 2.78661 + 4.82655i 0.105174 + 0.182166i
\(703\) −1.51551 + 2.62493i −0.0571584 + 0.0990013i
\(704\) −12.5152 + 21.6769i −0.471683 + 0.816978i
\(705\) −7.28692 12.6213i −0.274441 0.475346i
\(706\) −59.1921 −2.22773
\(707\) −22.8761 2.68378i −0.860342 0.100934i
\(708\) −13.6480 −0.512925
\(709\) 12.9618 + 22.4506i 0.486792 + 0.843148i 0.999885 0.0151848i \(-0.00483365\pi\)
−0.513093 + 0.858333i \(0.671500\pi\)
\(710\) −7.47634 + 12.9494i −0.280582 + 0.485982i
\(711\) 31.8967 55.2466i 1.19622 2.07191i
\(712\) −0.804823 1.39399i −0.0301620 0.0522421i
\(713\) 4.39066 0.164432
\(714\) −81.0196 9.50509i −3.03208 0.355719i
\(715\) −2.50219 −0.0935764
\(716\) 18.8698 + 32.6834i 0.705197 + 1.22144i
\(717\) 31.8135 55.1026i 1.18810 2.05784i
\(718\) −8.88367 + 15.3870i −0.331535 + 0.574236i
\(719\) −13.5459 23.4621i −0.505175 0.874989i −0.999982 0.00598620i \(-0.998095\pi\)
0.494807 0.869003i \(-0.335239\pi\)
\(720\) −21.4092 −0.797872
\(721\) −16.9491 + 22.7462i −0.631217 + 0.847112i
\(722\) −18.9611 −0.705658
\(723\) 33.9800 + 58.8551i 1.26373 + 2.18885i
\(724\) 2.22300 3.85034i 0.0826170 0.143097i
\(725\) −0.375380 + 0.650178i −0.0139413 + 0.0241470i
\(726\) 21.5250 + 37.2824i 0.798868 + 1.38368i
\(727\) 31.2736 1.15987 0.579936 0.814662i \(-0.303077\pi\)
0.579936 + 0.814662i \(0.303077\pi\)
\(728\) 0.309538 + 0.718437i 0.0114722 + 0.0266270i
\(729\) −43.8523 −1.62416
\(730\) 1.08781 + 1.88414i 0.0402617 + 0.0697353i
\(731\) 18.4993 32.0417i 0.684221 1.18511i
\(732\) 25.5762 44.2992i 0.945322 1.63735i
\(733\) −9.37859 16.2442i −0.346406 0.599993i 0.639202 0.769039i \(-0.279265\pi\)
−0.985608 + 0.169046i \(0.945931\pi\)
\(734\) 21.9837 0.811434
\(735\) 13.4267 14.2070i 0.495251 0.524033i
\(736\) 4.29202 0.158206
\(737\) −13.4166 23.2382i −0.494206 0.855990i
\(738\) −43.4248 + 75.2140i −1.59849 + 2.76867i
\(739\) 5.63447 9.75919i 0.207267 0.358997i −0.743585 0.668641i \(-0.766876\pi\)
0.950853 + 0.309643i \(0.100210\pi\)
\(740\) −0.866792 1.50133i −0.0318639 0.0551899i
\(741\) −4.86158 −0.178595
\(742\) −5.27281 12.2382i −0.193571 0.449278i
\(743\) 32.8940 1.20676 0.603382 0.797453i \(-0.293820\pi\)
0.603382 + 0.797453i \(0.293820\pi\)
\(744\) 5.58224 + 9.66872i 0.204655 + 0.354473i
\(745\) 5.77030 9.99445i 0.211407 0.366168i
\(746\) 9.52324 16.4947i 0.348670 0.603915i
\(747\) −18.4045 31.8776i −0.673387 1.16634i
\(748\) −43.1540 −1.57787
\(749\) 0.811574 1.08916i 0.0296543 0.0397969i
\(750\) −5.39588 −0.197030
\(751\) 17.7709 + 30.7800i 0.648468 + 1.12318i 0.983489 + 0.180969i \(0.0579232\pi\)
−0.335021 + 0.942211i \(0.608743\pi\)
\(752\) −11.6429 + 20.1661i −0.424572 + 0.735380i
\(753\) −36.0448 + 62.4314i −1.31354 + 2.27513i
\(754\) −0.416606 0.721582i −0.0151719 0.0262785i
\(755\) −11.3811 −0.414199
\(756\) −22.8759 2.68376i −0.831988 0.0976075i
\(757\) 39.0205 1.41822 0.709112 0.705096i \(-0.249096\pi\)
0.709112 + 0.705096i \(0.249096\pi\)
\(758\) 23.4328 + 40.5868i 0.851118 + 1.47418i
\(759\) 3.43884 5.95624i 0.124822 0.216198i
\(760\) 0.780156 1.35127i 0.0282992 0.0490157i
\(761\) 16.9042 + 29.2789i 0.612776 + 1.06136i 0.990770 + 0.135551i \(0.0432806\pi\)
−0.377994 + 0.925808i \(0.623386\pi\)
\(762\) −18.3107 −0.663325
\(763\) 32.9571 + 3.86647i 1.19313 + 0.139976i
\(764\) 2.23673 0.0809219
\(765\) −13.7089 23.7445i −0.495645 0.858483i
\(766\) −17.3022 + 29.9683i −0.625153 + 1.08280i
\(767\) −0.809631 + 1.40232i −0.0292341 + 0.0506349i
\(768\) 27.0571 + 46.8643i 0.976339 + 1.69107i
\(769\) 5.02796 0.181313 0.0906564 0.995882i \(-0.471104\pi\)
0.0906564 + 0.995882i \(0.471104\pi\)
\(770\) 13.3070 17.8584i 0.479552 0.643573i
\(771\) 71.1724 2.56321
\(772\) 9.85119 + 17.0628i 0.354552 + 0.614102i
\(773\) 21.6775 37.5465i 0.779685 1.35045i −0.152438 0.988313i \(-0.548712\pi\)
0.932123 0.362142i \(-0.117954\pi\)
\(774\) 30.0161 51.9895i 1.07891 1.86872i
\(775\) 3.88317 + 6.72584i 0.139487 + 0.241599i
\(776\) 5.32813 0.191269
\(777\) 2.92347 + 6.78537i 0.104879 + 0.243424i
\(778\) 74.1313 2.65773
\(779\) −14.1964 24.5889i −0.508639 0.880989i
\(780\) 1.39029 2.40805i 0.0497803 0.0862219i
\(781\) 16.8560 29.1955i 0.603156 1.04470i
\(782\) 3.12101 + 5.40574i 0.111607 + 0.193309i
\(783\) −3.77011 −0.134733
\(784\) −30.3849 7.22891i −1.08517 0.258175i
\(785\) 4.40372 0.157176
\(786\) −37.0680 64.2036i −1.32217 2.29007i
\(787\) −24.6037 + 42.6149i −0.877028 + 1.51906i −0.0224414 + 0.999748i \(0.507144\pi\)
−0.854587 + 0.519309i \(0.826189\pi\)
\(788\) 7.08150 12.2655i 0.252268 0.436941i
\(789\) 12.9796 + 22.4814i 0.462087 + 0.800358i
\(790\) −25.6894 −0.913988
\(791\) 6.09554 + 14.1477i 0.216732 + 0.503036i
\(792\) 10.7606 0.382361
\(793\) −3.03447 5.25585i −0.107757 0.186641i
\(794\) −26.5844 + 46.0455i −0.943444 + 1.63409i
\(795\) 3.63956 6.30391i 0.129082 0.223576i
\(796\) 18.6968 + 32.3838i 0.662690 + 1.14781i
\(797\) 36.2021 1.28235 0.641173 0.767397i \(-0.278448\pi\)
0.641173 + 0.767397i \(0.278448\pi\)
\(798\) 25.8547 34.6977i 0.915245 1.22829i
\(799\) −29.8210 −1.05499
\(800\) 3.79592 + 6.57473i 0.134206 + 0.232452i
\(801\) 7.50172 12.9934i 0.265060 0.459098i
\(802\) 16.3808 28.3724i 0.578427 1.00187i
\(803\) −2.45256 4.24796i −0.0865489 0.149907i
\(804\) 29.8186 1.05162
\(805\) −1.48558 0.174285i −0.0523596 0.00614275i
\(806\) −8.61925 −0.303600
\(807\) −9.17699 15.8950i −0.323045 0.559531i
\(808\) −2.24075 + 3.88110i −0.0788294 + 0.136537i
\(809\) 24.5863 42.5847i 0.864407 1.49720i −0.00322702 0.999995i \(-0.501027\pi\)
0.867634 0.497203i \(-0.165639\pi\)
\(810\) 0.358868 + 0.621577i 0.0126093 + 0.0218400i
\(811\) 28.8925 1.01455 0.507276 0.861784i \(-0.330653\pi\)
0.507276 + 0.861784i \(0.330653\pi\)
\(812\) 3.42001 + 0.401230i 0.120019 + 0.0140804i
\(813\) 0.242654 0.00851023
\(814\) 4.20883 + 7.28992i 0.147520 + 0.255511i
\(815\) −3.00223 + 5.20001i −0.105164 + 0.182149i
\(816\) −35.5985 + 61.6585i −1.24620 + 2.15848i
\(817\) 9.81286 + 16.9964i 0.343309 + 0.594628i
\(818\) −31.1747 −1.09000
\(819\) −4.35676 + 5.84691i −0.152238 + 0.204307i
\(820\) 16.2392 0.567099
\(821\) 10.3125 + 17.8617i 0.359907 + 0.623378i 0.987945 0.154805i \(-0.0494749\pi\)
−0.628038 + 0.778183i \(0.716142\pi\)
\(822\) −28.7441 + 49.7862i −1.00257 + 1.73649i
\(823\) 16.2127 28.0812i 0.565138 0.978848i −0.431899 0.901922i \(-0.642156\pi\)
0.997037 0.0769260i \(-0.0245105\pi\)
\(824\) 2.75963 + 4.77982i 0.0961363 + 0.166513i
\(825\) 12.1654 0.423546
\(826\) −5.70281 13.2362i −0.198426 0.460547i
\(827\) 51.3850 1.78683 0.893416 0.449231i \(-0.148302\pi\)
0.893416 + 0.449231i \(0.148302\pi\)
\(828\) 2.35133 + 4.07262i 0.0817143 + 0.141533i
\(829\) −26.3364 + 45.6160i −0.914701 + 1.58431i −0.107363 + 0.994220i \(0.534241\pi\)
−0.807338 + 0.590089i \(0.799093\pi\)
\(830\) −7.41146 + 12.8370i −0.257255 + 0.445579i
\(831\) −18.9457 32.8150i −0.657220 1.13834i
\(832\) −3.30011 −0.114411
\(833\) −11.4388 38.3281i −0.396333 1.32799i
\(834\) 21.0673 0.729501
\(835\) 12.4424 + 21.5508i 0.430586 + 0.745798i
\(836\) 11.4454 19.8240i 0.395848 0.685629i
\(837\) −19.5002 + 33.7753i −0.674025 + 1.16744i
\(838\) 23.2610 + 40.2893i 0.803539 + 1.39177i
\(839\) −14.9149 −0.514919 −0.257459 0.966289i \(-0.582885\pi\)
−0.257459 + 0.966289i \(0.582885\pi\)
\(840\) −1.50495 3.49299i −0.0519257 0.120519i
\(841\) −28.4364 −0.980564
\(842\) −37.1306 64.3121i −1.27961 2.21634i
\(843\) −35.7712 + 61.9575i −1.23203 + 2.13393i
\(844\) −3.06623 + 5.31086i −0.105544 + 0.182807i
\(845\) 6.33505 + 10.9726i 0.217932 + 0.377470i
\(846\) −48.3863 −1.66355
\(847\) −12.6125 + 16.9263i −0.433370 + 0.581596i
\(848\) −11.6304 −0.399390
\(849\) −14.3608 24.8736i −0.492860 0.853658i
\(850\) −5.52053 + 9.56183i −0.189353 + 0.327968i
\(851\) 0.282673 0.489604i 0.00968990 0.0167834i
\(852\) 18.7314 + 32.4437i 0.641727 + 1.11150i
\(853\) 31.7770 1.08802 0.544011 0.839078i \(-0.316905\pi\)
0.544011 + 0.839078i \(0.316905\pi\)
\(854\) 53.6495 + 6.29407i 1.83585 + 0.215379i
\(855\) 14.5436 0.497381
\(856\) −0.132140 0.228872i −0.00451644 0.00782270i
\(857\) 13.7830 23.8728i 0.470818 0.815480i −0.528625 0.848855i \(-0.677292\pi\)
0.999443 + 0.0333754i \(0.0106257\pi\)
\(858\) −6.75074 + 11.6926i −0.230467 + 0.399180i
\(859\) −5.51336 9.54943i −0.188114 0.325822i 0.756508 0.653985i \(-0.226904\pi\)
−0.944621 + 0.328163i \(0.893571\pi\)
\(860\) −11.2249 −0.382766
\(861\) −68.7386 8.06430i −2.34260 0.274831i
\(862\) −23.2622 −0.792313
\(863\) −4.59720 7.96258i −0.156491 0.271050i 0.777110 0.629365i \(-0.216685\pi\)
−0.933601 + 0.358315i \(0.883351\pi\)
\(864\) −19.0621 + 33.0165i −0.648505 + 1.12324i
\(865\) 7.28045 12.6101i 0.247543 0.428757i
\(866\) 20.3678 + 35.2781i 0.692128 + 1.19880i
\(867\) −43.7057 −1.48432
\(868\) 21.2838 28.5635i 0.722420 0.969509i
\(869\) 57.9188 1.96476
\(870\) 2.02551 + 3.50828i 0.0686711 + 0.118942i
\(871\) 1.76890 3.06383i 0.0599369 0.103814i
\(872\) 3.22821 5.59142i 0.109321 0.189349i
\(873\) 24.8317 + 43.0097i 0.840424 + 1.45566i
\(874\) −3.31104 −0.111998
\(875\) −1.04689 2.42982i −0.0353912 0.0821429i
\(876\) 5.45085 0.184167
\(877\) 17.8552 + 30.9261i 0.602926 + 1.04430i 0.992376 + 0.123251i \(0.0393320\pi\)
−0.389449 + 0.921048i \(0.627335\pi\)
\(878\) −24.4947 + 42.4260i −0.826655 + 1.43181i
\(879\) −18.6631 + 32.3255i −0.629492 + 1.09031i
\(880\) −9.71884 16.8335i −0.327622 0.567458i
\(881\) 44.8393 1.51068 0.755338 0.655336i \(-0.227473\pi\)
0.755338 + 0.655336i \(0.227473\pi\)
\(882\) −18.5602 62.1895i −0.624953 2.09403i
\(883\) 16.5572 0.557195 0.278598 0.960408i \(-0.410130\pi\)
0.278598 + 0.960408i \(0.410130\pi\)
\(884\) −2.84481 4.92735i −0.0956813 0.165725i
\(885\) 3.93637 6.81799i 0.132320 0.229184i
\(886\) 30.5696 52.9482i 1.02701 1.77883i
\(887\) −28.6347 49.5968i −0.961461 1.66530i −0.718838 0.695178i \(-0.755326\pi\)
−0.242623 0.970121i \(-0.578008\pi\)
\(888\) 1.43755 0.0482410
\(889\) −3.55256 8.24548i −0.119149 0.276545i
\(890\) −6.04185 −0.202523
\(891\) −0.809096 1.40140i −0.0271057 0.0469485i
\(892\) −20.9773 + 36.3338i −0.702372 + 1.21654i
\(893\) 7.90921 13.6991i 0.264671 0.458424i
\(894\) −31.1358 53.9288i −1.04134 1.80365i
\(895\) −21.7697 −0.727680
\(896\) −6.45256 + 8.65953i −0.215565 + 0.289295i
\(897\) 0.906783 0.0302766
\(898\) −10.3380 17.9059i −0.344983 0.597527i
\(899\) 2.91533 5.04950i 0.0972317 0.168410i
\(900\) −4.15910 + 7.20377i −0.138637 + 0.240126i
\(901\) −7.44728 12.8991i −0.248105 0.429730i
\(902\) −78.8520 −2.62548
\(903\) 47.5135 + 5.57421i 1.58115 + 0.185498i
\(904\) 2.99734 0.0996901
\(905\) 1.28231 + 2.22103i 0.0426255 + 0.0738296i
\(906\) −30.7054 + 53.1833i −1.02012 + 1.76690i
\(907\) 6.21587 10.7662i 0.206395 0.357486i −0.744182 0.667977i \(-0.767160\pi\)
0.950576 + 0.310491i \(0.100494\pi\)
\(908\) −20.8644 36.1382i −0.692410 1.19929i
\(909\) −41.7719 −1.38549
\(910\) 2.91631 + 0.342137i 0.0966749 + 0.0113417i
\(911\) 1.47427 0.0488446 0.0244223 0.999702i \(-0.492225\pi\)
0.0244223 + 0.999702i \(0.492225\pi\)
\(912\) −18.8831 32.7064i −0.625281 1.08302i
\(913\) 16.7097 28.9421i 0.553011 0.957844i
\(914\) 18.7084 32.4039i 0.618819 1.07183i
\(915\) 14.7534 + 25.5536i 0.487731 + 0.844774i
\(916\) 47.9079 1.58292
\(917\) 21.7198 29.1486i 0.717251 0.962573i
\(918\) −55.4451 −1.82996
\(919\) 20.7386 + 35.9202i 0.684102 + 1.18490i 0.973718 + 0.227756i \(0.0731389\pi\)
−0.289617 + 0.957143i \(0.593528\pi\)
\(920\) −0.145515 + 0.252039i −0.00479749 + 0.00830949i
\(921\) −33.0045 + 57.1655i −1.08754 + 1.88367i
\(922\) 22.5961 + 39.1376i 0.744164 + 1.28893i
\(923\) 4.44474 0.146301
\(924\) −22.0786 51.2445i −0.726333 1.68582i
\(925\) 1.00000 0.0328798
\(926\) −15.6860 27.1690i −0.515475 0.892829i
\(927\) −25.7224 + 44.5525i −0.844835 + 1.46330i
\(928\) 2.84983 4.93605i 0.0935503 0.162034i
\(929\) −26.0067 45.0449i −0.853251 1.47787i −0.878258 0.478188i \(-0.841294\pi\)
0.0250063 0.999687i \(-0.492039\pi\)
\(930\) 41.9062 1.37416
\(931\) 20.6410 + 4.91072i 0.676481 + 0.160942i
\(932\) 16.2613 0.532656
\(933\) −35.1811 60.9355i −1.15178 1.99494i
\(934\) 10.8152 18.7324i 0.353884 0.612944i
\(935\) 12.4465 21.5579i 0.407043 0.705020i
\(936\) 0.709363 + 1.22865i 0.0231862 + 0.0401598i
\(937\) 4.28374 0.139944 0.0699718 0.997549i \(-0.477709\pi\)
0.0699718 + 0.997549i \(0.477709\pi\)
\(938\) 12.4596 + 28.9188i 0.406821 + 0.944232i
\(939\) 0.635271 0.0207313
\(940\) 4.52366 + 7.83521i 0.147545 + 0.255556i
\(941\) −12.4323 + 21.5333i −0.405281 + 0.701967i −0.994354 0.106113i \(-0.966160\pi\)
0.589073 + 0.808080i \(0.299493\pi\)
\(942\) 11.8810 20.5784i 0.387103 0.670482i
\(943\) 2.64792 + 4.58633i 0.0862281 + 0.149352i
\(944\) −12.5789 −0.409408
\(945\) 7.93856 10.6538i 0.258241 0.346568i
\(946\) 54.5042 1.77208
\(947\) −26.3989 45.7243i −0.857849 1.48584i −0.873976 0.485969i \(-0.838467\pi\)
0.0161270 0.999870i \(-0.494866\pi\)
\(948\) −32.1814 + 55.7398i −1.04520 + 1.81034i
\(949\) 0.323356 0.560069i 0.0104966 0.0181806i
\(950\) −2.92834 5.07203i −0.0950078 0.164558i
\(951\) 19.2679 0.624805
\(952\) −7.72951 0.906813i −0.250515 0.0293900i
\(953\) 55.7613 1.80628 0.903142 0.429341i \(-0.141254\pi\)
0.903142 + 0.429341i \(0.141254\pi\)
\(954\) −12.0836 20.9295i −0.391222 0.677616i
\(955\) −0.645116 + 1.11737i −0.0208755 + 0.0361574i
\(956\) −19.7495 + 34.2072i −0.638746 + 1.10634i
\(957\) −4.56667 7.90970i −0.147619 0.255684i
\(958\) −12.8232 −0.414298
\(959\) −27.9961 3.28446i −0.904041 0.106061i
\(960\) 16.0449 0.517846
\(961\) −14.6579 25.3883i −0.472837 0.818977i
\(962\) −0.554911 + 0.961135i −0.0178911 + 0.0309882i
\(963\) 1.23167 2.13331i 0.0396899 0.0687450i
\(964\) −21.0945 36.5368i −0.679408 1.17677i
\(965\) −11.3651 −0.365856
\(966\) −4.82242 + 6.47183i −0.155159 + 0.208228i
\(967\) 1.40998 0.0453419 0.0226710 0.999743i \(-0.492783\pi\)
0.0226710 + 0.999743i \(0.492783\pi\)
\(968\) 2.05355 + 3.55685i 0.0660036 + 0.114322i
\(969\) 24.1827 41.8856i 0.776860 1.34556i
\(970\) 9.99964 17.3199i 0.321069 0.556108i
\(971\) −21.6292 37.4628i −0.694114 1.20224i −0.970479 0.241187i \(-0.922463\pi\)
0.276365 0.961053i \(-0.410870\pi\)
\(972\) 27.9150 0.895372
\(973\) 4.08739 + 9.48683i 0.131036 + 0.304134i
\(974\) −73.7079 −2.36175
\(975\) 0.801973 + 1.38906i 0.0256837 + 0.0444854i
\(976\) 23.5726 40.8289i 0.754540 1.30690i
\(977\) −4.39354 + 7.60984i −0.140562 + 0.243460i −0.927708 0.373306i \(-0.878224\pi\)
0.787146 + 0.616766i \(0.211558\pi\)
\(978\) 16.1997 + 28.0586i 0.518008 + 0.897216i
\(979\) 13.6218 0.435356
\(980\) −8.33518 + 8.81959i −0.266257 + 0.281731i
\(981\) 60.1800 1.92140
\(982\) 19.0954 + 33.0742i 0.609358 + 1.05544i
\(983\) 9.55447 16.5488i 0.304740 0.527826i −0.672463 0.740131i \(-0.734764\pi\)
0.977203 + 0.212305i \(0.0680970\pi\)
\(984\) −6.73307 + 11.6620i −0.214643 + 0.371772i
\(985\) 4.08489 + 7.07524i 0.130155 + 0.225436i
\(986\) 8.28919 0.263982
\(987\) −15.2571 35.4118i −0.485640 1.12717i
\(988\) 3.01803 0.0960163
\(989\) −1.83030 3.17017i −0.0582001 0.100805i
\(990\) 20.1951 34.9789i 0.641842 1.11170i
\(991\) 4.21801 7.30581i 0.133990 0.232077i −0.791221 0.611530i \(-0.790554\pi\)
0.925211 + 0.379453i \(0.123888\pi\)
\(992\) −29.4804 51.0615i −0.936003 1.62121i
\(993\) 16.9408 0.537601
\(994\) −23.6379 + 31.7227i −0.749747 + 1.00618i
\(995\) −21.5701 −0.683818
\(996\) 18.5688 + 32.1621i 0.588376 + 1.01910i
\(997\) 19.2547 33.3501i 0.609802 1.05621i −0.381470 0.924381i \(-0.624582\pi\)
0.991273 0.131828i \(-0.0420845\pi\)
\(998\) 32.4018 56.1215i 1.02566 1.77650i
\(999\) 2.51086 + 4.34894i 0.0794401 + 0.137594i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1295.2.j.a.186.3 38
7.2 even 3 inner 1295.2.j.a.926.3 yes 38
7.3 odd 6 9065.2.a.s.1.17 19
7.4 even 3 9065.2.a.r.1.17 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.j.a.186.3 38 1.1 even 1 trivial
1295.2.j.a.926.3 yes 38 7.2 even 3 inner
9065.2.a.r.1.17 19 7.4 even 3
9065.2.a.s.1.17 19 7.3 odd 6