Properties

Label 1295.2.j.a.186.19
Level $1295$
Weight $2$
Character 1295.186
Analytic conductor $10.341$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1295,2,Mod(186,1295)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1295.186"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1295 = 5 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1295.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3406270618\)
Analytic rank: \(0\)
Dimension: \(38\)
Relative dimension: \(19\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 186.19
Character \(\chi\) \(=\) 1295.186
Dual form 1295.2.j.a.926.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33719 + 2.31608i) q^{2} +(0.134228 - 0.232489i) q^{3} +(-2.57617 + 4.46205i) q^{4} +(-0.500000 - 0.866025i) q^{5} +0.717953 q^{6} +(-0.292931 + 2.62948i) q^{7} -8.43054 q^{8} +(1.46397 + 2.53566i) q^{9} +(1.33719 - 2.31608i) q^{10} +(-0.251910 + 0.436320i) q^{11} +(0.691586 + 1.19786i) q^{12} +1.35726 q^{13} +(-6.48182 + 2.83767i) q^{14} -0.268456 q^{15} +(-6.12093 - 10.6018i) q^{16} +(-1.70272 + 2.94921i) q^{17} +(-3.91521 + 6.78134i) q^{18} +(0.177570 + 0.307561i) q^{19} +5.15233 q^{20} +(0.572008 + 0.421053i) q^{21} -1.34741 q^{22} +(-3.56975 - 6.18299i) q^{23} +(-1.13161 + 1.96001i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(1.81491 + 3.14352i) q^{26} +1.59139 q^{27} +(-10.9783 - 8.08106i) q^{28} +0.607107 q^{29} +(-0.358977 - 0.621766i) q^{30} +(-0.696461 + 1.20631i) q^{31} +(7.93916 - 13.7510i) q^{32} +(0.0676266 + 0.117133i) q^{33} -9.10748 q^{34} +(2.42367 - 1.06106i) q^{35} -15.0857 q^{36} +(-0.500000 - 0.866025i) q^{37} +(-0.474892 + 0.822537i) q^{38} +(0.182182 - 0.315548i) q^{39} +(4.21527 + 7.30107i) q^{40} +0.101491 q^{41} +(-0.210311 + 1.88785i) q^{42} -11.0929 q^{43} +(-1.29792 - 2.24807i) q^{44} +(1.46397 - 2.53566i) q^{45} +(9.54689 - 16.5357i) q^{46} +(5.77940 + 10.0102i) q^{47} -3.28639 q^{48} +(-6.82838 - 1.54052i) q^{49} -2.67438 q^{50} +(0.457106 + 0.791731i) q^{51} +(-3.49652 + 6.05615i) q^{52} +(-0.0816235 + 0.141376i) q^{53} +(2.12799 + 3.68579i) q^{54} +0.503819 q^{55} +(2.46957 - 22.1680i) q^{56} +0.0953396 q^{57} +(0.811819 + 1.40611i) q^{58} +(5.97878 - 10.3555i) q^{59} +(0.691586 - 1.19786i) q^{60} +(2.88750 + 5.00129i) q^{61} -3.72521 q^{62} +(-7.09633 + 3.10670i) q^{63} +17.9810 q^{64} +(-0.678629 - 1.17542i) q^{65} +(-0.180859 + 0.313258i) q^{66} +(7.27675 - 12.6037i) q^{67} +(-8.77300 - 15.1953i) q^{68} -1.91664 q^{69} +(5.69840 + 4.19458i) q^{70} -2.66145 q^{71} +(-12.3420 - 21.3770i) q^{72} +(-5.86820 + 10.1640i) q^{73} +(1.33719 - 2.31608i) q^{74} +(0.134228 + 0.232489i) q^{75} -1.82980 q^{76} +(-1.07351 - 0.790205i) q^{77} +0.974448 q^{78} +(3.42770 + 5.93695i) q^{79} +(-6.12093 + 10.6018i) q^{80} +(-4.17829 + 7.23701i) q^{81} +(0.135713 + 0.235062i) q^{82} +8.24563 q^{83} +(-3.35235 + 1.46762i) q^{84} +3.40545 q^{85} +(-14.8333 - 25.6920i) q^{86} +(0.0814906 - 0.141146i) q^{87} +(2.12374 - 3.67842i) q^{88} +(5.38411 + 9.32556i) q^{89} +7.83041 q^{90} +(-0.397583 + 3.56889i) q^{91} +36.7851 q^{92} +(0.186969 + 0.323839i) q^{93} +(-15.4563 + 26.7712i) q^{94} +(0.177570 - 0.307561i) q^{95} +(-2.13131 - 3.69154i) q^{96} +0.540259 q^{97} +(-5.56289 - 17.8751i) q^{98} -1.47515 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 3 q^{2} + q^{3} - 11 q^{4} - 19 q^{5} - 8 q^{6} - 18 q^{8} - 12 q^{9} + 3 q^{10} + 13 q^{11} + 4 q^{12} - 6 q^{13} - q^{14} - 2 q^{15} + 5 q^{16} + 2 q^{17} + 11 q^{18} + 12 q^{19} + 22 q^{20}+ \cdots - 142 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1295\mathbb{Z}\right)^\times\).

\(n\) \(556\) \(631\) \(1037\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33719 + 2.31608i 0.945538 + 1.63772i 0.754671 + 0.656103i \(0.227796\pi\)
0.190866 + 0.981616i \(0.438870\pi\)
\(3\) 0.134228 0.232489i 0.0774965 0.134228i −0.824673 0.565610i \(-0.808641\pi\)
0.902169 + 0.431382i \(0.141974\pi\)
\(4\) −2.57617 + 4.46205i −1.28808 + 2.23102i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0.717953 0.293103
\(7\) −0.292931 + 2.62948i −0.110718 + 0.993852i
\(8\) −8.43054 −2.98065
\(9\) 1.46397 + 2.53566i 0.487989 + 0.845221i
\(10\) 1.33719 2.31608i 0.422857 0.732410i
\(11\) −0.251910 + 0.436320i −0.0759536 + 0.131556i −0.901501 0.432778i \(-0.857533\pi\)
0.825547 + 0.564333i \(0.190867\pi\)
\(12\) 0.691586 + 1.19786i 0.199644 + 0.345793i
\(13\) 1.35726 0.376436 0.188218 0.982127i \(-0.439729\pi\)
0.188218 + 0.982127i \(0.439729\pi\)
\(14\) −6.48182 + 2.83767i −1.73234 + 0.758400i
\(15\) −0.268456 −0.0693149
\(16\) −6.12093 10.6018i −1.53023 2.65044i
\(17\) −1.70272 + 2.94921i −0.412971 + 0.715287i −0.995213 0.0977283i \(-0.968842\pi\)
0.582242 + 0.813016i \(0.302176\pi\)
\(18\) −3.91521 + 6.78134i −0.922823 + 1.59838i
\(19\) 0.177570 + 0.307561i 0.0407375 + 0.0705594i 0.885675 0.464305i \(-0.153696\pi\)
−0.844938 + 0.534865i \(0.820363\pi\)
\(20\) 5.15233 1.15210
\(21\) 0.572008 + 0.421053i 0.124822 + 0.0918814i
\(22\) −1.34741 −0.287268
\(23\) −3.56975 6.18299i −0.744345 1.28924i −0.950500 0.310724i \(-0.899428\pi\)
0.206155 0.978519i \(-0.433905\pi\)
\(24\) −1.13161 + 1.96001i −0.230990 + 0.400086i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 1.81491 + 3.14352i 0.355934 + 0.616496i
\(27\) 1.59139 0.306262
\(28\) −10.9783 8.08106i −2.07469 1.52718i
\(29\) 0.607107 0.112737 0.0563685 0.998410i \(-0.482048\pi\)
0.0563685 + 0.998410i \(0.482048\pi\)
\(30\) −0.358977 0.621766i −0.0655399 0.113518i
\(31\) −0.696461 + 1.20631i −0.125088 + 0.216659i −0.921767 0.387743i \(-0.873255\pi\)
0.796679 + 0.604402i \(0.206588\pi\)
\(32\) 7.93916 13.7510i 1.40346 2.43086i
\(33\) 0.0676266 + 0.117133i 0.0117723 + 0.0203902i
\(34\) −9.10748 −1.56192
\(35\) 2.42367 1.06106i 0.409674 0.179351i
\(36\) −15.0857 −2.51428
\(37\) −0.500000 0.866025i −0.0821995 0.142374i
\(38\) −0.474892 + 0.822537i −0.0770376 + 0.133433i
\(39\) 0.182182 0.315548i 0.0291724 0.0505281i
\(40\) 4.21527 + 7.30107i 0.666493 + 1.15440i
\(41\) 0.101491 0.0158502 0.00792511 0.999969i \(-0.497477\pi\)
0.00792511 + 0.999969i \(0.497477\pi\)
\(42\) −0.210311 + 1.88785i −0.0324517 + 0.291301i
\(43\) −11.0929 −1.69165 −0.845824 0.533462i \(-0.820891\pi\)
−0.845824 + 0.533462i \(0.820891\pi\)
\(44\) −1.29792 2.24807i −0.195669 0.338909i
\(45\) 1.46397 2.53566i 0.218235 0.377994i
\(46\) 9.54689 16.5357i 1.40761 2.43806i
\(47\) 5.77940 + 10.0102i 0.843012 + 1.46014i 0.887337 + 0.461122i \(0.152553\pi\)
−0.0443247 + 0.999017i \(0.514114\pi\)
\(48\) −3.28639 −0.474350
\(49\) −6.82838 1.54052i −0.975483 0.220074i
\(50\) −2.67438 −0.378215
\(51\) 0.457106 + 0.791731i 0.0640076 + 0.110864i
\(52\) −3.49652 + 6.05615i −0.484880 + 0.839837i
\(53\) −0.0816235 + 0.141376i −0.0112118 + 0.0194195i −0.871577 0.490259i \(-0.836902\pi\)
0.860365 + 0.509678i \(0.170236\pi\)
\(54\) 2.12799 + 3.68579i 0.289583 + 0.501572i
\(55\) 0.503819 0.0679350
\(56\) 2.46957 22.1680i 0.330010 2.96232i
\(57\) 0.0953396 0.0126280
\(58\) 0.811819 + 1.40611i 0.106597 + 0.184631i
\(59\) 5.97878 10.3555i 0.778370 1.34818i −0.154510 0.987991i \(-0.549380\pi\)
0.932881 0.360186i \(-0.117287\pi\)
\(60\) 0.691586 1.19786i 0.0892834 0.154643i
\(61\) 2.88750 + 5.00129i 0.369706 + 0.640350i 0.989519 0.144400i \(-0.0461251\pi\)
−0.619813 + 0.784749i \(0.712792\pi\)
\(62\) −3.72521 −0.473102
\(63\) −7.09633 + 3.10670i −0.894053 + 0.391408i
\(64\) 17.9810 2.24763
\(65\) −0.678629 1.17542i −0.0841736 0.145793i
\(66\) −0.180859 + 0.313258i −0.0222623 + 0.0385594i
\(67\) 7.27675 12.6037i 0.888997 1.53979i 0.0479336 0.998851i \(-0.484736\pi\)
0.841063 0.540937i \(-0.181930\pi\)
\(68\) −8.77300 15.1953i −1.06388 1.84270i
\(69\) −1.91664 −0.230736
\(70\) 5.69840 + 4.19458i 0.681090 + 0.501348i
\(71\) −2.66145 −0.315856 −0.157928 0.987451i \(-0.550481\pi\)
−0.157928 + 0.987451i \(0.550481\pi\)
\(72\) −12.3420 21.3770i −1.45452 2.51931i
\(73\) −5.86820 + 10.1640i −0.686820 + 1.18961i 0.286041 + 0.958217i \(0.407661\pi\)
−0.972861 + 0.231390i \(0.925673\pi\)
\(74\) 1.33719 2.31608i 0.155445 0.269239i
\(75\) 0.134228 + 0.232489i 0.0154993 + 0.0268456i
\(76\) −1.82980 −0.209893
\(77\) −1.07351 0.790205i −0.122337 0.0900522i
\(78\) 0.974448 0.110335
\(79\) 3.42770 + 5.93695i 0.385647 + 0.667959i 0.991859 0.127344i \(-0.0406451\pi\)
−0.606212 + 0.795303i \(0.707312\pi\)
\(80\) −6.12093 + 10.6018i −0.684340 + 1.18531i
\(81\) −4.17829 + 7.23701i −0.464254 + 0.804112i
\(82\) 0.135713 + 0.235062i 0.0149870 + 0.0259582i
\(83\) 8.24563 0.905075 0.452538 0.891745i \(-0.350519\pi\)
0.452538 + 0.891745i \(0.350519\pi\)
\(84\) −3.35235 + 1.46762i −0.365771 + 0.160131i
\(85\) 3.40545 0.369373
\(86\) −14.8333 25.6920i −1.59952 2.77044i
\(87\) 0.0814906 0.141146i 0.00873671 0.0151324i
\(88\) 2.12374 3.67842i 0.226391 0.392121i
\(89\) 5.38411 + 9.32556i 0.570715 + 0.988507i 0.996493 + 0.0836793i \(0.0266671\pi\)
−0.425778 + 0.904828i \(0.640000\pi\)
\(90\) 7.83041 0.825398
\(91\) −0.397583 + 3.56889i −0.0416780 + 0.374121i
\(92\) 36.7851 3.83511
\(93\) 0.186969 + 0.323839i 0.0193878 + 0.0335806i
\(94\) −15.4563 + 26.7712i −1.59420 + 2.76123i
\(95\) 0.177570 0.307561i 0.0182183 0.0315551i
\(96\) −2.13131 3.69154i −0.217526 0.376767i
\(97\) 0.540259 0.0548549 0.0274275 0.999624i \(-0.491268\pi\)
0.0274275 + 0.999624i \(0.491268\pi\)
\(98\) −5.56289 17.8751i −0.561937 1.80566i
\(99\) −1.47515 −0.148258
\(100\) −2.57617 4.46205i −0.257617 0.446205i
\(101\) 3.33691 5.77970i 0.332035 0.575102i −0.650876 0.759184i \(-0.725598\pi\)
0.982911 + 0.184083i \(0.0589314\pi\)
\(102\) −1.22248 + 2.11739i −0.121043 + 0.209653i
\(103\) 6.11027 + 10.5833i 0.602063 + 1.04280i 0.992508 + 0.122177i \(0.0389876\pi\)
−0.390446 + 0.920626i \(0.627679\pi\)
\(104\) −11.4424 −1.12202
\(105\) 0.0786390 0.705900i 0.00767438 0.0688888i
\(106\) −0.436585 −0.0424049
\(107\) −3.09477 5.36030i −0.299182 0.518199i 0.676767 0.736198i \(-0.263381\pi\)
−0.975949 + 0.217998i \(0.930047\pi\)
\(108\) −4.09968 + 7.10085i −0.394491 + 0.683279i
\(109\) −3.49605 + 6.05534i −0.334861 + 0.579997i −0.983458 0.181135i \(-0.942023\pi\)
0.648597 + 0.761132i \(0.275356\pi\)
\(110\) 0.673703 + 1.16689i 0.0642351 + 0.111258i
\(111\) −0.268456 −0.0254807
\(112\) 29.6702 12.9893i 2.80357 1.22737i
\(113\) 12.9216 1.21556 0.607780 0.794105i \(-0.292060\pi\)
0.607780 + 0.794105i \(0.292060\pi\)
\(114\) 0.127487 + 0.220815i 0.0119403 + 0.0206812i
\(115\) −3.56975 + 6.18299i −0.332881 + 0.576567i
\(116\) −1.56401 + 2.70894i −0.145214 + 0.251519i
\(117\) 1.98698 + 3.44155i 0.183696 + 0.318171i
\(118\) 31.9791 2.94391
\(119\) −7.25611 5.34120i −0.665167 0.489627i
\(120\) 2.26323 0.206603
\(121\) 5.37308 + 9.30645i 0.488462 + 0.846041i
\(122\) −7.72227 + 13.3754i −0.699142 + 1.21095i
\(123\) 0.0136229 0.0235956i 0.00122834 0.00212754i
\(124\) −3.58840 6.21528i −0.322247 0.558149i
\(125\) 1.00000 0.0894427
\(126\) −16.6845 12.2814i −1.48638 1.09412i
\(127\) 0.0823130 0.00730410 0.00365205 0.999993i \(-0.498838\pi\)
0.00365205 + 0.999993i \(0.498838\pi\)
\(128\) 8.16579 + 14.1436i 0.721760 + 1.25013i
\(129\) −1.48897 + 2.57898i −0.131097 + 0.227066i
\(130\) 1.81491 3.14352i 0.159179 0.275705i
\(131\) 9.47054 + 16.4035i 0.827445 + 1.43318i 0.900036 + 0.435815i \(0.143540\pi\)
−0.0725915 + 0.997362i \(0.523127\pi\)
\(132\) −0.696869 −0.0606547
\(133\) −0.860743 + 0.376825i −0.0746359 + 0.0326748i
\(134\) 38.9217 3.36232
\(135\) −0.795693 1.37818i −0.0684824 0.118615i
\(136\) 14.3549 24.8634i 1.23092 2.13202i
\(137\) −7.11322 + 12.3205i −0.607724 + 1.05261i 0.383891 + 0.923378i \(0.374584\pi\)
−0.991615 + 0.129230i \(0.958749\pi\)
\(138\) −2.56292 4.43910i −0.218170 0.377881i
\(139\) 6.43564 0.545863 0.272932 0.962033i \(-0.412007\pi\)
0.272932 + 0.962033i \(0.412007\pi\)
\(140\) −1.50928 + 13.5480i −0.127557 + 1.14501i
\(141\) 3.10302 0.261322
\(142\) −3.55887 6.16414i −0.298653 0.517283i
\(143\) −0.341906 + 0.592199i −0.0285917 + 0.0495222i
\(144\) 17.9217 31.0412i 1.49347 2.58677i
\(145\) −0.303553 0.525770i −0.0252087 0.0436628i
\(146\) −31.3876 −2.59766
\(147\) −1.27471 + 1.38075i −0.105137 + 0.113882i
\(148\) 5.15233 0.423519
\(149\) 2.16707 + 3.75348i 0.177533 + 0.307497i 0.941035 0.338309i \(-0.109855\pi\)
−0.763502 + 0.645806i \(0.776522\pi\)
\(150\) −0.358977 + 0.621766i −0.0293103 + 0.0507670i
\(151\) −5.80908 + 10.0616i −0.472736 + 0.818803i −0.999513 0.0312003i \(-0.990067\pi\)
0.526777 + 0.850004i \(0.323400\pi\)
\(152\) −1.49702 2.59291i −0.121424 0.210313i
\(153\) −9.97092 −0.806101
\(154\) 0.394698 3.54299i 0.0318056 0.285502i
\(155\) 1.39292 0.111882
\(156\) 0.938661 + 1.62581i 0.0751530 + 0.130169i
\(157\) −1.86334 + 3.22740i −0.148711 + 0.257574i −0.930751 0.365653i \(-0.880846\pi\)
0.782041 + 0.623228i \(0.214179\pi\)
\(158\) −9.16699 + 15.8777i −0.729287 + 1.26316i
\(159\) 0.0219123 + 0.0379532i 0.00173776 + 0.00300988i
\(160\) −15.8783 −1.25529
\(161\) 17.3038 7.57542i 1.36373 0.597027i
\(162\) −22.3487 −1.75588
\(163\) −1.09128 1.89014i −0.0854753 0.148048i 0.820118 0.572194i \(-0.193908\pi\)
−0.905594 + 0.424146i \(0.860574\pi\)
\(164\) −0.261457 + 0.452857i −0.0204164 + 0.0353622i
\(165\) 0.0676266 0.117133i 0.00526472 0.00911877i
\(166\) 11.0260 + 19.0976i 0.855783 + 1.48226i
\(167\) 11.8566 0.917491 0.458745 0.888568i \(-0.348299\pi\)
0.458745 + 0.888568i \(0.348299\pi\)
\(168\) −4.82234 3.54971i −0.372051 0.273866i
\(169\) −11.1579 −0.858296
\(170\) 4.55374 + 7.88731i 0.349256 + 0.604929i
\(171\) −0.519914 + 0.900518i −0.0397588 + 0.0688643i
\(172\) 28.5771 49.4970i 2.17898 3.77411i
\(173\) −9.33855 16.1748i −0.709997 1.22975i −0.964858 0.262773i \(-0.915363\pi\)
0.254861 0.966978i \(-0.417970\pi\)
\(174\) 0.435875 0.0330436
\(175\) −2.13074 1.56843i −0.161068 0.118562i
\(176\) 6.16768 0.464907
\(177\) −1.60504 2.78000i −0.120642 0.208958i
\(178\) −14.3992 + 24.9401i −1.07926 + 1.86934i
\(179\) −5.72475 + 9.91556i −0.427888 + 0.741124i −0.996685 0.0813538i \(-0.974076\pi\)
0.568797 + 0.822478i \(0.307409\pi\)
\(180\) 7.54284 + 13.0646i 0.562210 + 0.973776i
\(181\) 6.60901 0.491244 0.245622 0.969366i \(-0.421008\pi\)
0.245622 + 0.969366i \(0.421008\pi\)
\(182\) −8.79749 + 3.85145i −0.652114 + 0.285489i
\(183\) 1.55033 0.114604
\(184\) 30.0950 + 52.1260i 2.21863 + 3.84278i
\(185\) −0.500000 + 0.866025i −0.0367607 + 0.0636715i
\(186\) −0.500026 + 0.866071i −0.0366637 + 0.0635034i
\(187\) −0.857866 1.48587i −0.0627334 0.108657i
\(188\) −59.5547 −4.34348
\(189\) −0.466167 + 4.18453i −0.0339087 + 0.304380i
\(190\) 0.949783 0.0689045
\(191\) 5.53658 + 9.58964i 0.400613 + 0.693882i 0.993800 0.111183i \(-0.0354638\pi\)
−0.593187 + 0.805065i \(0.702131\pi\)
\(192\) 2.41356 4.18040i 0.174183 0.301695i
\(193\) 6.56294 11.3673i 0.472411 0.818239i −0.527091 0.849809i \(-0.676717\pi\)
0.999502 + 0.0315696i \(0.0100506\pi\)
\(194\) 0.722429 + 1.25128i 0.0518674 + 0.0898370i
\(195\) −0.364363 −0.0260926
\(196\) 24.4649 26.5000i 1.74749 1.89285i
\(197\) −7.64052 −0.544364 −0.272182 0.962246i \(-0.587745\pi\)
−0.272182 + 0.962246i \(0.587745\pi\)
\(198\) −1.97256 3.41657i −0.140184 0.242805i
\(199\) 11.6111 20.1111i 0.823092 1.42564i −0.0802769 0.996773i \(-0.525580\pi\)
0.903369 0.428864i \(-0.141086\pi\)
\(200\) 4.21527 7.30107i 0.298065 0.516263i
\(201\) −1.95348 3.38354i −0.137788 0.238656i
\(202\) 17.8484 1.25581
\(203\) −0.177841 + 1.59638i −0.0124820 + 0.112044i
\(204\) −4.71032 −0.329789
\(205\) −0.0507454 0.0878937i −0.00354422 0.00613876i
\(206\) −16.3412 + 28.3038i −1.13855 + 1.97202i
\(207\) 10.4520 18.1034i 0.726464 1.25827i
\(208\) −8.30768 14.3893i −0.576034 0.997720i
\(209\) −0.178927 −0.0123766
\(210\) 1.74008 0.761789i 0.120077 0.0525685i
\(211\) 0.763483 0.0525603 0.0262802 0.999655i \(-0.491634\pi\)
0.0262802 + 0.999655i \(0.491634\pi\)
\(212\) −0.420551 0.728416i −0.0288836 0.0500278i
\(213\) −0.357240 + 0.618758i −0.0244777 + 0.0423966i
\(214\) 8.27660 14.3355i 0.565777 0.979954i
\(215\) 5.54644 + 9.60671i 0.378264 + 0.655173i
\(216\) −13.4163 −0.912860
\(217\) −2.96795 2.18470i −0.201477 0.148307i
\(218\) −18.6996 −1.26650
\(219\) 1.57535 + 2.72859i 0.106452 + 0.184381i
\(220\) −1.29792 + 2.24807i −0.0875059 + 0.151565i
\(221\) −2.31104 + 4.00283i −0.155457 + 0.269260i
\(222\) −0.358977 0.621766i −0.0240929 0.0417302i
\(223\) 3.59249 0.240571 0.120286 0.992739i \(-0.461619\pi\)
0.120286 + 0.992739i \(0.461619\pi\)
\(224\) 33.8325 + 24.9040i 2.26053 + 1.66397i
\(225\) −2.92793 −0.195195
\(226\) 17.2786 + 29.9275i 1.14936 + 1.99075i
\(227\) −8.17321 + 14.1564i −0.542475 + 0.939594i 0.456286 + 0.889833i \(0.349179\pi\)
−0.998761 + 0.0497610i \(0.984154\pi\)
\(228\) −0.245611 + 0.425410i −0.0162660 + 0.0281735i
\(229\) 8.16811 + 14.1476i 0.539764 + 0.934898i 0.998916 + 0.0465410i \(0.0148198\pi\)
−0.459153 + 0.888357i \(0.651847\pi\)
\(230\) −19.0938 −1.25901
\(231\) −0.327809 + 0.143511i −0.0215682 + 0.00944235i
\(232\) −5.11824 −0.336029
\(233\) 4.57552 + 7.92504i 0.299752 + 0.519186i 0.976079 0.217415i \(-0.0697626\pi\)
−0.676327 + 0.736602i \(0.736429\pi\)
\(234\) −5.31395 + 9.20402i −0.347383 + 0.601686i
\(235\) 5.77940 10.0102i 0.377006 0.652994i
\(236\) 30.8046 + 53.3552i 2.00521 + 3.47313i
\(237\) 1.84037 0.119545
\(238\) 2.66787 23.9480i 0.172932 1.55232i
\(239\) 28.9577 1.87312 0.936559 0.350509i \(-0.113991\pi\)
0.936559 + 0.350509i \(0.113991\pi\)
\(240\) 1.64320 + 2.84610i 0.106068 + 0.183715i
\(241\) 1.27914 2.21553i 0.0823964 0.142715i −0.821882 0.569657i \(-0.807076\pi\)
0.904279 + 0.426942i \(0.140409\pi\)
\(242\) −14.3697 + 24.8890i −0.923719 + 1.59993i
\(243\) 3.50876 + 6.07736i 0.225087 + 0.389863i
\(244\) −29.7547 −1.90485
\(245\) 2.08006 + 6.68381i 0.132890 + 0.427013i
\(246\) 0.0728657 0.00464575
\(247\) 0.241009 + 0.417440i 0.0153350 + 0.0265611i
\(248\) 5.87154 10.1698i 0.372843 0.645784i
\(249\) 1.10679 1.91702i 0.0701401 0.121486i
\(250\) 1.33719 + 2.31608i 0.0845715 + 0.146482i
\(251\) 21.3295 1.34631 0.673153 0.739503i \(-0.264940\pi\)
0.673153 + 0.739503i \(0.264940\pi\)
\(252\) 4.41907 39.6675i 0.278375 2.49882i
\(253\) 3.59702 0.226143
\(254\) 0.110068 + 0.190644i 0.00690630 + 0.0119621i
\(255\) 0.457106 0.791731i 0.0286251 0.0495801i
\(256\) −3.85740 + 6.68122i −0.241088 + 0.417576i
\(257\) −8.81665 15.2709i −0.549967 0.952571i −0.998276 0.0586925i \(-0.981307\pi\)
0.448309 0.893879i \(-0.352026\pi\)
\(258\) −7.96417 −0.495828
\(259\) 2.42367 1.06106i 0.150599 0.0659308i
\(260\) 6.99304 0.433690
\(261\) 0.888784 + 1.53942i 0.0550143 + 0.0952876i
\(262\) −25.3279 + 43.8691i −1.56476 + 2.71024i
\(263\) 4.49855 7.79172i 0.277393 0.480458i −0.693343 0.720607i \(-0.743863\pi\)
0.970736 + 0.240149i \(0.0771964\pi\)
\(264\) −0.570129 0.987492i −0.0350890 0.0607759i
\(265\) 0.163247 0.0100282
\(266\) −2.02374 1.48967i −0.124083 0.0913374i
\(267\) 2.89079 0.176913
\(268\) 37.4922 + 64.9385i 2.29020 + 3.96675i
\(269\) 0.257790 0.446505i 0.0157177 0.0272239i −0.858060 0.513550i \(-0.828330\pi\)
0.873777 + 0.486326i \(0.161663\pi\)
\(270\) 2.12799 3.68579i 0.129505 0.224310i
\(271\) −6.38318 11.0560i −0.387751 0.671604i 0.604396 0.796684i \(-0.293415\pi\)
−0.992147 + 0.125080i \(0.960081\pi\)
\(272\) 41.6890 2.52777
\(273\) 0.776362 + 0.571478i 0.0469876 + 0.0345874i
\(274\) −38.0470 −2.29850
\(275\) −0.251910 0.436320i −0.0151907 0.0263111i
\(276\) 4.93758 8.55215i 0.297208 0.514779i
\(277\) −2.40819 + 4.17111i −0.144694 + 0.250618i −0.929259 0.369429i \(-0.879553\pi\)
0.784565 + 0.620047i \(0.212886\pi\)
\(278\) 8.60568 + 14.9055i 0.516134 + 0.893971i
\(279\) −4.07838 −0.244166
\(280\) −20.4328 + 8.94528i −1.22109 + 0.534583i
\(281\) −31.0144 −1.85017 −0.925083 0.379766i \(-0.876005\pi\)
−0.925083 + 0.379766i \(0.876005\pi\)
\(282\) 4.14934 + 7.18687i 0.247090 + 0.427972i
\(283\) 11.5717 20.0427i 0.687864 1.19142i −0.284664 0.958627i \(-0.591882\pi\)
0.972528 0.232788i \(-0.0747848\pi\)
\(284\) 6.85633 11.8755i 0.406848 0.704682i
\(285\) −0.0476698 0.0825665i −0.00282372 0.00489082i
\(286\) −1.82878 −0.108138
\(287\) −0.0297299 + 0.266869i −0.00175490 + 0.0157528i
\(288\) 46.4907 2.73949
\(289\) 2.70146 + 4.67906i 0.158909 + 0.275239i
\(290\) 0.811819 1.40611i 0.0476716 0.0825697i
\(291\) 0.0725177 0.125604i 0.00425106 0.00736306i
\(292\) −30.2349 52.3684i −1.76936 3.06463i
\(293\) 11.9847 0.700153 0.350076 0.936721i \(-0.386156\pi\)
0.350076 + 0.936721i \(0.386156\pi\)
\(294\) −4.90246 1.10602i −0.285917 0.0645044i
\(295\) −11.9576 −0.696196
\(296\) 4.21527 + 7.30107i 0.245008 + 0.424366i
\(297\) −0.400886 + 0.694355i −0.0232618 + 0.0402905i
\(298\) −5.79558 + 10.0382i −0.335729 + 0.581500i
\(299\) −4.84508 8.39192i −0.280198 0.485317i
\(300\) −1.38317 −0.0798575
\(301\) 3.24945 29.1686i 0.187295 1.68125i
\(302\) −31.0714 −1.78796
\(303\) −0.895813 1.55159i −0.0514631 0.0891367i
\(304\) 2.17379 3.76512i 0.124676 0.215944i
\(305\) 2.88750 5.00129i 0.165338 0.286373i
\(306\) −13.3330 23.0935i −0.762199 1.32017i
\(307\) −29.6202 −1.69051 −0.845257 0.534360i \(-0.820553\pi\)
−0.845257 + 0.534360i \(0.820553\pi\)
\(308\) 6.29146 2.75434i 0.358489 0.156943i
\(309\) 3.28067 0.186631
\(310\) 1.86260 + 3.22612i 0.105789 + 0.183232i
\(311\) 14.1257 24.4664i 0.800993 1.38736i −0.117970 0.993017i \(-0.537639\pi\)
0.918963 0.394343i \(-0.129028\pi\)
\(312\) −1.53589 + 2.66024i −0.0869527 + 0.150607i
\(313\) −12.3972 21.4727i −0.700734 1.21371i −0.968209 0.250142i \(-0.919523\pi\)
0.267475 0.963565i \(-0.413811\pi\)
\(314\) −9.96657 −0.562446
\(315\) 6.23865 + 4.59225i 0.351508 + 0.258744i
\(316\) −35.3213 −1.98698
\(317\) −11.2329 19.4559i −0.630901 1.09275i −0.987368 0.158444i \(-0.949352\pi\)
0.356467 0.934308i \(-0.383981\pi\)
\(318\) −0.0586019 + 0.101501i −0.00328623 + 0.00569192i
\(319\) −0.152936 + 0.264893i −0.00856278 + 0.0148312i
\(320\) −8.99052 15.5720i −0.502586 0.870504i
\(321\) −1.66162 −0.0927423
\(322\) 40.6838 + 29.9472i 2.26722 + 1.66889i
\(323\) −1.20941 −0.0672936
\(324\) −21.5279 37.2875i −1.19600 2.07153i
\(325\) −0.678629 + 1.17542i −0.0376436 + 0.0652006i
\(326\) 2.91849 5.05497i 0.161640 0.279969i
\(327\) 0.938535 + 1.62559i 0.0519011 + 0.0898954i
\(328\) −0.855624 −0.0472439
\(329\) −28.0147 + 12.2645i −1.54450 + 0.676166i
\(330\) 0.361719 0.0199120
\(331\) −7.05425 12.2183i −0.387737 0.671580i 0.604408 0.796675i \(-0.293410\pi\)
−0.992145 + 0.125095i \(0.960076\pi\)
\(332\) −21.2421 + 36.7924i −1.16581 + 2.01925i
\(333\) 1.46397 2.53566i 0.0802248 0.138953i
\(334\) 15.8545 + 27.4609i 0.867522 + 1.50259i
\(335\) −14.5535 −0.795143
\(336\) 0.962688 8.64152i 0.0525189 0.471434i
\(337\) −21.4756 −1.16985 −0.584924 0.811088i \(-0.698876\pi\)
−0.584924 + 0.811088i \(0.698876\pi\)
\(338\) −14.9202 25.8425i −0.811551 1.40565i
\(339\) 1.73444 3.00413i 0.0942017 0.163162i
\(340\) −8.77300 + 15.1953i −0.475783 + 0.824080i
\(341\) −0.350890 0.607760i −0.0190018 0.0329121i
\(342\) −2.78090 −0.150374
\(343\) 6.05101 17.5039i 0.326724 0.945120i
\(344\) 93.5190 5.04221
\(345\) 0.958320 + 1.65986i 0.0515942 + 0.0893638i
\(346\) 24.9749 43.2577i 1.34266 2.32555i
\(347\) −2.19584 + 3.80330i −0.117879 + 0.204172i −0.918927 0.394428i \(-0.870943\pi\)
0.801048 + 0.598600i \(0.204276\pi\)
\(348\) 0.419867 + 0.727230i 0.0225072 + 0.0389836i
\(349\) −23.8988 −1.27927 −0.639637 0.768677i \(-0.720915\pi\)
−0.639637 + 0.768677i \(0.720915\pi\)
\(350\) 0.783411 7.03225i 0.0418751 0.375890i
\(351\) 2.15992 0.115288
\(352\) 3.99991 + 6.92804i 0.213196 + 0.369266i
\(353\) −10.9603 + 18.9838i −0.583357 + 1.01040i 0.411721 + 0.911310i \(0.364928\pi\)
−0.995078 + 0.0990938i \(0.968406\pi\)
\(354\) 4.29248 7.43480i 0.228143 0.395155i
\(355\) 1.33072 + 2.30488i 0.0706275 + 0.122330i
\(356\) −55.4815 −2.94051
\(357\) −2.21574 + 0.970031i −0.117270 + 0.0513395i
\(358\) −30.6204 −1.61834
\(359\) 9.05261 + 15.6796i 0.477778 + 0.827536i 0.999676 0.0254721i \(-0.00810891\pi\)
−0.521897 + 0.853008i \(0.674776\pi\)
\(360\) −12.3420 + 21.3770i −0.650482 + 1.12667i
\(361\) 9.43694 16.3453i 0.496681 0.860277i
\(362\) 8.83752 + 15.3070i 0.464490 + 0.804520i
\(363\) 2.88487 0.151416
\(364\) −14.9003 10.9681i −0.780989 0.574884i
\(365\) 11.7364 0.614311
\(366\) 2.07309 + 3.59069i 0.108362 + 0.187689i
\(367\) −5.76353 + 9.98272i −0.300854 + 0.521094i −0.976330 0.216288i \(-0.930605\pi\)
0.675476 + 0.737382i \(0.263938\pi\)
\(368\) −43.7004 + 75.6913i −2.27804 + 3.94568i
\(369\) 0.148579 + 0.257347i 0.00773472 + 0.0133969i
\(370\) −2.67438 −0.139035
\(371\) −0.347836 0.256041i −0.0180588 0.0132930i
\(372\) −1.92665 −0.0998921
\(373\) 9.77398 + 16.9290i 0.506077 + 0.876552i 0.999975 + 0.00703180i \(0.00223831\pi\)
−0.493898 + 0.869520i \(0.664428\pi\)
\(374\) 2.29426 3.97378i 0.118634 0.205479i
\(375\) 0.134228 0.232489i 0.00693149 0.0120057i
\(376\) −48.7235 84.3915i −2.51272 4.35216i
\(377\) 0.824001 0.0424382
\(378\) −10.3151 + 4.51583i −0.530550 + 0.232269i
\(379\) −14.0880 −0.723650 −0.361825 0.932246i \(-0.617846\pi\)
−0.361825 + 0.932246i \(0.617846\pi\)
\(380\) 0.914902 + 1.58466i 0.0469335 + 0.0812912i
\(381\) 0.0110487 0.0191369i 0.000566042 0.000980413i
\(382\) −14.8069 + 25.6464i −0.757589 + 1.31218i
\(383\) −9.43271 16.3379i −0.481989 0.834829i 0.517797 0.855503i \(-0.326752\pi\)
−0.999786 + 0.0206740i \(0.993419\pi\)
\(384\) 4.38430 0.223735
\(385\) −0.147584 + 1.32479i −0.00752160 + 0.0675173i
\(386\) 35.1036 1.78673
\(387\) −16.2396 28.1278i −0.825505 1.42982i
\(388\) −1.39180 + 2.41066i −0.0706577 + 0.122383i
\(389\) 16.4616 28.5124i 0.834637 1.44563i −0.0596882 0.998217i \(-0.519011\pi\)
0.894325 0.447417i \(-0.147656\pi\)
\(390\) −0.487224 0.843897i −0.0246715 0.0427324i
\(391\) 24.3132 1.22957
\(392\) 57.5670 + 12.9874i 2.90757 + 0.655962i
\(393\) 5.08484 0.256496
\(394\) −10.2168 17.6961i −0.514717 0.891516i
\(395\) 3.42770 5.93695i 0.172466 0.298721i
\(396\) 3.80023 6.58219i 0.190969 0.330767i
\(397\) 1.44547 + 2.50362i 0.0725459 + 0.125653i 0.900016 0.435856i \(-0.143554\pi\)
−0.827471 + 0.561509i \(0.810221\pi\)
\(398\) 62.1053 3.11306
\(399\) −0.0279279 + 0.250694i −0.00139815 + 0.0125504i
\(400\) 12.2419 0.612093
\(401\) 8.81670 + 15.2710i 0.440285 + 0.762596i 0.997710 0.0676311i \(-0.0215441\pi\)
−0.557425 + 0.830227i \(0.688211\pi\)
\(402\) 5.22437 9.04887i 0.260568 0.451317i
\(403\) −0.945277 + 1.63727i −0.0470876 + 0.0815581i
\(404\) 17.1929 + 29.7789i 0.855378 + 1.48156i
\(405\) 8.35658 0.415242
\(406\) −3.93516 + 1.72277i −0.195298 + 0.0854997i
\(407\) 0.503819 0.0249734
\(408\) −3.85365 6.67472i −0.190784 0.330448i
\(409\) 4.64571 8.04660i 0.229715 0.397879i −0.728008 0.685568i \(-0.759554\pi\)
0.957724 + 0.287690i \(0.0928871\pi\)
\(410\) 0.135713 0.235062i 0.00670238 0.0116089i
\(411\) 1.90958 + 3.30750i 0.0941929 + 0.163147i
\(412\) −62.9642 −3.10203
\(413\) 25.4784 + 18.7546i 1.25371 + 0.922852i
\(414\) 55.9053 2.74760
\(415\) −4.12281 7.14092i −0.202381 0.350534i
\(416\) 10.7755 18.6637i 0.528312 0.915063i
\(417\) 0.863841 1.49622i 0.0423025 0.0732701i
\(418\) −0.239260 0.414410i −0.0117026 0.0202695i
\(419\) 3.99338 0.195089 0.0975446 0.995231i \(-0.468901\pi\)
0.0975446 + 0.995231i \(0.468901\pi\)
\(420\) 2.94717 + 2.16941i 0.143807 + 0.105856i
\(421\) 19.5403 0.952335 0.476167 0.879355i \(-0.342026\pi\)
0.476167 + 0.879355i \(0.342026\pi\)
\(422\) 1.02092 + 1.76829i 0.0496978 + 0.0860791i
\(423\) −16.9217 + 29.3092i −0.822760 + 1.42506i
\(424\) 0.688131 1.19188i 0.0334186 0.0578827i
\(425\) −1.70272 2.94921i −0.0825943 0.143057i
\(426\) −1.91080 −0.0925784
\(427\) −13.9967 + 6.12759i −0.677346 + 0.296535i
\(428\) 31.8905 1.54149
\(429\) 0.0917867 + 0.158979i 0.00443150 + 0.00767559i
\(430\) −14.8333 + 25.6920i −0.715326 + 1.23898i
\(431\) −0.416577 + 0.721533i −0.0200658 + 0.0347550i −0.875884 0.482522i \(-0.839721\pi\)
0.855818 + 0.517277i \(0.173054\pi\)
\(432\) −9.74076 16.8715i −0.468653 0.811730i
\(433\) 2.54002 0.122066 0.0610328 0.998136i \(-0.480561\pi\)
0.0610328 + 0.998136i \(0.480561\pi\)
\(434\) 1.09123 9.79538i 0.0523807 0.470193i
\(435\) −0.162981 −0.00781435
\(436\) −18.0128 31.1991i −0.862658 1.49417i
\(437\) 1.26777 2.19583i 0.0606455 0.105041i
\(438\) −4.21309 + 7.29729i −0.201309 + 0.348678i
\(439\) 5.74097 + 9.94364i 0.274001 + 0.474584i 0.969883 0.243573i \(-0.0783194\pi\)
−0.695881 + 0.718157i \(0.744986\pi\)
\(440\) −4.24747 −0.202490
\(441\) −6.09029 19.5697i −0.290014 0.931892i
\(442\) −12.3612 −0.587962
\(443\) −0.460287 0.797241i −0.0218689 0.0378780i 0.854884 0.518819i \(-0.173628\pi\)
−0.876753 + 0.480941i \(0.840295\pi\)
\(444\) 0.691586 1.19786i 0.0328212 0.0568480i
\(445\) 5.38411 9.32556i 0.255231 0.442074i
\(446\) 4.80385 + 8.32052i 0.227469 + 0.393988i
\(447\) 1.16353 0.0550329
\(448\) −5.26721 + 47.2809i −0.248852 + 2.23381i
\(449\) 13.0323 0.615034 0.307517 0.951543i \(-0.400502\pi\)
0.307517 + 0.951543i \(0.400502\pi\)
\(450\) −3.91521 6.78134i −0.184565 0.319675i
\(451\) −0.0255665 + 0.0442826i −0.00120388 + 0.00208518i
\(452\) −33.2881 + 57.6568i −1.56574 + 2.71195i
\(453\) 1.55948 + 2.70110i 0.0732708 + 0.126909i
\(454\) −43.7166 −2.05172
\(455\) 3.28954 1.44013i 0.154216 0.0675142i
\(456\) −0.803765 −0.0376397
\(457\) 19.3472 + 33.5104i 0.905025 + 1.56755i 0.820883 + 0.571096i \(0.193482\pi\)
0.0841420 + 0.996454i \(0.473185\pi\)
\(458\) −21.8447 + 37.8361i −1.02073 + 1.76796i
\(459\) −2.70969 + 4.69333i −0.126478 + 0.219066i
\(460\) −18.3926 31.8568i −0.857557 1.48533i
\(461\) 8.30974 0.387023 0.193512 0.981098i \(-0.438012\pi\)
0.193512 + 0.981098i \(0.438012\pi\)
\(462\) −0.770727 0.567330i −0.0358575 0.0263946i
\(463\) −1.28979 −0.0599415 −0.0299707 0.999551i \(-0.509541\pi\)
−0.0299707 + 0.999551i \(0.509541\pi\)
\(464\) −3.71606 6.43640i −0.172514 0.298802i
\(465\) 0.186969 0.323839i 0.00867047 0.0150177i
\(466\) −12.2367 + 21.1946i −0.566854 + 0.981820i
\(467\) −10.1906 17.6507i −0.471566 0.816776i 0.527905 0.849304i \(-0.322978\pi\)
−0.999471 + 0.0325272i \(0.989644\pi\)
\(468\) −20.4751 −0.946464
\(469\) 31.0097 + 22.8261i 1.43189 + 1.05401i
\(470\) 30.9127 1.42589
\(471\) 0.500224 + 0.866413i 0.0230491 + 0.0399222i
\(472\) −50.4043 + 87.3029i −2.32005 + 4.01844i
\(473\) 2.79440 4.84005i 0.128487 0.222546i
\(474\) 2.46093 + 4.26246i 0.113034 + 0.195781i
\(475\) −0.355141 −0.0162950
\(476\) 42.5257 18.6173i 1.94916 0.853323i
\(477\) −0.477976 −0.0218850
\(478\) 38.7220 + 67.0685i 1.77110 + 3.06764i
\(479\) 4.17229 7.22662i 0.190637 0.330193i −0.754825 0.655927i \(-0.772278\pi\)
0.945461 + 0.325734i \(0.105611\pi\)
\(480\) −2.13131 + 3.69154i −0.0972807 + 0.168495i
\(481\) −0.678629 1.17542i −0.0309428 0.0535945i
\(482\) 6.84181 0.311636
\(483\) 0.561444 5.03978i 0.0255466 0.229318i
\(484\) −55.3678 −2.51672
\(485\) −0.270129 0.467878i −0.0122659 0.0212452i
\(486\) −9.38379 + 16.2532i −0.425657 + 0.737260i
\(487\) −13.3472 + 23.1180i −0.604817 + 1.04757i 0.387263 + 0.921969i \(0.373421\pi\)
−0.992080 + 0.125605i \(0.959913\pi\)
\(488\) −24.3432 42.1636i −1.10196 1.90866i
\(489\) −0.585918 −0.0264961
\(490\) −12.6988 + 13.7551i −0.573675 + 0.621394i
\(491\) 39.0928 1.76423 0.882116 0.471031i \(-0.156118\pi\)
0.882116 + 0.471031i \(0.156118\pi\)
\(492\) 0.0701897 + 0.121572i 0.00316440 + 0.00548089i
\(493\) −1.03374 + 1.79048i −0.0465571 + 0.0806393i
\(494\) −0.644551 + 1.11639i −0.0289997 + 0.0502290i
\(495\) 0.737574 + 1.27752i 0.0331515 + 0.0574201i
\(496\) 17.0519 0.765655
\(497\) 0.779621 6.99824i 0.0349708 0.313914i
\(498\) 5.91998 0.265280
\(499\) −19.1260 33.1272i −0.856196 1.48298i −0.875531 0.483163i \(-0.839488\pi\)
0.0193342 0.999813i \(-0.493845\pi\)
\(500\) −2.57617 + 4.46205i −0.115210 + 0.199549i
\(501\) 1.59148 2.75653i 0.0711023 0.123153i
\(502\) 28.5216 + 49.4009i 1.27298 + 2.20487i
\(503\) 6.06642 0.270488 0.135244 0.990812i \(-0.456818\pi\)
0.135244 + 0.990812i \(0.456818\pi\)
\(504\) 59.8259 26.1912i 2.66486 1.16665i
\(505\) −6.67382 −0.296981
\(506\) 4.80991 + 8.33101i 0.213827 + 0.370359i
\(507\) −1.49769 + 2.59408i −0.0665149 + 0.115207i
\(508\) −0.212052 + 0.367285i −0.00940828 + 0.0162956i
\(509\) 3.64370 + 6.31107i 0.161504 + 0.279733i 0.935408 0.353569i \(-0.115032\pi\)
−0.773904 + 0.633303i \(0.781699\pi\)
\(510\) 2.44495 0.108264
\(511\) −25.0071 18.4077i −1.10625 0.814308i
\(512\) 12.0308 0.531691
\(513\) 0.282583 + 0.489449i 0.0124764 + 0.0216097i
\(514\) 23.5791 40.8402i 1.04003 1.80138i
\(515\) 6.11027 10.5833i 0.269251 0.466356i
\(516\) −7.67168 13.2877i −0.337727 0.584960i
\(517\) −5.82355 −0.256119
\(518\) 5.69840 + 4.19458i 0.250374 + 0.184299i
\(519\) −5.01397 −0.220089
\(520\) 5.72121 + 9.90943i 0.250892 + 0.434557i
\(521\) −7.61014 + 13.1811i −0.333406 + 0.577476i −0.983177 0.182653i \(-0.941531\pi\)
0.649771 + 0.760130i \(0.274865\pi\)
\(522\) −2.37695 + 4.11700i −0.104036 + 0.180196i
\(523\) 1.98645 + 3.44064i 0.0868616 + 0.150449i 0.906183 0.422886i \(-0.138983\pi\)
−0.819321 + 0.573335i \(0.805650\pi\)
\(524\) −97.5907 −4.26327
\(525\) −0.650647 + 0.284847i −0.0283966 + 0.0124317i
\(526\) 24.0617 1.04914
\(527\) −2.37176 4.10801i −0.103316 0.178948i
\(528\) 0.827875 1.43392i 0.0360286 0.0624034i
\(529\) −13.9863 + 24.2250i −0.608099 + 1.05326i
\(530\) 0.218293 + 0.378094i 0.00948202 + 0.0164233i
\(531\) 35.0109 1.51934
\(532\) 0.536007 4.81144i 0.0232388 0.208602i
\(533\) 0.137749 0.00596659
\(534\) 3.86554 + 6.69532i 0.167278 + 0.289735i
\(535\) −3.09477 + 5.36030i −0.133798 + 0.231746i
\(536\) −61.3470 + 106.256i −2.64979 + 4.58956i
\(537\) 1.53684 + 2.66189i 0.0663196 + 0.114869i
\(538\) 1.37886 0.0594468
\(539\) 2.39230 2.59129i 0.103043 0.111615i
\(540\) 8.19935 0.352844
\(541\) 11.1449 + 19.3035i 0.479155 + 0.829921i 0.999714 0.0239049i \(-0.00760991\pi\)
−0.520559 + 0.853825i \(0.674277\pi\)
\(542\) 17.0711 29.5680i 0.733266 1.27005i
\(543\) 0.887113 1.53653i 0.0380697 0.0659386i
\(544\) 27.0364 + 46.8285i 1.15918 + 2.00775i
\(545\) 6.99211 0.299509
\(546\) −0.285446 + 2.56230i −0.0122160 + 0.109656i
\(547\) −40.2534 −1.72111 −0.860556 0.509356i \(-0.829884\pi\)
−0.860556 + 0.509356i \(0.829884\pi\)
\(548\) −36.6497 63.4791i −1.56560 2.71169i
\(549\) −8.45439 + 14.6434i −0.360825 + 0.624967i
\(550\) 0.673703 1.16689i 0.0287268 0.0497563i
\(551\) 0.107804 + 0.186722i 0.00459262 + 0.00795465i
\(552\) 16.1583 0.687744
\(553\) −16.6152 + 7.27397i −0.706551 + 0.309321i
\(554\) −12.8809 −0.547255
\(555\) 0.134228 + 0.232489i 0.00569765 + 0.00986862i
\(556\) −16.5793 + 28.7161i −0.703117 + 1.21783i
\(557\) 11.6081 20.1058i 0.491852 0.851912i −0.508104 0.861296i \(-0.669654\pi\)
0.999956 + 0.00938350i \(0.00298690\pi\)
\(558\) −5.45358 9.44587i −0.230868 0.399876i
\(559\) −15.0559 −0.636797
\(560\) −26.0841 19.2005i −1.10226 0.811368i
\(561\) −0.460598 −0.0194465
\(562\) −41.4722 71.8320i −1.74940 3.03005i
\(563\) 6.50185 11.2615i 0.274020 0.474617i −0.695867 0.718171i \(-0.744980\pi\)
0.969888 + 0.243553i \(0.0783131\pi\)
\(564\) −7.99390 + 13.8458i −0.336604 + 0.583015i
\(565\) −6.46079 11.1904i −0.271808 0.470785i
\(566\) 61.8941 2.60160
\(567\) −17.8057 13.1067i −0.747767 0.550429i
\(568\) 22.4375 0.941455
\(569\) 9.31604 + 16.1359i 0.390549 + 0.676450i 0.992522 0.122066i \(-0.0389520\pi\)
−0.601973 + 0.798516i \(0.705619\pi\)
\(570\) 0.127487 0.220815i 0.00533986 0.00924890i
\(571\) 20.7505 35.9409i 0.868381 1.50408i 0.00473039 0.999989i \(-0.498494\pi\)
0.863651 0.504091i \(-0.168172\pi\)
\(572\) −1.76162 3.05121i −0.0736568 0.127577i
\(573\) 2.97265 0.124184
\(574\) −0.657845 + 0.287998i −0.0274579 + 0.0120208i
\(575\) 7.13951 0.297738
\(576\) 26.3236 + 45.5939i 1.09682 + 1.89974i
\(577\) 20.6185 35.7124i 0.858361 1.48673i −0.0151298 0.999886i \(-0.504816\pi\)
0.873491 0.486840i \(-0.161851\pi\)
\(578\) −7.22474 + 12.5136i −0.300509 + 0.520498i
\(579\) −1.76186 3.05163i −0.0732203 0.126821i
\(580\) 3.12802 0.129884
\(581\) −2.41540 + 21.6818i −0.100208 + 0.899511i
\(582\) 0.387880 0.0160782
\(583\) −0.0411235 0.0712280i −0.00170316 0.00294996i
\(584\) 49.4721 85.6882i 2.04717 3.54580i
\(585\) 1.98698 3.44155i 0.0821515 0.142291i
\(586\) 16.0258 + 27.7575i 0.662021 + 1.14665i
\(587\) −2.42823 −0.100224 −0.0501118 0.998744i \(-0.515958\pi\)
−0.0501118 + 0.998744i \(0.515958\pi\)
\(588\) −2.87709 9.24486i −0.118649 0.381252i
\(589\) −0.494683 −0.0203831
\(590\) −15.9895 27.6947i −0.658279 1.14017i
\(591\) −1.02557 + 1.77634i −0.0421863 + 0.0730688i
\(592\) −6.12093 + 10.6018i −0.251569 + 0.435729i
\(593\) −8.80313 15.2475i −0.361501 0.626138i 0.626707 0.779255i \(-0.284402\pi\)
−0.988208 + 0.153117i \(0.951069\pi\)
\(594\) −2.14425 −0.0879794
\(595\) −0.997563 + 8.95458i −0.0408961 + 0.367102i
\(596\) −22.3309 −0.914711
\(597\) −3.11708 5.39893i −0.127573 0.220964i
\(598\) 12.9576 22.4432i 0.529875 0.917771i
\(599\) 2.44622 4.23698i 0.0999499 0.173118i −0.811714 0.584055i \(-0.801465\pi\)
0.911664 + 0.410937i \(0.134798\pi\)
\(600\) −1.13161 1.96001i −0.0461979 0.0800172i
\(601\) 3.92552 0.160125 0.0800627 0.996790i \(-0.474488\pi\)
0.0800627 + 0.996790i \(0.474488\pi\)
\(602\) 71.9020 31.4780i 2.93051 1.28295i
\(603\) 42.6117 1.73528
\(604\) −29.9303 51.8408i −1.21785 2.10937i
\(605\) 5.37308 9.30645i 0.218447 0.378361i
\(606\) 2.39575 4.14956i 0.0973206 0.168564i
\(607\) 17.8875 + 30.9821i 0.726032 + 1.25752i 0.958548 + 0.284932i \(0.0919710\pi\)
−0.232516 + 0.972593i \(0.574696\pi\)
\(608\) 5.63905 0.228693
\(609\) 0.347270 + 0.255624i 0.0140721 + 0.0103584i
\(610\) 15.4445 0.625331
\(611\) 7.84413 + 13.5864i 0.317340 + 0.549648i
\(612\) 25.6867 44.4907i 1.03833 1.79843i
\(613\) −13.6005 + 23.5567i −0.549318 + 0.951447i 0.449003 + 0.893530i \(0.351779\pi\)
−0.998321 + 0.0579169i \(0.981554\pi\)
\(614\) −39.6079 68.6029i −1.59844 2.76859i
\(615\) −0.0272458 −0.00109866
\(616\) 9.05024 + 6.66186i 0.364645 + 0.268414i
\(617\) −13.4525 −0.541579 −0.270790 0.962639i \(-0.587285\pi\)
−0.270790 + 0.962639i \(0.587285\pi\)
\(618\) 4.38689 + 7.59831i 0.176467 + 0.305649i
\(619\) 4.03392 6.98695i 0.162137 0.280829i −0.773498 0.633799i \(-0.781495\pi\)
0.935635 + 0.352970i \(0.114828\pi\)
\(620\) −3.58840 + 6.21528i −0.144113 + 0.249612i
\(621\) −5.68086 9.83953i −0.227965 0.394847i
\(622\) 75.5549 3.02948
\(623\) −26.0986 + 11.4257i −1.04562 + 0.457761i
\(624\) −4.46048 −0.178562
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 33.1550 57.4261i 1.32514 2.29521i
\(627\) −0.0240170 + 0.0415986i −0.000959145 + 0.00166129i
\(628\) −9.60054 16.6286i −0.383103 0.663554i
\(629\) 3.40545 0.135784
\(630\) −2.29377 + 20.5900i −0.0913861 + 0.820323i
\(631\) −7.43331 −0.295916 −0.147958 0.988994i \(-0.547270\pi\)
−0.147958 + 0.988994i \(0.547270\pi\)
\(632\) −28.8974 50.0517i −1.14948 1.99095i
\(633\) 0.102481 0.177502i 0.00407324 0.00705506i
\(634\) 30.0410 52.0325i 1.19308 2.06648i
\(635\) −0.0411565 0.0712852i −0.00163325 0.00282887i
\(636\) −0.225799 −0.00895350
\(637\) −9.26788 2.09088i −0.367207 0.0828436i
\(638\) −0.818020 −0.0323857
\(639\) −3.89627 6.74853i −0.154134 0.266968i
\(640\) 8.16579 14.1436i 0.322781 0.559073i
\(641\) 15.7068 27.2050i 0.620381 1.07453i −0.369033 0.929416i \(-0.620311\pi\)
0.989415 0.145116i \(-0.0463555\pi\)
\(642\) −2.22190 3.84844i −0.0876914 0.151886i
\(643\) 45.7974 1.80607 0.903036 0.429564i \(-0.141333\pi\)
0.903036 + 0.429564i \(0.141333\pi\)
\(644\) −10.7755 + 96.7259i −0.424614 + 3.81153i
\(645\) 2.97795 0.117256
\(646\) −1.61722 2.80111i −0.0636287 0.110208i
\(647\) 23.8153 41.2493i 0.936275 1.62168i 0.163932 0.986472i \(-0.447582\pi\)
0.772344 0.635205i \(-0.219084\pi\)
\(648\) 35.2253 61.0119i 1.38378 2.39677i
\(649\) 3.01222 + 5.21732i 0.118240 + 0.204798i
\(650\) −3.62983 −0.142374
\(651\) −0.906300 + 0.396769i −0.0355207 + 0.0155506i
\(652\) 11.2452 0.440397
\(653\) −0.917614 1.58935i −0.0359090 0.0621962i 0.847512 0.530776i \(-0.178099\pi\)
−0.883421 + 0.468579i \(0.844766\pi\)
\(654\) −2.51000 + 4.34746i −0.0981489 + 0.169999i
\(655\) 9.47054 16.4035i 0.370045 0.640936i
\(656\) −0.621218 1.07598i −0.0242545 0.0420100i
\(657\) −34.3634 −1.34064
\(658\) −65.8667 48.4843i −2.56775 1.89011i
\(659\) −9.57745 −0.373085 −0.186542 0.982447i \(-0.559728\pi\)
−0.186542 + 0.982447i \(0.559728\pi\)
\(660\) 0.348435 + 0.603506i 0.0135628 + 0.0234915i
\(661\) −12.5837 + 21.7957i −0.489451 + 0.847754i −0.999926 0.0121386i \(-0.996136\pi\)
0.510476 + 0.859892i \(0.329469\pi\)
\(662\) 18.8658 32.6765i 0.733239 1.27001i
\(663\) 0.620411 + 1.07458i 0.0240948 + 0.0417333i
\(664\) −69.5151 −2.69771
\(665\) 0.756711 + 0.557013i 0.0293440 + 0.0216000i
\(666\) 7.83041 0.303422
\(667\) −2.16722 3.75374i −0.0839152 0.145345i
\(668\) −30.5445 + 52.9047i −1.18180 + 2.04694i
\(669\) 0.482213 0.835217i 0.0186434 0.0322913i
\(670\) −19.4608 33.7071i −0.751837 1.30222i
\(671\) −2.90955 −0.112322
\(672\) 10.3312 4.52289i 0.398534 0.174474i
\(673\) −7.91373 −0.305052 −0.152526 0.988299i \(-0.548741\pi\)
−0.152526 + 0.988299i \(0.548741\pi\)
\(674\) −28.7170 49.7392i −1.10614 1.91588i
\(675\) −0.795693 + 1.37818i −0.0306262 + 0.0530462i
\(676\) 28.7445 49.7869i 1.10556 1.91488i
\(677\) 14.9167 + 25.8365i 0.573296 + 0.992978i 0.996224 + 0.0868152i \(0.0276690\pi\)
−0.422928 + 0.906163i \(0.638998\pi\)
\(678\) 9.27710 0.356285
\(679\) −0.158259 + 1.42060i −0.00607341 + 0.0545177i
\(680\) −28.7098 −1.10097
\(681\) 2.19414 + 3.80037i 0.0840798 + 0.145630i
\(682\) 0.938416 1.62538i 0.0359338 0.0622392i
\(683\) −11.1594 + 19.3287i −0.427003 + 0.739591i −0.996605 0.0823299i \(-0.973764\pi\)
0.569602 + 0.821920i \(0.307097\pi\)
\(684\) −2.67877 4.63977i −0.102425 0.177406i
\(685\) 14.2264 0.543565
\(686\) 48.6318 9.39137i 1.85677 0.358564i
\(687\) 4.38555 0.167319
\(688\) 67.8987 + 117.604i 2.58861 + 4.48361i
\(689\) −0.110784 + 0.191884i −0.00422054 + 0.00731019i
\(690\) −2.56292 + 4.43910i −0.0975686 + 0.168994i
\(691\) −8.70016 15.0691i −0.330970 0.573256i 0.651732 0.758449i \(-0.274042\pi\)
−0.982702 + 0.185192i \(0.940709\pi\)
\(692\) 96.2306 3.65814
\(693\) 0.432117 3.87888i 0.0164148 0.147347i
\(694\) −11.7450 −0.445835
\(695\) −3.21782 5.57342i −0.122059 0.211412i
\(696\) −0.687010 + 1.18994i −0.0260411 + 0.0451044i
\(697\) −0.172811 + 0.299318i −0.00654569 + 0.0113375i
\(698\) −31.9573 55.3516i −1.20960 2.09509i
\(699\) 2.45665 0.0929190
\(700\) 12.4875 5.46691i 0.471984 0.206630i
\(701\) −0.731357 −0.0276230 −0.0138115 0.999905i \(-0.504396\pi\)
−0.0138115 + 0.999905i \(0.504396\pi\)
\(702\) 2.88823 + 5.00256i 0.109009 + 0.188810i
\(703\) 0.177570 0.307561i 0.00669720 0.0115999i
\(704\) −4.52960 + 7.84550i −0.170716 + 0.295688i
\(705\) −1.55151 2.68730i −0.0584333 0.101209i
\(706\) −58.6240 −2.20634
\(707\) 14.2202 + 10.4674i 0.534804 + 0.393668i
\(708\) 16.5394 0.621587
\(709\) −16.9775 29.4059i −0.637604 1.10436i −0.985957 0.166999i \(-0.946592\pi\)
0.348354 0.937363i \(-0.386741\pi\)
\(710\) −3.55887 + 6.16414i −0.133562 + 0.231336i
\(711\) −10.0361 + 17.3830i −0.376382 + 0.651913i
\(712\) −45.3910 78.6195i −1.70110 2.94639i
\(713\) 9.94477 0.372435
\(714\) −5.20955 3.83474i −0.194962 0.143511i
\(715\) 0.683813 0.0255732
\(716\) −29.4958 51.0883i −1.10231 1.90926i
\(717\) 3.88693 6.73236i 0.145160 0.251425i
\(718\) −24.2101 + 41.9332i −0.903515 + 1.56493i
\(719\) 16.6880 + 28.9045i 0.622358 + 1.07796i 0.989045 + 0.147612i \(0.0471587\pi\)
−0.366687 + 0.930344i \(0.619508\pi\)
\(720\) −35.8433 −1.33580
\(721\) −29.6185 + 12.9667i −1.10305 + 0.482904i
\(722\) 50.4760 1.87852
\(723\) −0.343391 0.594771i −0.0127709 0.0221198i
\(724\) −17.0259 + 29.4897i −0.632763 + 1.09598i
\(725\) −0.303553 + 0.525770i −0.0112737 + 0.0195266i
\(726\) 3.85762 + 6.68160i 0.143170 + 0.247977i
\(727\) −39.1209 −1.45091 −0.725457 0.688267i \(-0.758372\pi\)
−0.725457 + 0.688267i \(0.758372\pi\)
\(728\) 3.35184 30.0877i 0.124228 1.11512i
\(729\) −23.1858 −0.858735
\(730\) 15.6938 + 27.1825i 0.580854 + 1.00607i
\(731\) 18.8881 32.7152i 0.698602 1.21001i
\(732\) −3.99390 + 6.91764i −0.147619 + 0.255684i
\(733\) 19.1073 + 33.0948i 0.705743 + 1.22238i 0.966423 + 0.256958i \(0.0827201\pi\)
−0.260680 + 0.965425i \(0.583947\pi\)
\(734\) −30.8278 −1.13787
\(735\) 1.83312 + 0.413560i 0.0676156 + 0.0152544i
\(736\) −113.363 −4.17863
\(737\) 3.66617 + 6.34999i 0.135045 + 0.233905i
\(738\) −0.397358 + 0.688244i −0.0146269 + 0.0253346i
\(739\) 25.3310 43.8747i 0.931818 1.61396i 0.151605 0.988441i \(-0.451556\pi\)
0.780213 0.625514i \(-0.215111\pi\)
\(740\) −2.57617 4.46205i −0.0947017 0.164028i
\(741\) 0.129400 0.00475364
\(742\) 0.127889 1.14799i 0.00469497 0.0421442i
\(743\) −45.6469 −1.67462 −0.837311 0.546727i \(-0.815873\pi\)
−0.837311 + 0.546727i \(0.815873\pi\)
\(744\) −1.57625 2.73014i −0.0577881 0.100092i
\(745\) 2.16707 3.75348i 0.0793954 0.137517i
\(746\) −26.1394 + 45.2747i −0.957030 + 1.65763i
\(747\) 12.0713 + 20.9081i 0.441666 + 0.764989i
\(748\) 8.84002 0.323223
\(749\) 15.0014 6.56745i 0.548138 0.239969i
\(750\) 0.717953 0.0262160
\(751\) 0.341431 + 0.591375i 0.0124590 + 0.0215796i 0.872188 0.489171i \(-0.162701\pi\)
−0.859729 + 0.510751i \(0.829367\pi\)
\(752\) 70.7505 122.544i 2.58001 4.46870i
\(753\) 2.86301 4.95888i 0.104334 0.180712i
\(754\) 1.10185 + 1.90846i 0.0401269 + 0.0695018i
\(755\) 11.6182 0.422828
\(756\) −17.4706 12.8601i −0.635401 0.467717i
\(757\) −14.9800 −0.544459 −0.272229 0.962232i \(-0.587761\pi\)
−0.272229 + 0.962232i \(0.587761\pi\)
\(758\) −18.8383 32.6289i −0.684238 1.18514i
\(759\) 0.482820 0.836270i 0.0175253 0.0303547i
\(760\) −1.49702 + 2.59291i −0.0543025 + 0.0940546i
\(761\) 8.06887 + 13.9757i 0.292496 + 0.506619i 0.974399 0.224824i \(-0.0721807\pi\)
−0.681903 + 0.731443i \(0.738847\pi\)
\(762\) 0.0590969 0.00214086
\(763\) −14.8983 10.9666i −0.539356 0.397018i
\(764\) −57.0526 −2.06409
\(765\) 4.98546 + 8.63507i 0.180250 + 0.312202i
\(766\) 25.2267 43.6939i 0.911477 1.57872i
\(767\) 8.11474 14.0551i 0.293006 0.507502i
\(768\) 1.03554 + 1.79361i 0.0373669 + 0.0647213i
\(769\) 20.5327 0.740427 0.370214 0.928947i \(-0.379284\pi\)
0.370214 + 0.928947i \(0.379284\pi\)
\(770\) −3.26566 + 1.42967i −0.117686 + 0.0515219i
\(771\) −4.73376 −0.170482
\(772\) 33.8144 + 58.5683i 1.21701 + 2.10792i
\(773\) 13.7027 23.7338i 0.492853 0.853646i −0.507113 0.861879i \(-0.669287\pi\)
0.999966 + 0.00823318i \(0.00262073\pi\)
\(774\) 43.4309 75.2246i 1.56109 2.70389i
\(775\) −0.696461 1.20631i −0.0250176 0.0433318i
\(776\) −4.55467 −0.163503
\(777\) 0.0786390 0.705900i 0.00282116 0.0253240i
\(778\) 88.0494 3.15672
\(779\) 0.0180218 + 0.0312147i 0.000645698 + 0.00111838i
\(780\) 0.938661 1.62581i 0.0336094 0.0582133i
\(781\) 0.670445 1.16124i 0.0239904 0.0415526i
\(782\) 32.5115 + 56.3115i 1.16261 + 2.01370i
\(783\) 0.966142 0.0345271
\(784\) 25.4638 + 81.8222i 0.909423 + 2.92222i
\(785\) 3.72668 0.133011
\(786\) 6.79941 + 11.7769i 0.242527 + 0.420069i
\(787\) 20.1609 34.9198i 0.718660 1.24476i −0.242870 0.970059i \(-0.578089\pi\)
0.961531 0.274697i \(-0.0885777\pi\)
\(788\) 19.6832 34.0924i 0.701186 1.21449i
\(789\) −1.20766 2.09173i −0.0429939 0.0744676i
\(790\) 18.3340 0.652294
\(791\) −3.78514 + 33.9771i −0.134584 + 1.20809i
\(792\) 12.4363 0.441905
\(793\) 3.91908 + 6.78804i 0.139170 + 0.241050i
\(794\) −3.86573 + 6.69565i −0.137190 + 0.237620i
\(795\) 0.0219123 0.0379532i 0.000777149 0.00134606i
\(796\) 59.8244 + 103.619i 2.12042 + 3.67268i
\(797\) 0.567617 0.0201060 0.0100530 0.999949i \(-0.496800\pi\)
0.0100530 + 0.999949i \(0.496800\pi\)
\(798\) −0.617974 + 0.270543i −0.0218760 + 0.00957710i
\(799\) −39.3629 −1.39256
\(800\) 7.93916 + 13.7510i 0.280692 + 0.486173i
\(801\) −15.7643 + 27.3046i −0.557005 + 0.964760i
\(802\) −23.5792 + 40.8404i −0.832612 + 1.44213i
\(803\) −2.95651 5.12083i −0.104333 0.180710i
\(804\) 20.1300 0.709930
\(805\) −15.2124 11.1978i −0.536167 0.394671i
\(806\) −5.05607 −0.178092
\(807\) −0.0692052 0.119867i −0.00243614 0.00421951i
\(808\) −28.1320 + 48.7260i −0.989680 + 1.71418i
\(809\) 2.34102 4.05476i 0.0823057 0.142558i −0.821934 0.569582i \(-0.807105\pi\)
0.904240 + 0.427025i \(0.140438\pi\)
\(810\) 11.1744 + 19.3545i 0.392627 + 0.680049i
\(811\) 20.5731 0.722421 0.361210 0.932484i \(-0.382364\pi\)
0.361210 + 0.932484i \(0.382364\pi\)
\(812\) −6.66497 4.90607i −0.233895 0.172169i
\(813\) −3.42720 −0.120197
\(814\) 0.673703 + 1.16689i 0.0236133 + 0.0408994i
\(815\) −1.09128 + 1.89014i −0.0382257 + 0.0662089i
\(816\) 5.59582 9.69225i 0.195893 0.339297i
\(817\) −1.96977 3.41174i −0.0689135 0.119362i
\(818\) 24.8488 0.868818
\(819\) −9.63155 + 4.21659i −0.336554 + 0.147340i
\(820\) 0.522915 0.0182610
\(821\) 3.12324 + 5.40961i 0.109002 + 0.188797i 0.915366 0.402622i \(-0.131901\pi\)
−0.806364 + 0.591419i \(0.798568\pi\)
\(822\) −5.10696 + 8.84552i −0.178126 + 0.308523i
\(823\) 3.99804 6.92480i 0.139363 0.241384i −0.787893 0.615812i \(-0.788828\pi\)
0.927256 + 0.374429i \(0.122161\pi\)
\(824\) −51.5129 89.2229i −1.79454 3.10823i
\(825\) −0.135253 −0.00470891
\(826\) −9.36768 + 84.0885i −0.325943 + 2.92581i
\(827\) −2.74166 −0.0953367 −0.0476684 0.998863i \(-0.515179\pi\)
−0.0476684 + 0.998863i \(0.515179\pi\)
\(828\) 53.8521 + 93.2746i 1.87149 + 3.24152i
\(829\) −17.6546 + 30.5786i −0.613169 + 1.06204i 0.377534 + 0.925996i \(0.376772\pi\)
−0.990703 + 0.136044i \(0.956561\pi\)
\(830\) 11.0260 19.0976i 0.382718 0.662886i
\(831\) 0.646492 + 1.11976i 0.0224266 + 0.0388440i
\(832\) 24.4049 0.846088
\(833\) 16.1702 17.5152i 0.560263 0.606867i
\(834\) 4.62049 0.159994
\(835\) −5.92830 10.2681i −0.205157 0.355343i
\(836\) 0.460945 0.798381i 0.0159421 0.0276126i
\(837\) −1.10834 + 1.91970i −0.0383098 + 0.0663545i
\(838\) 5.33991 + 9.24900i 0.184464 + 0.319501i
\(839\) 42.7124 1.47460 0.737298 0.675568i \(-0.236101\pi\)
0.737298 + 0.675568i \(0.236101\pi\)
\(840\) −0.662970 + 5.95112i −0.0228746 + 0.205333i
\(841\) −28.6314 −0.987290
\(842\) 26.1291 + 45.2569i 0.900468 + 1.55966i
\(843\) −4.16300 + 7.21052i −0.143381 + 0.248344i
\(844\) −1.96686 + 3.40670i −0.0677021 + 0.117263i
\(845\) 5.57893 + 9.66298i 0.191921 + 0.332417i
\(846\) −90.5102 −3.11180
\(847\) −26.0451 + 11.4023i −0.894921 + 0.391787i
\(848\) 1.99845 0.0686269
\(849\) −3.10648 5.38058i −0.106614 0.184661i
\(850\) 4.55374 7.88731i 0.156192 0.270532i
\(851\) −3.56975 + 6.18299i −0.122370 + 0.211950i
\(852\) −1.84062 3.18805i −0.0630586 0.109221i
\(853\) 29.1241 0.997191 0.498596 0.866835i \(-0.333849\pi\)
0.498596 + 0.866835i \(0.333849\pi\)
\(854\) −32.9082 24.2237i −1.12610 0.828917i
\(855\) 1.03983 0.0355614
\(856\) 26.0906 + 45.1902i 0.891758 + 1.54457i
\(857\) 15.7797 27.3312i 0.539024 0.933616i −0.459933 0.887953i \(-0.652127\pi\)
0.998957 0.0456628i \(-0.0145400\pi\)
\(858\) −0.245473 + 0.425172i −0.00838031 + 0.0145151i
\(859\) −25.2074 43.6605i −0.860066 1.48968i −0.871864 0.489748i \(-0.837089\pi\)
0.0117975 0.999930i \(-0.496245\pi\)
\(860\) −57.1542 −1.94894
\(861\) 0.0580536 + 0.0427331i 0.00197846 + 0.00145634i
\(862\) −2.22818 −0.0758920
\(863\) 12.3351 + 21.3650i 0.419892 + 0.727273i 0.995928 0.0901504i \(-0.0287348\pi\)
−0.576037 + 0.817424i \(0.695401\pi\)
\(864\) 12.6343 21.8832i 0.429827 0.744482i
\(865\) −9.33855 + 16.1748i −0.317520 + 0.549961i
\(866\) 3.39650 + 5.88290i 0.115418 + 0.199909i
\(867\) 1.45044 0.0492596
\(868\) 17.3941 7.61498i 0.590396 0.258469i
\(869\) −3.45389 −0.117165
\(870\) −0.217937 0.377478i −0.00738877 0.0127977i
\(871\) 9.87643 17.1065i 0.334650 0.579631i
\(872\) 29.4736 51.0498i 0.998103 1.72877i
\(873\) 0.790920 + 1.36991i 0.0267686 + 0.0463645i
\(874\) 6.78099 0.229370
\(875\) −0.292931 + 2.62948i −0.00990288 + 0.0888928i
\(876\) −16.2335 −0.548477
\(877\) −16.3444 28.3094i −0.551913 0.955941i −0.998137 0.0610194i \(-0.980565\pi\)
0.446224 0.894921i \(-0.352768\pi\)
\(878\) −15.3535 + 26.5931i −0.518157 + 0.897474i
\(879\) 1.60868 2.78631i 0.0542594 0.0939800i
\(880\) −3.08384 5.34137i −0.103956 0.180058i
\(881\) 14.5972 0.491792 0.245896 0.969296i \(-0.420918\pi\)
0.245896 + 0.969296i \(0.420918\pi\)
\(882\) 37.1813 40.2741i 1.25196 1.35610i
\(883\) −41.4745 −1.39573 −0.697864 0.716230i \(-0.745866\pi\)
−0.697864 + 0.716230i \(0.745866\pi\)
\(884\) −11.9072 20.6239i −0.400483 0.693657i
\(885\) −1.60504 + 2.78000i −0.0539527 + 0.0934488i
\(886\) 1.23098 2.13213i 0.0413557 0.0716302i
\(887\) −27.5770 47.7648i −0.925946 1.60379i −0.790032 0.613066i \(-0.789936\pi\)
−0.135914 0.990721i \(-0.543397\pi\)
\(888\) 2.26323 0.0759489
\(889\) −0.0241121 + 0.216441i −0.000808692 + 0.00725919i
\(890\) 28.7984 0.965324
\(891\) −2.10510 3.64615i −0.0705236 0.122150i
\(892\) −9.25486 + 16.0299i −0.309876 + 0.536720i
\(893\) −2.05250 + 3.55504i −0.0686843 + 0.118965i
\(894\) 1.55586 + 2.69482i 0.0520356 + 0.0901284i
\(895\) 11.4495 0.382715
\(896\) −39.5823 + 17.3287i −1.32235 + 0.578912i
\(897\) −2.60138 −0.0868574
\(898\) 17.4267 + 30.1840i 0.581537 + 1.00725i
\(899\) −0.422826 + 0.732356i −0.0141020 + 0.0244254i
\(900\) 7.54284 13.0646i 0.251428 0.435486i
\(901\) −0.277965 0.481449i −0.00926035 0.0160394i
\(902\) −0.136750 −0.00455326
\(903\) −6.34521 4.67069i −0.211155 0.155431i
\(904\) −108.936 −3.62316
\(905\) −3.30451 5.72357i −0.109846 0.190258i
\(906\) −4.17065 + 7.22378i −0.138561 + 0.239994i
\(907\) 28.3630 49.1262i 0.941779 1.63121i 0.179705 0.983721i \(-0.442486\pi\)
0.762075 0.647489i \(-0.224181\pi\)
\(908\) −42.1111 72.9385i −1.39750 2.42055i
\(909\) 19.5405 0.648117
\(910\) 7.73420 + 5.69313i 0.256386 + 0.188725i
\(911\) 29.2569 0.969325 0.484662 0.874701i \(-0.338943\pi\)
0.484662 + 0.874701i \(0.338943\pi\)
\(912\) −0.583567 1.01077i −0.0193238 0.0334698i
\(913\) −2.07715 + 3.59774i −0.0687438 + 0.119068i
\(914\) −51.7419 + 89.6196i −1.71147 + 2.96435i
\(915\) −0.775165 1.34262i −0.0256261 0.0443858i
\(916\) −84.1696 −2.78104
\(917\) −45.9069 + 20.0976i −1.51598 + 0.663680i
\(918\) −14.4935 −0.478357
\(919\) −9.44388 16.3573i −0.311525 0.539577i 0.667168 0.744908i \(-0.267506\pi\)
−0.978693 + 0.205330i \(0.934173\pi\)
\(920\) 30.0950 52.1260i 0.992202 1.71854i
\(921\) −3.97585 + 6.88638i −0.131009 + 0.226914i
\(922\) 11.1117 + 19.2461i 0.365945 + 0.633836i
\(923\) −3.61227 −0.118899
\(924\) 0.204135 1.83241i 0.00671554 0.0602818i
\(925\) 1.00000 0.0328798
\(926\) −1.72469 2.98725i −0.0566769 0.0981673i
\(927\) −17.8904 + 30.9872i −0.587599 + 1.01775i
\(928\) 4.81992 8.34835i 0.158222 0.274048i
\(929\) 7.77839 + 13.4726i 0.255201 + 0.442021i 0.964950 0.262434i \(-0.0845251\pi\)
−0.709749 + 0.704454i \(0.751192\pi\)
\(930\) 1.00005 0.0327930
\(931\) −0.738716 2.37370i −0.0242104 0.0777947i
\(932\) −47.1492 −1.54442
\(933\) −3.79211 6.56813i −0.124148 0.215031i
\(934\) 27.2537 47.2047i 0.891767 1.54459i
\(935\) −0.857866 + 1.48587i −0.0280552 + 0.0485931i
\(936\) −16.7513 29.0141i −0.547534 0.948356i
\(937\) −37.1698 −1.21428 −0.607142 0.794593i \(-0.707684\pi\)
−0.607142 + 0.794593i \(0.707684\pi\)
\(938\) −11.4014 + 102.344i −0.372268 + 3.34165i
\(939\) −6.65622 −0.217218
\(940\) 29.7774 + 51.5759i 0.971231 + 1.68222i
\(941\) −17.7827 + 30.8006i −0.579700 + 1.00407i 0.415814 + 0.909450i \(0.363497\pi\)
−0.995513 + 0.0946199i \(0.969836\pi\)
\(942\) −1.33779 + 2.31712i −0.0435876 + 0.0754959i
\(943\) −0.362298 0.627518i −0.0117980 0.0204348i
\(944\) −146.383 −4.76435
\(945\) 3.85699 1.68855i 0.125468 0.0549286i
\(946\) 14.9466 0.485957
\(947\) 21.2022 + 36.7233i 0.688979 + 1.19335i 0.972168 + 0.234283i \(0.0752742\pi\)
−0.283189 + 0.959064i \(0.591392\pi\)
\(948\) −4.74110 + 8.21183i −0.153984 + 0.266708i
\(949\) −7.96465 + 13.7952i −0.258544 + 0.447811i
\(950\) −0.474892 0.822537i −0.0154075 0.0266866i
\(951\) −6.03105 −0.195570
\(952\) 61.1730 + 45.0293i 1.98263 + 1.45941i
\(953\) −19.5628 −0.633703 −0.316851 0.948475i \(-0.602626\pi\)
−0.316851 + 0.948475i \(0.602626\pi\)
\(954\) −0.639146 1.10703i −0.0206931 0.0358415i
\(955\) 5.53658 9.58964i 0.179160 0.310314i
\(956\) −74.5999 + 129.211i −2.41273 + 4.17897i
\(957\) 0.0410566 + 0.0711121i 0.00132717 + 0.00229873i
\(958\) 22.3166 0.721017
\(959\) −30.3128 22.3132i −0.978851 0.720530i
\(960\) −4.82711 −0.155794
\(961\) 14.5299 + 25.1665i 0.468706 + 0.811823i
\(962\) 1.81491 3.14352i 0.0585152 0.101351i
\(963\) 9.06127 15.6946i 0.291995 0.505751i
\(964\) 6.59054 + 11.4151i 0.212267 + 0.367657i
\(965\) −13.1259 −0.422537
\(966\) 12.4233 5.43880i 0.399714 0.174991i
\(967\) −45.7186 −1.47021 −0.735105 0.677954i \(-0.762867\pi\)
−0.735105 + 0.677954i \(0.762867\pi\)
\(968\) −45.2980 78.4585i −1.45593 2.52175i
\(969\) −0.162337 + 0.281176i −0.00521502 + 0.00903268i
\(970\) 0.722429 1.25128i 0.0231958 0.0401763i
\(971\) 7.84926 + 13.5953i 0.251895 + 0.436294i 0.964047 0.265730i \(-0.0856130\pi\)
−0.712153 + 0.702025i \(0.752280\pi\)
\(972\) −36.1566 −1.15972
\(973\) −1.88520 + 16.9224i −0.0604367 + 0.542507i
\(974\) −71.3909 −2.28751
\(975\) 0.182182 + 0.315548i 0.00583449 + 0.0101056i
\(976\) 35.3483 61.2251i 1.13147 1.95977i
\(977\) 6.68484 11.5785i 0.213867 0.370429i −0.739054 0.673646i \(-0.764727\pi\)
0.952922 + 0.303217i \(0.0980607\pi\)
\(978\) −0.783485 1.35704i −0.0250531 0.0433932i
\(979\) −5.42524 −0.173391
\(980\) −35.1821 7.93725i −1.12385 0.253546i
\(981\) −20.4724 −0.653634
\(982\) 52.2746 + 90.5422i 1.66815 + 2.88932i
\(983\) −5.18357 + 8.97821i −0.165330 + 0.286360i −0.936773 0.349939i \(-0.886202\pi\)
0.771442 + 0.636299i \(0.219536\pi\)
\(984\) −0.114848 + 0.198923i −0.00366124 + 0.00634145i
\(985\) 3.82026 + 6.61688i 0.121724 + 0.210831i
\(986\) −5.52921 −0.176086
\(987\) −0.908973 + 8.15936i −0.0289329 + 0.259715i
\(988\) −2.48352 −0.0790112
\(989\) 39.5988 + 68.5872i 1.25917 + 2.18095i
\(990\) −1.97256 + 3.41657i −0.0626920 + 0.108586i
\(991\) 11.6008 20.0933i 0.368513 0.638283i −0.620820 0.783953i \(-0.713200\pi\)
0.989333 + 0.145670i \(0.0465337\pi\)
\(992\) 11.0586 + 19.1541i 0.351112 + 0.608144i
\(993\) −3.78751 −0.120193
\(994\) 17.2510 7.55232i 0.547169 0.239545i
\(995\) −23.2223 −0.736196
\(996\) 5.70256 + 9.87713i 0.180693 + 0.312969i
\(997\) −27.1685 + 47.0572i −0.860435 + 1.49032i 0.0110753 + 0.999939i \(0.496475\pi\)
−0.871510 + 0.490378i \(0.836859\pi\)
\(998\) 51.1502 88.5948i 1.61913 2.80442i
\(999\) −0.795693 1.37818i −0.0251746 0.0436037i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1295.2.j.a.186.19 38
7.2 even 3 inner 1295.2.j.a.926.19 yes 38
7.3 odd 6 9065.2.a.s.1.1 19
7.4 even 3 9065.2.a.r.1.1 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.j.a.186.19 38 1.1 even 1 trivial
1295.2.j.a.926.19 yes 38 7.2 even 3 inner
9065.2.a.r.1.1 19 7.4 even 3
9065.2.a.s.1.1 19 7.3 odd 6