Properties

Label 1295.2.j.a.186.13
Level $1295$
Weight $2$
Character 1295.186
Analytic conductor $10.341$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1295,2,Mod(186,1295)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1295.186"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1295 = 5 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1295.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3406270618\)
Analytic rank: \(0\)
Dimension: \(38\)
Relative dimension: \(19\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 186.13
Character \(\chi\) \(=\) 1295.186
Dual form 1295.2.j.a.926.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.458759 + 0.794593i) q^{2} +(1.13848 - 1.97191i) q^{3} +(0.579081 - 1.00300i) q^{4} +(-0.500000 - 0.866025i) q^{5} +2.08916 q^{6} +(2.28132 + 1.33999i) q^{7} +2.89767 q^{8} +(-1.09229 - 1.89191i) q^{9} +(0.458759 - 0.794593i) q^{10} +(2.39130 - 4.14186i) q^{11} +(-1.31855 - 2.28380i) q^{12} -3.72989 q^{13} +(-0.0181694 + 2.42745i) q^{14} -2.27697 q^{15} +(0.171167 + 0.296470i) q^{16} +(0.222230 - 0.384914i) q^{17} +(1.00220 - 1.73586i) q^{18} +(2.38732 + 4.13495i) q^{19} -1.15816 q^{20} +(5.23959 - 2.97301i) q^{21} +4.38812 q^{22} +(-0.214992 - 0.372377i) q^{23} +(3.29895 - 5.71395i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(-1.71112 - 2.96374i) q^{26} +1.85667 q^{27} +(2.66508 - 1.51220i) q^{28} +1.38092 q^{29} +(-1.04458 - 1.80926i) q^{30} +(-3.13418 + 5.42856i) q^{31} +(2.74062 - 4.74689i) q^{32} +(-5.44492 - 9.43088i) q^{33} +0.407800 q^{34} +(0.0198028 - 2.64568i) q^{35} -2.53011 q^{36} +(-0.500000 - 0.866025i) q^{37} +(-2.19040 + 3.79389i) q^{38} +(-4.24642 + 7.35501i) q^{39} +(-1.44883 - 2.50945i) q^{40} -0.522569 q^{41} +(4.76604 + 2.79945i) q^{42} -7.86533 q^{43} +(-2.76952 - 4.79694i) q^{44} +(-1.09229 + 1.89191i) q^{45} +(0.197259 - 0.341662i) q^{46} +(-0.276077 - 0.478180i) q^{47} +0.779485 q^{48} +(3.40886 + 6.11389i) q^{49} -0.917517 q^{50} +(-0.506011 - 0.876437i) q^{51} +(-2.15991 + 3.74107i) q^{52} +(-1.59277 + 2.75876i) q^{53} +(0.851762 + 1.47529i) q^{54} -4.78260 q^{55} +(6.61051 + 3.88284i) q^{56} +10.8717 q^{57} +(0.633509 + 1.09727i) q^{58} +(-5.46263 + 9.46156i) q^{59} +(-1.31855 + 2.28380i) q^{60} +(-4.19575 - 7.26725i) q^{61} -5.75133 q^{62} +(0.0432610 - 5.77972i) q^{63} +5.71380 q^{64} +(1.86494 + 3.23018i) q^{65} +(4.99581 - 8.65299i) q^{66} +(0.709398 - 1.22871i) q^{67} +(-0.257379 - 0.445793i) q^{68} -0.979061 q^{69} +(2.11132 - 1.19799i) q^{70} -4.65250 q^{71} +(-3.16511 - 5.48212i) q^{72} +(0.899935 - 1.55873i) q^{73} +(0.458759 - 0.794593i) q^{74} +(1.13848 + 1.97191i) q^{75} +5.52980 q^{76} +(11.0054 - 6.24459i) q^{77} -7.79232 q^{78} +(-3.60672 - 6.24702i) q^{79} +(0.171167 - 0.296470i) q^{80} +(5.39067 - 9.33691i) q^{81} +(-0.239733 - 0.415230i) q^{82} +1.45351 q^{83} +(0.0522220 - 6.97692i) q^{84} -0.444460 q^{85} +(-3.60829 - 6.24974i) q^{86} +(1.57216 - 2.72305i) q^{87} +(6.92920 - 12.0017i) q^{88} +(7.15348 + 12.3902i) q^{89} -2.00440 q^{90} +(-8.50907 - 4.99800i) q^{91} -0.497992 q^{92} +(7.13643 + 12.3607i) q^{93} +(0.253306 - 0.438738i) q^{94} +(2.38732 - 4.13495i) q^{95} +(-6.24030 - 10.8085i) q^{96} -3.70052 q^{97} +(-3.29421 + 5.51346i) q^{98} -10.4480 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 3 q^{2} + q^{3} - 11 q^{4} - 19 q^{5} - 8 q^{6} - 18 q^{8} - 12 q^{9} + 3 q^{10} + 13 q^{11} + 4 q^{12} - 6 q^{13} - q^{14} - 2 q^{15} + 5 q^{16} + 2 q^{17} + 11 q^{18} + 12 q^{19} + 22 q^{20}+ \cdots - 142 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1295\mathbb{Z}\right)^\times\).

\(n\) \(556\) \(631\) \(1037\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.458759 + 0.794593i 0.324391 + 0.561862i 0.981389 0.192030i \(-0.0615072\pi\)
−0.656998 + 0.753893i \(0.728174\pi\)
\(3\) 1.13848 1.97191i 0.657304 1.13848i −0.324006 0.946055i \(-0.605030\pi\)
0.981311 0.192430i \(-0.0616367\pi\)
\(4\) 0.579081 1.00300i 0.289541 0.501499i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 2.08916 0.852895
\(7\) 2.28132 + 1.33999i 0.862259 + 0.506468i
\(8\) 2.89767 1.02448
\(9\) −1.09229 1.89191i −0.364098 0.630636i
\(10\) 0.458759 0.794593i 0.145072 0.251272i
\(11\) 2.39130 4.14186i 0.721005 1.24882i −0.239593 0.970873i \(-0.577014\pi\)
0.960597 0.277943i \(-0.0896527\pi\)
\(12\) −1.31855 2.28380i −0.380633 0.659275i
\(13\) −3.72989 −1.03448 −0.517242 0.855839i \(-0.673041\pi\)
−0.517242 + 0.855839i \(0.673041\pi\)
\(14\) −0.0181694 + 2.42745i −0.00485598 + 0.648764i
\(15\) −2.27697 −0.587911
\(16\) 0.171167 + 0.296470i 0.0427918 + 0.0741176i
\(17\) 0.222230 0.384914i 0.0538987 0.0933554i −0.837817 0.545951i \(-0.816169\pi\)
0.891716 + 0.452596i \(0.149502\pi\)
\(18\) 1.00220 1.73586i 0.236220 0.409146i
\(19\) 2.38732 + 4.13495i 0.547688 + 0.948623i 0.998432 + 0.0559703i \(0.0178252\pi\)
−0.450745 + 0.892653i \(0.648841\pi\)
\(20\) −1.15816 −0.258973
\(21\) 5.23959 2.97301i 1.14337 0.648765i
\(22\) 4.38812 0.935550
\(23\) −0.214992 0.372377i −0.0448290 0.0776460i 0.842740 0.538320i \(-0.180941\pi\)
−0.887569 + 0.460674i \(0.847608\pi\)
\(24\) 3.29895 5.71395i 0.673395 1.16636i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −1.71112 2.96374i −0.335578 0.581237i
\(27\) 1.85667 0.357316
\(28\) 2.66508 1.51220i 0.503652 0.285779i
\(29\) 1.38092 0.256430 0.128215 0.991746i \(-0.459075\pi\)
0.128215 + 0.991746i \(0.459075\pi\)
\(30\) −1.04458 1.80926i −0.190713 0.330325i
\(31\) −3.13418 + 5.42856i −0.562916 + 0.974998i 0.434325 + 0.900756i \(0.356987\pi\)
−0.997240 + 0.0742419i \(0.976346\pi\)
\(32\) 2.74062 4.74689i 0.484478 0.839140i
\(33\) −5.44492 9.43088i −0.947839 1.64171i
\(34\) 0.407800 0.0699371
\(35\) 0.0198028 2.64568i 0.00334728 0.447201i
\(36\) −2.53011 −0.421685
\(37\) −0.500000 0.866025i −0.0821995 0.142374i
\(38\) −2.19040 + 3.79389i −0.355330 + 0.615450i
\(39\) −4.24642 + 7.35501i −0.679971 + 1.17774i
\(40\) −1.44883 2.50945i −0.229081 0.396780i
\(41\) −0.522569 −0.0816116 −0.0408058 0.999167i \(-0.512992\pi\)
−0.0408058 + 0.999167i \(0.512992\pi\)
\(42\) 4.76604 + 2.79945i 0.735416 + 0.431964i
\(43\) −7.86533 −1.19945 −0.599726 0.800206i \(-0.704724\pi\)
−0.599726 + 0.800206i \(0.704724\pi\)
\(44\) −2.76952 4.79694i −0.417520 0.723166i
\(45\) −1.09229 + 1.89191i −0.162830 + 0.282029i
\(46\) 0.197259 0.341662i 0.0290842 0.0503754i
\(47\) −0.276077 0.478180i −0.0402700 0.0697497i 0.845188 0.534469i \(-0.179488\pi\)
−0.885458 + 0.464720i \(0.846155\pi\)
\(48\) 0.779485 0.112509
\(49\) 3.40886 + 6.11389i 0.486980 + 0.873413i
\(50\) −0.917517 −0.129757
\(51\) −0.506011 0.876437i −0.0708558 0.122726i
\(52\) −2.15991 + 3.74107i −0.299525 + 0.518793i
\(53\) −1.59277 + 2.75876i −0.218784 + 0.378945i −0.954436 0.298414i \(-0.903542\pi\)
0.735653 + 0.677359i \(0.236876\pi\)
\(54\) 0.851762 + 1.47529i 0.115910 + 0.200762i
\(55\) −4.78260 −0.644886
\(56\) 6.61051 + 3.88284i 0.883367 + 0.518866i
\(57\) 10.8717 1.43999
\(58\) 0.633509 + 1.09727i 0.0831838 + 0.144079i
\(59\) −5.46263 + 9.46156i −0.711174 + 1.23179i 0.253242 + 0.967403i \(0.418503\pi\)
−0.964417 + 0.264387i \(0.914830\pi\)
\(60\) −1.31855 + 2.28380i −0.170224 + 0.294837i
\(61\) −4.19575 7.26725i −0.537211 0.930476i −0.999053 0.0435140i \(-0.986145\pi\)
0.461842 0.886962i \(-0.347189\pi\)
\(62\) −5.75133 −0.730420
\(63\) 0.0432610 5.77972i 0.00545037 0.728176i
\(64\) 5.71380 0.714225
\(65\) 1.86494 + 3.23018i 0.231318 + 0.400654i
\(66\) 4.99581 8.65299i 0.614941 1.06511i
\(67\) 0.709398 1.22871i 0.0866667 0.150111i −0.819433 0.573174i \(-0.805712\pi\)
0.906100 + 0.423063i \(0.139045\pi\)
\(68\) −0.257379 0.445793i −0.0312118 0.0540603i
\(69\) −0.979061 −0.117865
\(70\) 2.11132 1.19799i 0.252351 0.143187i
\(71\) −4.65250 −0.552150 −0.276075 0.961136i \(-0.589034\pi\)
−0.276075 + 0.961136i \(0.589034\pi\)
\(72\) −3.16511 5.48212i −0.373011 0.646075i
\(73\) 0.899935 1.55873i 0.105329 0.182436i −0.808543 0.588437i \(-0.799744\pi\)
0.913873 + 0.406001i \(0.133077\pi\)
\(74\) 0.458759 0.794593i 0.0533296 0.0923696i
\(75\) 1.13848 + 1.97191i 0.131461 + 0.227697i
\(76\) 5.52980 0.634312
\(77\) 11.0054 6.24459i 1.25418 0.711637i
\(78\) −7.79232 −0.882307
\(79\) −3.60672 6.24702i −0.405787 0.702844i 0.588625 0.808406i \(-0.299669\pi\)
−0.994413 + 0.105562i \(0.966336\pi\)
\(80\) 0.171167 0.296470i 0.0191371 0.0331464i
\(81\) 5.39067 9.33691i 0.598963 1.03743i
\(82\) −0.239733 0.415230i −0.0264741 0.0458545i
\(83\) 1.45351 0.159544 0.0797719 0.996813i \(-0.474581\pi\)
0.0797719 + 0.996813i \(0.474581\pi\)
\(84\) 0.0522220 6.97692i 0.00569788 0.761244i
\(85\) −0.444460 −0.0482085
\(86\) −3.60829 6.24974i −0.389092 0.673927i
\(87\) 1.57216 2.72305i 0.168553 0.291942i
\(88\) 6.92920 12.0017i 0.738655 1.27939i
\(89\) 7.15348 + 12.3902i 0.758268 + 1.31336i 0.943733 + 0.330707i \(0.107287\pi\)
−0.185466 + 0.982651i \(0.559379\pi\)
\(90\) −2.00440 −0.211282
\(91\) −8.50907 4.99800i −0.891993 0.523933i
\(92\) −0.497992 −0.0519192
\(93\) 7.13643 + 12.3607i 0.740014 + 1.28174i
\(94\) 0.253306 0.438738i 0.0261265 0.0452524i
\(95\) 2.38732 4.13495i 0.244933 0.424237i
\(96\) −6.24030 10.8085i −0.636898 1.10314i
\(97\) −3.70052 −0.375731 −0.187866 0.982195i \(-0.560157\pi\)
−0.187866 + 0.982195i \(0.560157\pi\)
\(98\) −3.29421 + 5.51346i −0.332765 + 0.556943i
\(99\) −10.4480 −1.05007
\(100\) 0.579081 + 1.00300i 0.0579081 + 0.100300i
\(101\) 0.538927 0.933448i 0.0536252 0.0928816i −0.837967 0.545721i \(-0.816256\pi\)
0.891592 + 0.452840i \(0.149589\pi\)
\(102\) 0.464274 0.804146i 0.0459700 0.0796223i
\(103\) −1.94058 3.36118i −0.191211 0.331187i 0.754441 0.656368i \(-0.227908\pi\)
−0.945652 + 0.325181i \(0.894575\pi\)
\(104\) −10.8080 −1.05981
\(105\) −5.19450 3.05111i −0.506931 0.297758i
\(106\) −2.92279 −0.283886
\(107\) −3.24695 5.62389i −0.313895 0.543682i 0.665307 0.746570i \(-0.268301\pi\)
−0.979202 + 0.202888i \(0.934967\pi\)
\(108\) 1.07516 1.86223i 0.103457 0.179194i
\(109\) 1.02308 1.77203i 0.0979932 0.169729i −0.812861 0.582458i \(-0.802091\pi\)
0.910854 + 0.412729i \(0.135424\pi\)
\(110\) −2.19406 3.80022i −0.209195 0.362337i
\(111\) −2.27697 −0.216120
\(112\) −0.00677918 + 0.905707i −0.000640572 + 0.0855812i
\(113\) 13.1060 1.23291 0.616455 0.787390i \(-0.288568\pi\)
0.616455 + 0.787390i \(0.288568\pi\)
\(114\) 4.98748 + 8.63857i 0.467120 + 0.809076i
\(115\) −0.214992 + 0.372377i −0.0200481 + 0.0347244i
\(116\) 0.799665 1.38506i 0.0742470 0.128600i
\(117\) 4.07413 + 7.05660i 0.376654 + 0.652383i
\(118\) −10.0241 −0.922795
\(119\) 1.02276 0.580327i 0.0937562 0.0531985i
\(120\) −6.59790 −0.602303
\(121\) −5.93665 10.2826i −0.539695 0.934780i
\(122\) 3.84967 6.66783i 0.348533 0.603677i
\(123\) −0.594937 + 1.03046i −0.0536437 + 0.0929136i
\(124\) 3.62989 + 6.28716i 0.325974 + 0.564603i
\(125\) 1.00000 0.0894427
\(126\) 4.61237 2.61712i 0.410902 0.233151i
\(127\) −4.09488 −0.363362 −0.181681 0.983358i \(-0.558154\pi\)
−0.181681 + 0.983358i \(0.558154\pi\)
\(128\) −2.85998 4.95364i −0.252789 0.437844i
\(129\) −8.95456 + 15.5097i −0.788405 + 1.36556i
\(130\) −1.71112 + 2.96374i −0.150075 + 0.259937i
\(131\) 8.85714 + 15.3410i 0.773851 + 1.34035i 0.935438 + 0.353492i \(0.115006\pi\)
−0.161586 + 0.986859i \(0.551661\pi\)
\(132\) −12.6122 −1.09775
\(133\) −0.0945511 + 12.6321i −0.00819862 + 1.09535i
\(134\) 1.30177 0.112456
\(135\) −0.928334 1.60792i −0.0798982 0.138388i
\(136\) 0.643949 1.11535i 0.0552182 0.0956407i
\(137\) −7.83912 + 13.5777i −0.669741 + 1.16003i 0.308235 + 0.951310i \(0.400262\pi\)
−0.977976 + 0.208715i \(0.933072\pi\)
\(138\) −0.449152 0.777955i −0.0382344 0.0662239i
\(139\) 18.9153 1.60437 0.802186 0.597075i \(-0.203670\pi\)
0.802186 + 0.597075i \(0.203670\pi\)
\(140\) −2.64214 1.55192i −0.223302 0.131162i
\(141\) −1.25724 −0.105879
\(142\) −2.13437 3.69684i −0.179113 0.310232i
\(143\) −8.91928 + 15.4487i −0.745868 + 1.29188i
\(144\) 0.373930 0.647666i 0.0311608 0.0539722i
\(145\) −0.690460 1.19591i −0.0573396 0.0993151i
\(146\) 1.65141 0.136672
\(147\) 15.9370 + 0.238589i 1.31446 + 0.0196785i
\(148\) −1.15816 −0.0952004
\(149\) −3.79255 6.56889i −0.310698 0.538145i 0.667816 0.744327i \(-0.267229\pi\)
−0.978514 + 0.206182i \(0.933896\pi\)
\(150\) −1.04458 + 1.80926i −0.0852895 + 0.147726i
\(151\) 4.10206 7.10497i 0.333821 0.578194i −0.649437 0.760415i \(-0.724995\pi\)
0.983258 + 0.182221i \(0.0583287\pi\)
\(152\) 6.91765 + 11.9817i 0.561095 + 0.971846i
\(153\) −0.970963 −0.0784977
\(154\) 10.0107 + 5.88003i 0.806687 + 0.473826i
\(155\) 6.26836 0.503487
\(156\) 4.91804 + 8.51830i 0.393758 + 0.682010i
\(157\) −8.60555 + 14.9052i −0.686798 + 1.18957i 0.286071 + 0.958208i \(0.407651\pi\)
−0.972868 + 0.231360i \(0.925683\pi\)
\(158\) 3.30922 5.73174i 0.263268 0.455993i
\(159\) 3.62669 + 6.28161i 0.287615 + 0.498164i
\(160\) −5.48124 −0.433330
\(161\) 0.00851489 1.13760i 0.000671067 0.0896554i
\(162\) 9.89206 0.777194
\(163\) −1.02390 1.77345i −0.0801981 0.138907i 0.823137 0.567843i \(-0.192222\pi\)
−0.903335 + 0.428936i \(0.858889\pi\)
\(164\) −0.302610 + 0.524136i −0.0236299 + 0.0409281i
\(165\) −5.44492 + 9.43088i −0.423886 + 0.734193i
\(166\) 0.666812 + 1.15495i 0.0517546 + 0.0896416i
\(167\) −4.61721 −0.357291 −0.178645 0.983914i \(-0.557171\pi\)
−0.178645 + 0.983914i \(0.557171\pi\)
\(168\) 15.1826 8.61480i 1.17136 0.664647i
\(169\) 0.912047 0.0701575
\(170\) −0.203900 0.353165i −0.0156384 0.0270865i
\(171\) 5.21530 9.03317i 0.398824 0.690784i
\(172\) −4.55467 + 7.88891i −0.347290 + 0.601524i
\(173\) 3.55560 + 6.15847i 0.270327 + 0.468220i 0.968946 0.247274i \(-0.0795349\pi\)
−0.698619 + 0.715494i \(0.746202\pi\)
\(174\) 2.88496 0.218708
\(175\) −2.30113 + 1.30569i −0.173949 + 0.0987008i
\(176\) 1.63725 0.123412
\(177\) 12.4383 + 21.5437i 0.934916 + 1.61932i
\(178\) −6.56344 + 11.3682i −0.491951 + 0.852084i
\(179\) 4.57904 7.93114i 0.342254 0.592801i −0.642597 0.766204i \(-0.722143\pi\)
0.984851 + 0.173403i \(0.0554764\pi\)
\(180\) 1.26505 + 2.19114i 0.0942916 + 0.163318i
\(181\) 15.7401 1.16995 0.584977 0.811050i \(-0.301104\pi\)
0.584977 + 0.811050i \(0.301104\pi\)
\(182\) 0.0677698 9.05413i 0.00502343 0.671136i
\(183\) −19.1072 −1.41244
\(184\) −0.622976 1.07903i −0.0459264 0.0795468i
\(185\) −0.500000 + 0.866025i −0.0367607 + 0.0636715i
\(186\) −6.54780 + 11.3411i −0.480108 + 0.831571i
\(187\) −1.06284 1.84089i −0.0777225 0.134619i
\(188\) −0.639485 −0.0466392
\(189\) 4.23566 + 2.48791i 0.308099 + 0.180969i
\(190\) 4.38081 0.317817
\(191\) 10.2065 + 17.6781i 0.738513 + 1.27914i 0.953165 + 0.302451i \(0.0978049\pi\)
−0.214652 + 0.976691i \(0.568862\pi\)
\(192\) 6.50507 11.2671i 0.469463 0.813134i
\(193\) 10.7039 18.5397i 0.770485 1.33452i −0.166812 0.985989i \(-0.553347\pi\)
0.937297 0.348531i \(-0.113319\pi\)
\(194\) −1.69765 2.94041i −0.121884 0.211109i
\(195\) 8.49283 0.608185
\(196\) 8.10623 + 0.121356i 0.579016 + 0.00866832i
\(197\) 18.6733 1.33042 0.665209 0.746657i \(-0.268342\pi\)
0.665209 + 0.746657i \(0.268342\pi\)
\(198\) −4.79312 8.30192i −0.340632 0.589992i
\(199\) −9.66772 + 16.7450i −0.685326 + 1.18702i 0.288008 + 0.957628i \(0.407007\pi\)
−0.973334 + 0.229392i \(0.926326\pi\)
\(200\) −1.44883 + 2.50945i −0.102448 + 0.177445i
\(201\) −1.61528 2.79774i −0.113933 0.197337i
\(202\) 0.988949 0.0695822
\(203\) 3.15032 + 1.85042i 0.221109 + 0.129874i
\(204\) −1.17209 −0.0820625
\(205\) 0.261285 + 0.452558i 0.0182489 + 0.0316080i
\(206\) 1.78052 3.08394i 0.124054 0.214869i
\(207\) −0.469669 + 0.813491i −0.0326443 + 0.0565415i
\(208\) −0.638434 1.10580i −0.0442675 0.0766735i
\(209\) 22.8352 1.57954
\(210\) 0.0413712 5.52724i 0.00285488 0.381416i
\(211\) −1.81133 −0.124697 −0.0623486 0.998054i \(-0.519859\pi\)
−0.0623486 + 0.998054i \(0.519859\pi\)
\(212\) 1.84469 + 3.19509i 0.126694 + 0.219440i
\(213\) −5.29680 + 9.17432i −0.362930 + 0.628614i
\(214\) 2.97913 5.16001i 0.203649 0.352731i
\(215\) 3.93267 + 6.81158i 0.268206 + 0.464546i
\(216\) 5.38000 0.366063
\(217\) −14.4243 + 8.18453i −0.979184 + 0.555602i
\(218\) 1.87739 0.127153
\(219\) −2.04913 3.54919i −0.138467 0.239832i
\(220\) −2.76952 + 4.79694i −0.186721 + 0.323410i
\(221\) −0.828893 + 1.43569i −0.0557574 + 0.0965746i
\(222\) −1.04458 1.80926i −0.0701075 0.121430i
\(223\) −23.0694 −1.54484 −0.772422 0.635110i \(-0.780955\pi\)
−0.772422 + 0.635110i \(0.780955\pi\)
\(224\) 12.6130 7.15679i 0.842742 0.478183i
\(225\) 2.18459 0.145639
\(226\) 6.01250 + 10.4140i 0.399945 + 0.692726i
\(227\) −13.9097 + 24.0922i −0.923216 + 1.59906i −0.128811 + 0.991669i \(0.541116\pi\)
−0.794405 + 0.607388i \(0.792217\pi\)
\(228\) 6.29559 10.9043i 0.416936 0.722154i
\(229\) −8.23980 14.2717i −0.544501 0.943103i −0.998638 0.0521716i \(-0.983386\pi\)
0.454137 0.890932i \(-0.349948\pi\)
\(230\) −0.394518 −0.0260137
\(231\) 0.215649 28.8110i 0.0141887 1.89562i
\(232\) 4.00145 0.262708
\(233\) 3.26108 + 5.64835i 0.213640 + 0.370036i 0.952851 0.303438i \(-0.0981346\pi\)
−0.739211 + 0.673474i \(0.764801\pi\)
\(234\) −3.73809 + 6.47455i −0.244366 + 0.423255i
\(235\) −0.276077 + 0.478180i −0.0180093 + 0.0311930i
\(236\) 6.32662 + 10.9580i 0.411828 + 0.713307i
\(237\) −16.4248 −1.06690
\(238\) 0.930323 + 0.546447i 0.0603039 + 0.0354209i
\(239\) −23.2932 −1.50671 −0.753355 0.657614i \(-0.771566\pi\)
−0.753355 + 0.657614i \(0.771566\pi\)
\(240\) −0.389743 0.675054i −0.0251578 0.0435746i
\(241\) −10.6538 + 18.4529i −0.686271 + 1.18866i 0.286765 + 0.958001i \(0.407420\pi\)
−0.973036 + 0.230655i \(0.925913\pi\)
\(242\) 5.44698 9.43444i 0.350145 0.606469i
\(243\) −9.48939 16.4361i −0.608744 1.05438i
\(244\) −9.71872 −0.622177
\(245\) 3.59035 6.00911i 0.229379 0.383908i
\(246\) −1.09173 −0.0696061
\(247\) −8.90442 15.4229i −0.566574 0.981336i
\(248\) −9.08182 + 15.7302i −0.576696 + 0.998867i
\(249\) 1.65480 2.86620i 0.104869 0.181638i
\(250\) 0.458759 + 0.794593i 0.0290144 + 0.0502545i
\(251\) 26.7802 1.69035 0.845177 0.534487i \(-0.179495\pi\)
0.845177 + 0.534487i \(0.179495\pi\)
\(252\) −5.77199 3.39032i −0.363601 0.213570i
\(253\) −2.05644 −0.129288
\(254\) −1.87856 3.25377i −0.117871 0.204159i
\(255\) −0.506011 + 0.876437i −0.0316877 + 0.0548846i
\(256\) 8.33788 14.4416i 0.521118 0.902602i
\(257\) −1.76793 3.06214i −0.110280 0.191011i 0.805603 0.592456i \(-0.201842\pi\)
−0.915883 + 0.401445i \(0.868508\pi\)
\(258\) −16.4319 −1.02301
\(259\) 0.0198028 2.64568i 0.00123049 0.164394i
\(260\) 4.31981 0.267903
\(261\) −1.50837 2.61257i −0.0933658 0.161714i
\(262\) −8.12657 + 14.0756i −0.502061 + 0.869596i
\(263\) −8.77582 + 15.2002i −0.541140 + 0.937282i 0.457699 + 0.889107i \(0.348674\pi\)
−0.998839 + 0.0481748i \(0.984660\pi\)
\(264\) −15.7776 27.3276i −0.971042 1.68189i
\(265\) 3.18554 0.195686
\(266\) −10.0808 + 5.71997i −0.618093 + 0.350714i
\(267\) 32.5765 1.99365
\(268\) −0.821598 1.42305i −0.0501871 0.0869266i
\(269\) 4.81480 8.33947i 0.293563 0.508467i −0.681086 0.732203i \(-0.738492\pi\)
0.974650 + 0.223736i \(0.0718255\pi\)
\(270\) 0.851762 1.47529i 0.0518366 0.0897836i
\(271\) 1.09781 + 1.90146i 0.0666870 + 0.115505i 0.897441 0.441134i \(-0.145424\pi\)
−0.830754 + 0.556640i \(0.812090\pi\)
\(272\) 0.152154 0.00922570
\(273\) −19.5431 + 11.0890i −1.18280 + 0.671137i
\(274\) −14.3850 −0.869032
\(275\) 2.39130 + 4.14186i 0.144201 + 0.249763i
\(276\) −0.566956 + 0.981996i −0.0341267 + 0.0591092i
\(277\) −11.1863 + 19.3753i −0.672120 + 1.16415i 0.305181 + 0.952294i \(0.401283\pi\)
−0.977302 + 0.211852i \(0.932050\pi\)
\(278\) 8.67753 + 15.0299i 0.520444 + 0.901435i
\(279\) 13.6938 0.819826
\(280\) 0.0573819 7.66629i 0.00342923 0.458149i
\(281\) 23.6888 1.41315 0.706577 0.707636i \(-0.250238\pi\)
0.706577 + 0.707636i \(0.250238\pi\)
\(282\) −0.576769 0.998993i −0.0343461 0.0594892i
\(283\) 4.92568 8.53152i 0.292801 0.507146i −0.681670 0.731660i \(-0.738746\pi\)
0.974471 + 0.224514i \(0.0720793\pi\)
\(284\) −2.69417 + 4.66645i −0.159870 + 0.276903i
\(285\) −5.43585 9.41516i −0.321992 0.557706i
\(286\) −16.3672 −0.967812
\(287\) −1.19215 0.700237i −0.0703703 0.0413337i
\(288\) −11.9742 −0.705589
\(289\) 8.40123 + 14.5514i 0.494190 + 0.855962i
\(290\) 0.633509 1.09727i 0.0372009 0.0644339i
\(291\) −4.21299 + 7.29711i −0.246970 + 0.427764i
\(292\) −1.04227 1.80527i −0.0609943 0.105645i
\(293\) 10.2905 0.601179 0.300589 0.953754i \(-0.402817\pi\)
0.300589 + 0.953754i \(0.402817\pi\)
\(294\) 7.12165 + 12.7729i 0.415343 + 0.744930i
\(295\) 10.9253 0.636094
\(296\) −1.44883 2.50945i −0.0842118 0.145859i
\(297\) 4.43985 7.69005i 0.257626 0.446222i
\(298\) 3.47973 6.02707i 0.201575 0.349139i
\(299\) 0.801896 + 1.38892i 0.0463748 + 0.0803236i
\(300\) 2.63710 0.152253
\(301\) −17.9434 10.5395i −1.03424 0.607484i
\(302\) 7.52741 0.433154
\(303\) −1.22712 2.12543i −0.0704962 0.122103i
\(304\) −0.817261 + 1.41554i −0.0468731 + 0.0811866i
\(305\) −4.19575 + 7.26725i −0.240248 + 0.416122i
\(306\) −0.445438 0.771521i −0.0254640 0.0441049i
\(307\) 11.5781 0.660797 0.330398 0.943842i \(-0.392817\pi\)
0.330398 + 0.943842i \(0.392817\pi\)
\(308\) 0.109688 14.6545i 0.00625007 0.835017i
\(309\) −8.83728 −0.502736
\(310\) 2.87566 + 4.98080i 0.163327 + 0.282890i
\(311\) −0.530049 + 0.918072i −0.0300563 + 0.0520591i −0.880662 0.473745i \(-0.842902\pi\)
0.850606 + 0.525804i \(0.176235\pi\)
\(312\) −12.3047 + 21.3124i −0.696617 + 1.20658i
\(313\) −14.2028 24.5999i −0.802788 1.39047i −0.917774 0.397103i \(-0.870015\pi\)
0.114985 0.993367i \(-0.463318\pi\)
\(314\) −15.7915 −0.891164
\(315\) −5.02701 + 2.85239i −0.283240 + 0.160714i
\(316\) −8.35433 −0.469968
\(317\) −9.85336 17.0665i −0.553420 0.958551i −0.998025 0.0628241i \(-0.979989\pi\)
0.444605 0.895727i \(-0.353344\pi\)
\(318\) −3.32755 + 5.76348i −0.186600 + 0.323200i
\(319\) 3.30220 5.71957i 0.184888 0.320235i
\(320\) −2.85690 4.94829i −0.159706 0.276618i
\(321\) −14.7864 −0.825298
\(322\) 0.907835 0.515118i 0.0505917 0.0287064i
\(323\) 2.12214 0.118079
\(324\) −6.24327 10.8137i −0.346848 0.600759i
\(325\) 1.86494 3.23018i 0.103448 0.179178i
\(326\) 0.939447 1.62717i 0.0520311 0.0901206i
\(327\) −2.32952 4.03485i −0.128823 0.223128i
\(328\) −1.51423 −0.0836095
\(329\) 0.0109342 1.46082i 0.000602822 0.0805378i
\(330\) −9.99161 −0.550020
\(331\) 12.4681 + 21.5954i 0.685308 + 1.18699i 0.973340 + 0.229367i \(0.0736656\pi\)
−0.288032 + 0.957621i \(0.593001\pi\)
\(332\) 0.841702 1.45787i 0.0461944 0.0800111i
\(333\) −1.09229 + 1.89191i −0.0598574 + 0.103676i
\(334\) −2.11819 3.66881i −0.115902 0.200748i
\(335\) −1.41880 −0.0775171
\(336\) 1.77826 + 1.04450i 0.0970119 + 0.0569822i
\(337\) −13.4057 −0.730258 −0.365129 0.930957i \(-0.618975\pi\)
−0.365129 + 0.930957i \(0.618975\pi\)
\(338\) 0.418409 + 0.724706i 0.0227585 + 0.0394188i
\(339\) 14.9210 25.8439i 0.810398 1.40365i
\(340\) −0.257379 + 0.445793i −0.0139583 + 0.0241765i
\(341\) 14.9895 + 25.9627i 0.811729 + 1.40596i
\(342\) 9.57026 0.517500
\(343\) −0.415828 + 18.5156i −0.0224526 + 0.999748i
\(344\) −22.7911 −1.22881
\(345\) 0.489530 + 0.847891i 0.0263554 + 0.0456489i
\(346\) −3.26232 + 5.65050i −0.175383 + 0.303773i
\(347\) 11.3222 19.6107i 0.607810 1.05276i −0.383791 0.923420i \(-0.625382\pi\)
0.991601 0.129338i \(-0.0412851\pi\)
\(348\) −1.82081 3.15374i −0.0976058 0.169058i
\(349\) 15.4314 0.826025 0.413013 0.910725i \(-0.364477\pi\)
0.413013 + 0.910725i \(0.364477\pi\)
\(350\) −2.09315 1.22946i −0.111884 0.0657175i
\(351\) −6.92516 −0.369637
\(352\) −13.1073 22.7025i −0.698621 1.21005i
\(353\) −10.6753 + 18.4902i −0.568189 + 0.984133i 0.428556 + 0.903515i \(0.359022\pi\)
−0.996745 + 0.0806173i \(0.974311\pi\)
\(354\) −11.4123 + 19.7667i −0.606557 + 1.05059i
\(355\) 2.32625 + 4.02918i 0.123464 + 0.213847i
\(356\) 16.5698 0.878197
\(357\) 0.0200409 2.67749i 0.00106068 0.141708i
\(358\) 8.40270 0.444097
\(359\) 15.2379 + 26.3929i 0.804228 + 1.39296i 0.916811 + 0.399322i \(0.130754\pi\)
−0.112583 + 0.993642i \(0.535912\pi\)
\(360\) −3.16511 + 5.48212i −0.166816 + 0.288933i
\(361\) −1.89856 + 3.28840i −0.0999241 + 0.173074i
\(362\) 7.22091 + 12.5070i 0.379523 + 0.657352i
\(363\) −27.0351 −1.41898
\(364\) −9.94043 + 5.64033i −0.521020 + 0.295634i
\(365\) −1.79987 −0.0942095
\(366\) −8.76558 15.1824i −0.458184 0.793599i
\(367\) 11.2558 19.4957i 0.587550 1.01767i −0.407003 0.913427i \(-0.633426\pi\)
0.994552 0.104239i \(-0.0332406\pi\)
\(368\) 0.0735992 0.127478i 0.00383663 0.00664523i
\(369\) 0.570799 + 0.988654i 0.0297146 + 0.0514672i
\(370\) −0.917517 −0.0476994
\(371\) −7.33033 + 4.15933i −0.380572 + 0.215941i
\(372\) 16.5303 0.857056
\(373\) 0.492766 + 0.853496i 0.0255145 + 0.0441924i 0.878501 0.477741i \(-0.158544\pi\)
−0.852986 + 0.521933i \(0.825211\pi\)
\(374\) 0.975173 1.68905i 0.0504250 0.0873386i
\(375\) 1.13848 1.97191i 0.0587911 0.101829i
\(376\) −0.799980 1.38561i −0.0412558 0.0714572i
\(377\) −5.15067 −0.265273
\(378\) −0.0337345 + 4.50697i −0.00173512 + 0.231814i
\(379\) −6.77672 −0.348097 −0.174048 0.984737i \(-0.555685\pi\)
−0.174048 + 0.984737i \(0.555685\pi\)
\(380\) −2.76490 4.78895i −0.141836 0.245668i
\(381\) −4.66196 + 8.07475i −0.238839 + 0.413682i
\(382\) −9.36459 + 16.2199i −0.479134 + 0.829885i
\(383\) −16.6369 28.8159i −0.850104 1.47242i −0.881114 0.472904i \(-0.843206\pi\)
0.0310099 0.999519i \(-0.490128\pi\)
\(384\) −13.0242 −0.664638
\(385\) −10.9107 6.40863i −0.556059 0.326614i
\(386\) 19.6421 0.999755
\(387\) 8.59126 + 14.8805i 0.436718 + 0.756418i
\(388\) −2.14290 + 3.71162i −0.108789 + 0.188429i
\(389\) 4.35094 7.53605i 0.220601 0.382093i −0.734389 0.678728i \(-0.762531\pi\)
0.954991 + 0.296636i \(0.0958647\pi\)
\(390\) 3.89616 + 6.74835i 0.197290 + 0.341716i
\(391\) −0.191111 −0.00966490
\(392\) 9.87775 + 17.7160i 0.498902 + 0.894794i
\(393\) 40.3348 2.03462
\(394\) 8.56654 + 14.8377i 0.431576 + 0.747511i
\(395\) −3.60672 + 6.24702i −0.181474 + 0.314321i
\(396\) −6.05025 + 10.4793i −0.304037 + 0.526607i
\(397\) −10.8182 18.7377i −0.542950 0.940417i −0.998733 0.0503263i \(-0.983974\pi\)
0.455783 0.890091i \(-0.349359\pi\)
\(398\) −17.7406 −0.889256
\(399\) 24.8018 + 14.5679i 1.24164 + 0.729309i
\(400\) −0.342335 −0.0171167
\(401\) 10.4835 + 18.1580i 0.523522 + 0.906767i 0.999625 + 0.0273772i \(0.00871553\pi\)
−0.476103 + 0.879389i \(0.657951\pi\)
\(402\) 1.48204 2.56698i 0.0739176 0.128029i
\(403\) 11.6901 20.2479i 0.582327 1.00862i
\(404\) −0.624165 1.08108i −0.0310533 0.0537860i
\(405\) −10.7813 −0.535729
\(406\) −0.0250905 + 3.35212i −0.00124522 + 0.166363i
\(407\) −4.78260 −0.237065
\(408\) −1.46625 2.53962i −0.0725903 0.125730i
\(409\) −3.97744 + 6.88912i −0.196672 + 0.340645i −0.947447 0.319912i \(-0.896347\pi\)
0.750776 + 0.660557i \(0.229680\pi\)
\(410\) −0.239733 + 0.415230i −0.0118396 + 0.0205067i
\(411\) 17.8494 + 30.9161i 0.880447 + 1.52498i
\(412\) −4.49502 −0.221454
\(413\) −25.1404 + 14.2650i −1.23708 + 0.701935i
\(414\) −0.861859 −0.0423581
\(415\) −0.726757 1.25878i −0.0356751 0.0617911i
\(416\) −10.2222 + 17.7054i −0.501184 + 0.868077i
\(417\) 21.5347 37.2992i 1.05456 1.82655i
\(418\) 10.4758 + 18.1447i 0.512390 + 0.887485i
\(419\) −18.4585 −0.901756 −0.450878 0.892585i \(-0.648889\pi\)
−0.450878 + 0.892585i \(0.648889\pi\)
\(420\) −6.06830 + 3.44323i −0.296103 + 0.168013i
\(421\) 23.5805 1.14924 0.574622 0.818419i \(-0.305149\pi\)
0.574622 + 0.818419i \(0.305149\pi\)
\(422\) −0.830963 1.43927i −0.0404507 0.0700626i
\(423\) −0.603115 + 1.04463i −0.0293245 + 0.0507915i
\(424\) −4.61532 + 7.99397i −0.224140 + 0.388221i
\(425\) 0.222230 + 0.384914i 0.0107797 + 0.0186711i
\(426\) −9.71980 −0.470926
\(427\) 0.166175 22.2012i 0.00804178 1.07439i
\(428\) −7.52100 −0.363541
\(429\) 20.3089 + 35.1761i 0.980524 + 1.69832i
\(430\) −3.60829 + 6.24974i −0.174007 + 0.301389i
\(431\) 5.43462 9.41303i 0.261776 0.453410i −0.704938 0.709269i \(-0.749025\pi\)
0.966714 + 0.255859i \(0.0823584\pi\)
\(432\) 0.317801 + 0.550447i 0.0152902 + 0.0264834i
\(433\) −23.6994 −1.13892 −0.569461 0.822018i \(-0.692848\pi\)
−0.569461 + 0.822018i \(0.692848\pi\)
\(434\) −13.1206 7.70671i −0.629811 0.369934i
\(435\) −3.14431 −0.150758
\(436\) −1.18489 2.05229i −0.0567460 0.0982870i
\(437\) 1.02651 1.77796i 0.0491046 0.0850516i
\(438\) 1.88011 3.25644i 0.0898350 0.155599i
\(439\) −8.01491 13.8822i −0.382531 0.662563i 0.608892 0.793253i \(-0.291614\pi\)
−0.991423 + 0.130690i \(0.958281\pi\)
\(440\) −13.8584 −0.660673
\(441\) 7.84344 13.1274i 0.373497 0.625115i
\(442\) −1.52105 −0.0723488
\(443\) 2.81842 + 4.88165i 0.133907 + 0.231934i 0.925180 0.379530i \(-0.123914\pi\)
−0.791272 + 0.611464i \(0.790581\pi\)
\(444\) −1.31855 + 2.28380i −0.0625756 + 0.108384i
\(445\) 7.15348 12.3902i 0.339108 0.587351i
\(446\) −10.5833 18.3308i −0.501134 0.867989i
\(447\) −17.2711 −0.816893
\(448\) 13.0350 + 7.65642i 0.615847 + 0.361732i
\(449\) −25.3650 −1.19705 −0.598523 0.801105i \(-0.704246\pi\)
−0.598523 + 0.801105i \(0.704246\pi\)
\(450\) 1.00220 + 1.73586i 0.0472441 + 0.0818292i
\(451\) −1.24962 + 2.16441i −0.0588424 + 0.101918i
\(452\) 7.58945 13.1453i 0.356978 0.618304i
\(453\) −9.34026 16.1778i −0.438844 0.760099i
\(454\) −25.5247 −1.19793
\(455\) −0.0738622 + 9.86807i −0.00346271 + 0.462622i
\(456\) 31.5026 1.47524
\(457\) −6.44686 11.1663i −0.301571 0.522337i 0.674921 0.737890i \(-0.264178\pi\)
−0.976492 + 0.215553i \(0.930845\pi\)
\(458\) 7.56015 13.0946i 0.353263 0.611869i
\(459\) 0.412608 0.714657i 0.0192589 0.0333573i
\(460\) 0.248996 + 0.431273i 0.0116095 + 0.0201082i
\(461\) −36.4136 −1.69595 −0.847976 0.530035i \(-0.822179\pi\)
−0.847976 + 0.530035i \(0.822179\pi\)
\(462\) 22.9920 13.0459i 1.06968 0.606952i
\(463\) −22.1257 −1.02827 −0.514133 0.857710i \(-0.671886\pi\)
−0.514133 + 0.857710i \(0.671886\pi\)
\(464\) 0.236368 + 0.409402i 0.0109731 + 0.0190060i
\(465\) 7.13643 12.3607i 0.330944 0.573212i
\(466\) −2.99209 + 5.18246i −0.138606 + 0.240073i
\(467\) 9.58223 + 16.5969i 0.443413 + 0.768013i 0.997940 0.0641520i \(-0.0204343\pi\)
−0.554527 + 0.832165i \(0.687101\pi\)
\(468\) 9.43702 0.436226
\(469\) 3.26483 1.85251i 0.150756 0.0855408i
\(470\) −0.506611 −0.0233682
\(471\) 19.5946 + 33.9388i 0.902870 + 1.56382i
\(472\) −15.8289 + 27.4165i −0.728584 + 1.26194i
\(473\) −18.8084 + 32.5771i −0.864810 + 1.49790i
\(474\) −7.53500 13.0510i −0.346094 0.599452i
\(475\) −4.77463 −0.219075
\(476\) 0.0101936 1.36188i 0.000467225 0.0624218i
\(477\) 6.95910 0.318635
\(478\) −10.6859 18.5086i −0.488764 0.846564i
\(479\) 11.1757 19.3569i 0.510631 0.884439i −0.489293 0.872120i \(-0.662745\pi\)
0.999924 0.0123198i \(-0.00392162\pi\)
\(480\) −6.24030 + 10.8085i −0.284830 + 0.493339i
\(481\) 1.86494 + 3.23018i 0.0850341 + 0.147283i
\(482\) −19.5501 −0.890481
\(483\) −2.23355 1.31193i −0.101630 0.0596949i
\(484\) −13.7512 −0.625055
\(485\) 1.85026 + 3.20475i 0.0840161 + 0.145520i
\(486\) 8.70667 15.0804i 0.394943 0.684061i
\(487\) 17.8944 30.9939i 0.810871 1.40447i −0.101385 0.994847i \(-0.532327\pi\)
0.912255 0.409622i \(-0.134339\pi\)
\(488\) −12.1579 21.0581i −0.550362 0.953255i
\(489\) −4.66278 −0.210858
\(490\) 6.42190 + 0.0961407i 0.290112 + 0.00434320i
\(491\) −17.3309 −0.782135 −0.391067 0.920362i \(-0.627894\pi\)
−0.391067 + 0.920362i \(0.627894\pi\)
\(492\) 0.689034 + 1.19344i 0.0310640 + 0.0538045i
\(493\) 0.306882 0.531535i 0.0138213 0.0239392i
\(494\) 8.16995 14.1508i 0.367584 0.636674i
\(495\) 5.22401 + 9.04825i 0.234802 + 0.406689i
\(496\) −2.14588 −0.0963527
\(497\) −10.6138 6.23429i −0.476096 0.279646i
\(498\) 3.03662 0.136074
\(499\) 7.25353 + 12.5635i 0.324713 + 0.562419i 0.981454 0.191697i \(-0.0613991\pi\)
−0.656742 + 0.754116i \(0.728066\pi\)
\(500\) 0.579081 1.00300i 0.0258973 0.0448554i
\(501\) −5.25663 + 9.10475i −0.234849 + 0.406770i
\(502\) 12.2857 + 21.2794i 0.548336 + 0.949746i
\(503\) −0.623871 −0.0278170 −0.0139085 0.999903i \(-0.504427\pi\)
−0.0139085 + 0.999903i \(0.504427\pi\)
\(504\) 0.125356 16.7477i 0.00558379 0.746002i
\(505\) −1.07785 −0.0479638
\(506\) −0.943411 1.63404i −0.0419397 0.0726418i
\(507\) 1.03835 1.79848i 0.0461148 0.0798732i
\(508\) −2.37127 + 4.10716i −0.105208 + 0.182226i
\(509\) −13.4168 23.2385i −0.594687 1.03003i −0.993591 0.113036i \(-0.963943\pi\)
0.398904 0.916993i \(-0.369391\pi\)
\(510\) −0.928548 −0.0411168
\(511\) 4.14173 2.35007i 0.183219 0.103961i
\(512\) 3.86036 0.170605
\(513\) 4.43245 + 7.67723i 0.195698 + 0.338958i
\(514\) 1.62211 2.80957i 0.0715480 0.123925i
\(515\) −1.94058 + 3.36118i −0.0855122 + 0.148111i
\(516\) 10.3708 + 17.9628i 0.456550 + 0.790769i
\(517\) −2.64074 −0.116139
\(518\) 2.11132 1.19799i 0.0927661 0.0526367i
\(519\) 16.1920 0.710748
\(520\) 5.40398 + 9.35998i 0.236980 + 0.410462i
\(521\) 20.1567 34.9124i 0.883079 1.52954i 0.0351802 0.999381i \(-0.488799\pi\)
0.847899 0.530157i \(-0.177867\pi\)
\(522\) 1.38396 2.39708i 0.0605741 0.104917i
\(523\) −5.38986 9.33551i −0.235682 0.408213i 0.723789 0.690022i \(-0.242399\pi\)
−0.959471 + 0.281809i \(0.909066\pi\)
\(524\) 20.5160 0.896246
\(525\) −0.0450904 + 6.02413i −0.00196790 + 0.262914i
\(526\) −16.1039 −0.702164
\(527\) 1.39302 + 2.41278i 0.0606809 + 0.105102i
\(528\) 1.86398 3.22852i 0.0811195 0.140503i
\(529\) 11.4076 19.7585i 0.495981 0.859064i
\(530\) 1.46139 + 2.53121i 0.0634789 + 0.109949i
\(531\) 23.8672 1.03575
\(532\) 12.6153 + 7.40987i 0.546941 + 0.321259i
\(533\) 1.94912 0.0844259
\(534\) 14.9448 + 25.8851i 0.646723 + 1.12016i
\(535\) −3.24695 + 5.62389i −0.140378 + 0.243142i
\(536\) 2.05560 3.56040i 0.0887884 0.153786i
\(537\) −10.4263 18.0590i −0.449930 0.779301i
\(538\) 8.83532 0.380918
\(539\) 33.4745 + 0.501138i 1.44185 + 0.0215856i
\(540\) −2.15032 −0.0925351
\(541\) 9.59461 + 16.6184i 0.412505 + 0.714479i 0.995163 0.0982384i \(-0.0313208\pi\)
−0.582658 + 0.812717i \(0.697987\pi\)
\(542\) −1.00726 + 1.74462i −0.0432653 + 0.0749378i
\(543\) 17.9199 31.0381i 0.769015 1.33197i
\(544\) −1.21810 2.10981i −0.0522255 0.0904572i
\(545\) −2.04616 −0.0876478
\(546\) −17.7768 10.4416i −0.760777 0.446860i
\(547\) 30.8450 1.31884 0.659419 0.751776i \(-0.270803\pi\)
0.659419 + 0.751776i \(0.270803\pi\)
\(548\) 9.07897 + 15.7252i 0.387834 + 0.671749i
\(549\) −9.16599 + 15.8760i −0.391195 + 0.677569i
\(550\) −2.19406 + 3.80022i −0.0935550 + 0.162042i
\(551\) 3.29669 + 5.71004i 0.140444 + 0.243256i
\(552\) −2.83699 −0.120750
\(553\) 0.142846 19.0844i 0.00607443 0.811552i
\(554\) −20.5273 −0.872120
\(555\) 1.13848 + 1.97191i 0.0483260 + 0.0837030i
\(556\) 10.9535 18.9720i 0.464531 0.804591i
\(557\) −17.8384 + 30.8970i −0.755836 + 1.30915i 0.189122 + 0.981954i \(0.439436\pi\)
−0.944958 + 0.327192i \(0.893897\pi\)
\(558\) 6.28214 + 10.8810i 0.265944 + 0.460629i
\(559\) 29.3368 1.24081
\(560\) 0.787755 0.446982i 0.0332887 0.0188885i
\(561\) −4.84010 −0.204349
\(562\) 10.8674 + 18.8229i 0.458415 + 0.793998i
\(563\) −2.54089 + 4.40094i −0.107086 + 0.185478i −0.914588 0.404386i \(-0.867485\pi\)
0.807503 + 0.589864i \(0.200819\pi\)
\(564\) −0.728043 + 1.26101i −0.0306562 + 0.0530980i
\(565\) −6.55301 11.3501i −0.275687 0.477504i
\(566\) 9.03878 0.379928
\(567\) 24.8092 14.0771i 1.04189 0.591182i
\(568\) −13.4814 −0.565667
\(569\) −17.1913 29.7762i −0.720696 1.24828i −0.960721 0.277516i \(-0.910489\pi\)
0.240025 0.970767i \(-0.422844\pi\)
\(570\) 4.98748 8.63857i 0.208903 0.361830i
\(571\) 16.7372 28.9897i 0.700431 1.21318i −0.267885 0.963451i \(-0.586325\pi\)
0.968315 0.249731i \(-0.0803421\pi\)
\(572\) 10.3300 + 17.8920i 0.431918 + 0.748104i
\(573\) 46.4795 1.94171
\(574\) 0.00949477 1.26851i 0.000396304 0.0529467i
\(575\) 0.429984 0.0179316
\(576\) −6.24115 10.8100i −0.260048 0.450416i
\(577\) −7.72875 + 13.3866i −0.321752 + 0.557291i −0.980850 0.194767i \(-0.937605\pi\)
0.659098 + 0.752057i \(0.270938\pi\)
\(578\) −7.70827 + 13.3511i −0.320622 + 0.555333i
\(579\) −24.3725 42.2144i −1.01289 1.75437i
\(580\) −1.59933 −0.0664086
\(581\) 3.31593 + 1.94769i 0.137568 + 0.0808038i
\(582\) −7.73098 −0.320459
\(583\) 7.61759 + 13.1941i 0.315488 + 0.546442i
\(584\) 2.60771 4.51669i 0.107908 0.186902i
\(585\) 4.07413 7.05660i 0.168445 0.291755i
\(586\) 4.72087 + 8.17678i 0.195017 + 0.337780i
\(587\) −8.32431 −0.343581 −0.171791 0.985133i \(-0.554955\pi\)
−0.171791 + 0.985133i \(0.554955\pi\)
\(588\) 9.46812 15.8466i 0.390459 0.653503i
\(589\) −29.9291 −1.23321
\(590\) 5.01206 + 8.68114i 0.206343 + 0.357397i
\(591\) 21.2593 36.8221i 0.874489 1.51466i
\(592\) 0.171167 0.296470i 0.00703493 0.0121849i
\(593\) 2.95840 + 5.12410i 0.121487 + 0.210421i 0.920354 0.391086i \(-0.127900\pi\)
−0.798867 + 0.601507i \(0.794567\pi\)
\(594\) 8.14728 0.334287
\(595\) −1.01396 0.595572i −0.0415682 0.0244161i
\(596\) −8.78479 −0.359839
\(597\) 22.0131 + 38.1278i 0.900936 + 1.56047i
\(598\) −0.735753 + 1.27436i −0.0300872 + 0.0521125i
\(599\) 18.3976 31.8656i 0.751706 1.30199i −0.195289 0.980746i \(-0.562564\pi\)
0.946995 0.321248i \(-0.104102\pi\)
\(600\) 3.29895 + 5.71395i 0.134679 + 0.233271i
\(601\) −7.15767 −0.291967 −0.145984 0.989287i \(-0.546635\pi\)
−0.145984 + 0.989287i \(0.546635\pi\)
\(602\) 0.142908 19.0927i 0.00582451 0.778162i
\(603\) −3.09948 −0.126221
\(604\) −4.75085 8.22871i −0.193309 0.334822i
\(605\) −5.93665 + 10.2826i −0.241359 + 0.418046i
\(606\) 1.12590 1.95012i 0.0457367 0.0792182i
\(607\) −19.7842 34.2672i −0.803014 1.39086i −0.917623 0.397451i \(-0.869895\pi\)
0.114609 0.993411i \(-0.463439\pi\)
\(608\) 26.1709 1.06137
\(609\) 7.23546 4.10549i 0.293195 0.166363i
\(610\) −7.69934 −0.311737
\(611\) 1.02974 + 1.78356i 0.0416587 + 0.0721550i
\(612\) −0.562267 + 0.973874i −0.0227283 + 0.0393665i
\(613\) −23.6017 + 40.8793i −0.953263 + 1.65110i −0.214970 + 0.976621i \(0.568965\pi\)
−0.738293 + 0.674480i \(0.764368\pi\)
\(614\) 5.31155 + 9.19987i 0.214357 + 0.371277i
\(615\) 1.18987 0.0479804
\(616\) 31.8899 18.0948i 1.28488 0.729058i
\(617\) −15.4297 −0.621176 −0.310588 0.950545i \(-0.600526\pi\)
−0.310588 + 0.950545i \(0.600526\pi\)
\(618\) −4.05418 7.02204i −0.163083 0.282468i
\(619\) 17.5035 30.3170i 0.703527 1.21854i −0.263694 0.964606i \(-0.584941\pi\)
0.967221 0.253938i \(-0.0817258\pi\)
\(620\) 3.62989 6.28716i 0.145780 0.252498i
\(621\) −0.399169 0.691381i −0.0160181 0.0277441i
\(622\) −0.972659 −0.0390001
\(623\) −0.283318 + 37.8516i −0.0113509 + 1.51649i
\(624\) −2.90739 −0.116389
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 13.0313 22.5709i 0.520835 0.902113i
\(627\) 25.9975 45.0290i 1.03824 1.79828i
\(628\) 9.96662 + 17.2627i 0.397712 + 0.688857i
\(629\) −0.444460 −0.0177218
\(630\) −4.57268 2.68587i −0.182180 0.107008i
\(631\) −7.46268 −0.297085 −0.148542 0.988906i \(-0.547458\pi\)
−0.148542 + 0.988906i \(0.547458\pi\)
\(632\) −10.4511 18.1018i −0.415721 0.720050i
\(633\) −2.06217 + 3.57179i −0.0819640 + 0.141966i
\(634\) 9.04062 15.6588i 0.359049 0.621891i
\(635\) 2.04744 + 3.54627i 0.0812502 + 0.140730i
\(636\) 8.40059 0.333105
\(637\) −12.7147 22.8041i −0.503773 0.903532i
\(638\) 6.05964 0.239904
\(639\) 5.08189 + 8.80210i 0.201037 + 0.348206i
\(640\) −2.85998 + 4.95364i −0.113051 + 0.195810i
\(641\) 19.2134 33.2785i 0.758883 1.31442i −0.184538 0.982825i \(-0.559079\pi\)
0.943421 0.331598i \(-0.107588\pi\)
\(642\) −6.78340 11.7492i −0.267719 0.463704i
\(643\) −24.2258 −0.955372 −0.477686 0.878531i \(-0.658524\pi\)
−0.477686 + 0.878531i \(0.658524\pi\)
\(644\) −1.13608 0.667303i −0.0447678 0.0262954i
\(645\) 17.9091 0.705171
\(646\) 0.973548 + 1.68623i 0.0383037 + 0.0663440i
\(647\) 8.94935 15.5007i 0.351835 0.609397i −0.634736 0.772729i \(-0.718891\pi\)
0.986571 + 0.163333i \(0.0522244\pi\)
\(648\) 15.6204 27.0553i 0.613626 1.06283i
\(649\) 26.1256 + 45.2509i 1.02552 + 1.77625i
\(650\) 3.42223 0.134231
\(651\) −0.282643 + 37.7614i −0.0110776 + 1.47999i
\(652\) −2.37169 −0.0928825
\(653\) 1.83087 + 3.17116i 0.0716476 + 0.124097i 0.899624 0.436666i \(-0.143841\pi\)
−0.827976 + 0.560764i \(0.810508\pi\)
\(654\) 2.13737 3.70204i 0.0835779 0.144761i
\(655\) 8.85714 15.3410i 0.346077 0.599423i
\(656\) −0.0894468 0.154926i −0.00349231 0.00604886i
\(657\) −3.93198 −0.153401
\(658\) 1.16578 0.661477i 0.0454467 0.0257870i
\(659\) 39.0361 1.52063 0.760315 0.649555i \(-0.225045\pi\)
0.760315 + 0.649555i \(0.225045\pi\)
\(660\) 6.30610 + 10.9225i 0.245465 + 0.425157i
\(661\) 3.72830 6.45760i 0.145014 0.251172i −0.784364 0.620301i \(-0.787011\pi\)
0.929378 + 0.369129i \(0.120344\pi\)
\(662\) −11.4397 + 19.8141i −0.444616 + 0.770097i
\(663\) 1.88736 + 3.26901i 0.0732992 + 0.126958i
\(664\) 4.21180 0.163450
\(665\) 10.9870 6.23418i 0.426059 0.241751i
\(666\) −2.00440 −0.0776688
\(667\) −0.296887 0.514223i −0.0114955 0.0199108i
\(668\) −2.67374 + 4.63106i −0.103450 + 0.179181i
\(669\) −26.2642 + 45.4909i −1.01543 + 1.75878i
\(670\) −0.650885 1.12737i −0.0251459 0.0435539i
\(671\) −40.1332 −1.54933
\(672\) 0.247151 33.0197i 0.00953406 1.27376i
\(673\) −40.7322 −1.57011 −0.785056 0.619424i \(-0.787366\pi\)
−0.785056 + 0.619424i \(0.787366\pi\)
\(674\) −6.15000 10.6521i −0.236889 0.410304i
\(675\) −0.928334 + 1.60792i −0.0357316 + 0.0618889i
\(676\) 0.528149 0.914782i 0.0203134 0.0351839i
\(677\) 5.51982 + 9.56061i 0.212144 + 0.367444i 0.952385 0.304897i \(-0.0986221\pi\)
−0.740241 + 0.672341i \(0.765289\pi\)
\(678\) 27.3805 1.05154
\(679\) −8.44209 4.95866i −0.323978 0.190296i
\(680\) −1.28790 −0.0493887
\(681\) 31.6718 + 54.8572i 1.21367 + 2.10213i
\(682\) −13.7532 + 23.8212i −0.526636 + 0.912160i
\(683\) −1.85895 + 3.21979i −0.0711307 + 0.123202i −0.899397 0.437133i \(-0.855994\pi\)
0.828266 + 0.560334i \(0.189327\pi\)
\(684\) −6.04017 10.4619i −0.230952 0.400020i
\(685\) 15.6782 0.599035
\(686\) −14.9031 + 8.16377i −0.569004 + 0.311694i
\(687\) −37.5235 −1.43161
\(688\) −1.34629 2.33184i −0.0513267 0.0889005i
\(689\) 5.94085 10.2899i 0.226328 0.392012i
\(690\) −0.449152 + 0.777955i −0.0170989 + 0.0296162i
\(691\) 21.0173 + 36.4031i 0.799537 + 1.38484i 0.919918 + 0.392111i \(0.128255\pi\)
−0.120380 + 0.992728i \(0.538411\pi\)
\(692\) 8.23592 0.313083
\(693\) −23.8353 14.0002i −0.905428 0.531825i
\(694\) 20.7767 0.788673
\(695\) −9.45763 16.3811i −0.358748 0.621370i
\(696\) 4.55559 7.89051i 0.172679 0.299089i
\(697\) −0.116131 + 0.201144i −0.00439876 + 0.00761888i
\(698\) 7.07930 + 12.2617i 0.267955 + 0.464112i
\(699\) 14.8507 0.561707
\(700\) −0.0229349 + 3.06412i −0.000866856 + 0.115813i
\(701\) 1.44546 0.0545942 0.0272971 0.999627i \(-0.491310\pi\)
0.0272971 + 0.999627i \(0.491310\pi\)
\(702\) −3.17697 5.50268i −0.119907 0.207685i
\(703\) 2.38732 4.13495i 0.0900393 0.155953i
\(704\) 13.6634 23.6657i 0.514959 0.891936i
\(705\) 0.628619 + 1.08880i 0.0236752 + 0.0410066i
\(706\) −19.5895 −0.737262
\(707\) 2.48027 1.40734i 0.0932803 0.0529285i
\(708\) 28.8110 1.08278
\(709\) −10.3675 17.9570i −0.389358 0.674388i 0.603005 0.797737i \(-0.293970\pi\)
−0.992363 + 0.123350i \(0.960636\pi\)
\(710\) −2.13437 + 3.69684i −0.0801016 + 0.138740i
\(711\) −7.87919 + 13.6472i −0.295493 + 0.511808i
\(712\) 20.7284 + 35.9027i 0.776830 + 1.34551i
\(713\) 2.69530 0.100940
\(714\) 2.13671 1.21239i 0.0799642 0.0453727i
\(715\) 17.8386 0.667125
\(716\) −5.30328 9.18555i −0.198193 0.343280i
\(717\) −26.5189 + 45.9321i −0.990368 + 1.71537i
\(718\) −13.9811 + 24.2159i −0.521769 + 0.903731i
\(719\) −12.8297 22.2217i −0.478468 0.828731i 0.521227 0.853418i \(-0.325474\pi\)
−0.999695 + 0.0246869i \(0.992141\pi\)
\(720\) −0.747860 −0.0278711
\(721\) 0.0768578 10.2683i 0.00286234 0.382411i
\(722\) −3.48392 −0.129658
\(723\) 24.2583 + 42.0167i 0.902178 + 1.56262i
\(724\) 9.11480 15.7873i 0.338749 0.586730i
\(725\) −0.690460 + 1.19591i −0.0256430 + 0.0444150i
\(726\) −12.4026 21.4819i −0.460304 0.797269i
\(727\) 9.02233 0.334620 0.167310 0.985904i \(-0.446492\pi\)
0.167310 + 0.985904i \(0.446492\pi\)
\(728\) −24.6565 14.4826i −0.913829 0.536759i
\(729\) −10.8701 −0.402595
\(730\) −0.825706 1.43016i −0.0305608 0.0529328i
\(731\) −1.74791 + 3.02748i −0.0646489 + 0.111975i
\(732\) −11.0646 + 19.1645i −0.408960 + 0.708339i
\(733\) 2.79269 + 4.83708i 0.103150 + 0.178661i 0.912981 0.408002i \(-0.133774\pi\)
−0.809831 + 0.586664i \(0.800441\pi\)
\(734\) 20.6548 0.762384
\(735\) −7.76187 13.9211i −0.286301 0.513489i
\(736\) −2.35685 −0.0868745
\(737\) −3.39277 5.87645i −0.124974 0.216462i
\(738\) −0.523718 + 0.907106i −0.0192783 + 0.0333911i
\(739\) −14.1657 + 24.5356i −0.521092 + 0.902558i 0.478607 + 0.878029i \(0.341142\pi\)
−0.999699 + 0.0245286i \(0.992192\pi\)
\(740\) 0.579081 + 1.00300i 0.0212875 + 0.0368709i
\(741\) −40.5502 −1.48965
\(742\) −6.66782 3.91650i −0.244783 0.143779i
\(743\) −32.5314 −1.19346 −0.596730 0.802442i \(-0.703534\pi\)
−0.596730 + 0.802442i \(0.703534\pi\)
\(744\) 20.6790 + 35.8171i 0.758129 + 1.31312i
\(745\) −3.79255 + 6.56889i −0.138948 + 0.240666i
\(746\) −0.452121 + 0.783097i −0.0165533 + 0.0286712i
\(747\) −1.58766 2.74992i −0.0580896 0.100614i
\(748\) −2.46188 −0.0900153
\(749\) 0.128597 17.1808i 0.00469885 0.627772i
\(750\) 2.08916 0.0762853
\(751\) 18.6431 + 32.2908i 0.680297 + 1.17831i 0.974890 + 0.222687i \(0.0714827\pi\)
−0.294593 + 0.955623i \(0.595184\pi\)
\(752\) 0.0945108 0.163698i 0.00344645 0.00596943i
\(753\) 30.4889 52.8083i 1.11108 1.92444i
\(754\) −2.36292 4.09269i −0.0860523 0.149047i
\(755\) −8.20411 −0.298578
\(756\) 4.94816 2.80765i 0.179963 0.102113i
\(757\) −0.286506 −0.0104132 −0.00520661 0.999986i \(-0.501657\pi\)
−0.00520661 + 0.999986i \(0.501657\pi\)
\(758\) −3.10888 5.38473i −0.112919 0.195582i
\(759\) −2.34123 + 4.05513i −0.0849813 + 0.147192i
\(760\) 6.91765 11.9817i 0.250930 0.434623i
\(761\) 0.724780 + 1.25536i 0.0262733 + 0.0455066i 0.878863 0.477074i \(-0.158303\pi\)
−0.852590 + 0.522581i \(0.824969\pi\)
\(762\) −8.55486 −0.309910
\(763\) 4.70847 2.67165i 0.170458 0.0967201i
\(764\) 23.6415 0.855318
\(765\) 0.485482 + 0.840879i 0.0175526 + 0.0304020i
\(766\) 15.2646 26.4391i 0.551533 0.955282i
\(767\) 20.3750 35.2905i 0.735699 1.27427i
\(768\) −18.9851 32.8832i −0.685066 1.18657i
\(769\) −44.9607 −1.62132 −0.810662 0.585514i \(-0.800893\pi\)
−0.810662 + 0.585514i \(0.800893\pi\)
\(770\) 0.0868970 11.6096i 0.00313155 0.418379i
\(771\) −8.05104 −0.289951
\(772\) −12.3969 21.4720i −0.446174 0.772795i
\(773\) 13.4615 23.3160i 0.484176 0.838617i −0.515659 0.856794i \(-0.672453\pi\)
0.999835 + 0.0181770i \(0.00578624\pi\)
\(774\) −7.88262 + 13.6531i −0.283335 + 0.490751i
\(775\) −3.13418 5.42856i −0.112583 0.195000i
\(776\) −10.7229 −0.384929
\(777\) −5.19450 3.05111i −0.186352 0.109458i
\(778\) 7.98412 0.286245
\(779\) −1.24754 2.16080i −0.0446977 0.0774187i
\(780\) 4.91804 8.51830i 0.176094 0.305004i
\(781\) −11.1255 + 19.2700i −0.398103 + 0.689534i
\(782\) −0.0876738 0.151855i −0.00313521 0.00543034i
\(783\) 2.56391 0.0916266
\(784\) −1.22910 + 2.05713i −0.0438965 + 0.0734688i
\(785\) 17.2111 0.614290
\(786\) 18.5040 + 32.0498i 0.660014 + 1.14318i
\(787\) −3.27219 + 5.66760i −0.116641 + 0.202028i −0.918435 0.395573i \(-0.870546\pi\)
0.801793 + 0.597601i \(0.203879\pi\)
\(788\) 10.8134 18.7293i 0.385210 0.667203i
\(789\) 19.9823 + 34.6103i 0.711387 + 1.23216i
\(790\) −6.61845 −0.235474
\(791\) 29.8991 + 17.5619i 1.06309 + 0.624430i
\(792\) −30.2749 −1.07577
\(793\) 15.6497 + 27.1060i 0.555736 + 0.962563i
\(794\) 9.92589 17.1921i 0.352257 0.610126i
\(795\) 3.62669 6.28161i 0.128625 0.222786i
\(796\) 11.1968 + 19.3934i 0.396860 + 0.687381i
\(797\) 27.3601 0.969146 0.484573 0.874751i \(-0.338975\pi\)
0.484573 + 0.874751i \(0.338975\pi\)
\(798\) −0.197532 + 26.3905i −0.00699256 + 0.934215i
\(799\) −0.245411 −0.00868201
\(800\) 2.74062 + 4.74689i 0.0968955 + 0.167828i
\(801\) 15.6274 27.0675i 0.552167 0.956382i
\(802\) −9.61881 + 16.6603i −0.339652 + 0.588294i
\(803\) −4.30403 7.45481i −0.151886 0.263074i
\(804\) −3.74151 −0.131953
\(805\) −0.989447 + 0.561426i −0.0348734 + 0.0197877i
\(806\) 21.4518 0.755607
\(807\) −10.9631 18.9887i −0.385921 0.668435i
\(808\) 1.56163 2.70482i 0.0549380 0.0951553i
\(809\) −14.7001 + 25.4613i −0.516828 + 0.895172i 0.482981 + 0.875631i \(0.339554\pi\)
−0.999809 + 0.0195413i \(0.993779\pi\)
\(810\) −4.94603 8.56678i −0.173786 0.301006i
\(811\) −1.55800 −0.0547086 −0.0273543 0.999626i \(-0.508708\pi\)
−0.0273543 + 0.999626i \(0.508708\pi\)
\(812\) 3.68026 2.08823i 0.129152 0.0732824i
\(813\) 4.99934 0.175335
\(814\) −2.19406 3.80022i −0.0769018 0.133198i
\(815\) −1.02390 + 1.77345i −0.0358657 + 0.0621212i
\(816\) 0.173225 0.300035i 0.00606409 0.0105033i
\(817\) −18.7770 32.5228i −0.656925 1.13783i
\(818\) −7.29873 −0.255194
\(819\) −0.161358 + 21.5577i −0.00563832 + 0.753286i
\(820\) 0.605220 0.0211352
\(821\) 23.7680 + 41.1673i 0.829508 + 1.43675i 0.898425 + 0.439127i \(0.144712\pi\)
−0.0689169 + 0.997622i \(0.521954\pi\)
\(822\) −16.3772 + 28.3661i −0.571219 + 0.989380i
\(823\) −17.1890 + 29.7722i −0.599170 + 1.03779i 0.393774 + 0.919207i \(0.371169\pi\)
−0.992944 + 0.118585i \(0.962164\pi\)
\(824\) −5.62316 9.73960i −0.195892 0.339295i
\(825\) 10.8898 0.379136
\(826\) −22.8683 13.4322i −0.795688 0.467366i
\(827\) 13.4406 0.467374 0.233687 0.972312i \(-0.424921\pi\)
0.233687 + 0.972312i \(0.424921\pi\)
\(828\) 0.543953 + 0.942155i 0.0189037 + 0.0327421i
\(829\) 16.1842 28.0318i 0.562100 0.973585i −0.435213 0.900327i \(-0.643327\pi\)
0.997313 0.0732579i \(-0.0233396\pi\)
\(830\) 0.666812 1.15495i 0.0231454 0.0400890i
\(831\) 25.4709 + 44.1169i 0.883575 + 1.53040i
\(832\) −21.3118 −0.738854
\(833\) 3.11087 + 0.0465722i 0.107785 + 0.00161363i
\(834\) 39.5170 1.36836
\(835\) 2.30861 + 3.99863i 0.0798927 + 0.138378i
\(836\) 13.2234 22.9036i 0.457342 0.792139i
\(837\) −5.81913 + 10.0790i −0.201139 + 0.348382i
\(838\) −8.46799 14.6670i −0.292522 0.506663i
\(839\) −3.82090 −0.131912 −0.0659561 0.997823i \(-0.521010\pi\)
−0.0659561 + 0.997823i \(0.521010\pi\)
\(840\) −15.0519 8.84111i −0.519341 0.305047i
\(841\) −27.0931 −0.934243
\(842\) 10.8178 + 18.7369i 0.372804 + 0.645716i
\(843\) 26.9693 46.7122i 0.928872 1.60885i
\(844\) −1.04891 + 1.81676i −0.0361049 + 0.0625355i
\(845\) −0.456024 0.789856i −0.0156877 0.0271719i
\(846\) −1.10674 −0.0380504
\(847\) 0.235125 31.4129i 0.00807897 1.07936i
\(848\) −1.09052 −0.0374486
\(849\) −11.2156 19.4260i −0.384919 0.666699i
\(850\) −0.203900 + 0.353165i −0.00699371 + 0.0121135i
\(851\) −0.214992 + 0.372377i −0.00736983 + 0.0127649i
\(852\) 6.13455 + 10.6254i 0.210166 + 0.364019i
\(853\) −48.8089 −1.67119 −0.835593 0.549349i \(-0.814876\pi\)
−0.835593 + 0.549349i \(0.814876\pi\)
\(854\) 17.7172 10.0529i 0.606268 0.344005i
\(855\) −10.4306 −0.356719
\(856\) −9.40859 16.2962i −0.321579 0.556991i
\(857\) 22.6050 39.1530i 0.772171 1.33744i −0.164199 0.986427i \(-0.552504\pi\)
0.936371 0.351013i \(-0.114163\pi\)
\(858\) −18.6338 + 32.2747i −0.636147 + 1.10184i
\(859\) −11.5742 20.0470i −0.394905 0.683995i 0.598184 0.801359i \(-0.295889\pi\)
−0.993089 + 0.117363i \(0.962556\pi\)
\(860\) 9.10933 0.310626
\(861\) −2.73805 + 1.55361i −0.0933125 + 0.0529467i
\(862\) 9.97271 0.339672
\(863\) −7.96668 13.7987i −0.271189 0.469713i 0.697978 0.716120i \(-0.254083\pi\)
−0.969167 + 0.246407i \(0.920750\pi\)
\(864\) 5.08842 8.81340i 0.173111 0.299838i
\(865\) 3.55560 6.15847i 0.120894 0.209394i
\(866\) −10.8723 18.8314i −0.369457 0.639918i
\(867\) 38.2587 1.29933
\(868\) −0.143764 + 19.2070i −0.00487967 + 0.651929i
\(869\) −34.4990 −1.17030
\(870\) −1.44248 2.49845i −0.0489047 0.0847053i
\(871\) −2.64597 + 4.58296i −0.0896554 + 0.155288i
\(872\) 2.96454 5.13474i 0.100392 0.173884i
\(873\) 4.04206 + 7.00106i 0.136803 + 0.236950i
\(874\) 1.88368 0.0637163
\(875\) 2.28132 + 1.33999i 0.0771228 + 0.0452999i
\(876\) −4.74644 −0.160367
\(877\) −18.5352 32.1040i −0.625891 1.08407i −0.988368 0.152082i \(-0.951402\pi\)
0.362477 0.931993i \(-0.381931\pi\)
\(878\) 7.35382 12.7372i 0.248179 0.429859i
\(879\) 11.7156 20.2920i 0.395157 0.684433i
\(880\) −0.818625 1.41790i −0.0275959 0.0477974i
\(881\) 6.21756 0.209475 0.104737 0.994500i \(-0.466600\pi\)
0.104737 + 0.994500i \(0.466600\pi\)
\(882\) 14.0292 + 0.210028i 0.472388 + 0.00707201i
\(883\) 3.51871 0.118414 0.0592070 0.998246i \(-0.481143\pi\)
0.0592070 + 0.998246i \(0.481143\pi\)
\(884\) 0.959993 + 1.66276i 0.0322881 + 0.0559246i
\(885\) 12.4383 21.5437i 0.418107 0.724183i
\(886\) −2.58595 + 4.47900i −0.0868767 + 0.150475i
\(887\) 17.3641 + 30.0755i 0.583029 + 1.00984i 0.995118 + 0.0986923i \(0.0314659\pi\)
−0.412089 + 0.911144i \(0.635201\pi\)
\(888\) −6.59790 −0.221411
\(889\) −9.34175 5.48710i −0.313312 0.184031i
\(890\) 13.1269 0.440014
\(891\) −25.7814 44.6548i −0.863711 1.49599i
\(892\) −13.3591 + 23.1386i −0.447295 + 0.774737i
\(893\) 1.31817 2.28313i 0.0441108 0.0764021i
\(894\) −7.92324 13.7235i −0.264993 0.458981i
\(895\) −9.15809 −0.306121
\(896\) 0.113271 15.1332i 0.00378413 0.505564i
\(897\) 3.65178 0.121930
\(898\) −11.6364 20.1548i −0.388312 0.672575i
\(899\) −4.32805 + 7.49641i −0.144349 + 0.250019i
\(900\) 1.26505 2.19114i 0.0421685 0.0730379i
\(901\) 0.707924 + 1.22616i 0.0235844 + 0.0408493i
\(902\) −2.29310 −0.0763518
\(903\) −41.2111 + 23.3837i −1.37142 + 0.778162i
\(904\) 37.9769 1.26309
\(905\) −7.87005 13.6313i −0.261609 0.453121i
\(906\) 8.56985 14.8434i 0.284714 0.493139i
\(907\) 3.98527 6.90269i 0.132329 0.229200i −0.792245 0.610203i \(-0.791088\pi\)
0.924574 + 0.381003i \(0.124421\pi\)
\(908\) 16.1096 + 27.9027i 0.534617 + 0.925984i
\(909\) −2.35467 −0.0780993
\(910\) −7.87499 + 4.46837i −0.261053 + 0.148125i
\(911\) 8.13952 0.269674 0.134837 0.990868i \(-0.456949\pi\)
0.134837 + 0.990868i \(0.456949\pi\)
\(912\) 1.86088 + 3.22314i 0.0616198 + 0.106729i
\(913\) 3.47579 6.02024i 0.115032 0.199241i
\(914\) 5.91510 10.2453i 0.195654 0.338883i
\(915\) 9.55359 + 16.5473i 0.315832 + 0.547037i
\(916\) −19.0860 −0.630621
\(917\) −0.350792 + 46.8662i −0.0115842 + 1.54766i
\(918\) 0.757149 0.0249896
\(919\) −6.20808 10.7527i −0.204786 0.354699i 0.745279 0.666753i \(-0.232316\pi\)
−0.950064 + 0.312054i \(0.898983\pi\)
\(920\) −0.622976 + 1.07903i −0.0205389 + 0.0355744i
\(921\) 13.1815 22.8310i 0.434345 0.752307i
\(922\) −16.7051 28.9340i −0.550152 0.952891i
\(923\) 17.3533 0.571190
\(924\) −28.7725 16.9002i −0.946546 0.555976i
\(925\) 1.00000 0.0328798
\(926\) −10.1503 17.5809i −0.333561 0.577744i
\(927\) −4.23937 + 7.34280i −0.139239 + 0.241169i
\(928\) 3.78458 6.55508i 0.124235 0.215181i
\(929\) 9.55517 + 16.5500i 0.313495 + 0.542989i 0.979116 0.203300i \(-0.0651668\pi\)
−0.665622 + 0.746289i \(0.731833\pi\)
\(930\) 13.0956 0.429422
\(931\) −17.1426 + 28.6913i −0.561827 + 0.940319i
\(932\) 7.55372 0.247430
\(933\) 1.20691 + 2.09042i 0.0395123 + 0.0684374i
\(934\) −8.79186 + 15.2279i −0.287678 + 0.498274i
\(935\) −1.06284 + 1.84089i −0.0347586 + 0.0602036i
\(936\) 11.8055 + 20.4477i 0.385874 + 0.668354i
\(937\) −53.7744 −1.75673 −0.878367 0.477987i \(-0.841367\pi\)
−0.878367 + 0.477987i \(0.841367\pi\)
\(938\) 2.96975 + 1.74436i 0.0969659 + 0.0569552i
\(939\) −64.6786 −2.11071
\(940\) 0.319742 + 0.553810i 0.0104288 + 0.0180633i
\(941\) −8.20091 + 14.2044i −0.267342 + 0.463050i −0.968175 0.250276i \(-0.919479\pi\)
0.700832 + 0.713326i \(0.252812\pi\)
\(942\) −17.9783 + 31.1394i −0.585766 + 1.01458i
\(943\) 0.112348 + 0.194593i 0.00365856 + 0.00633682i
\(944\) −3.74010 −0.121730
\(945\) 0.0367672 4.91214i 0.00119604 0.159792i
\(946\) −34.5140 −1.12215
\(947\) 0.994322 + 1.72222i 0.0323111 + 0.0559645i 0.881729 0.471757i \(-0.156380\pi\)
−0.849418 + 0.527721i \(0.823047\pi\)
\(948\) −9.51127 + 16.4740i −0.308912 + 0.535051i
\(949\) −3.35666 + 5.81390i −0.108962 + 0.188727i
\(950\) −2.19040 3.79389i −0.0710661 0.123090i
\(951\) −44.8716 −1.45506
\(952\) 2.96362 1.68159i 0.0960513 0.0545008i
\(953\) −46.1261 −1.49417 −0.747085 0.664728i \(-0.768547\pi\)
−0.747085 + 0.664728i \(0.768547\pi\)
\(954\) 3.19254 + 5.52965i 0.103362 + 0.179029i
\(955\) 10.2065 17.6781i 0.330273 0.572050i
\(956\) −13.4886 + 23.3630i −0.436254 + 0.755614i
\(957\) −7.51900 13.0233i −0.243055 0.420983i
\(958\) 20.5078 0.662577
\(959\) −36.0776 + 20.4709i −1.16501 + 0.661040i
\(960\) −13.0101 −0.419901
\(961\) −4.14618 7.18140i −0.133748 0.231658i
\(962\) −1.71112 + 2.96374i −0.0551686 + 0.0955549i
\(963\) −7.09326 + 12.2859i −0.228577 + 0.395907i
\(964\) 12.3388 + 21.3715i 0.397407 + 0.688328i
\(965\) −21.4078 −0.689143
\(966\) 0.0177889 2.37662i 0.000572350 0.0764666i
\(967\) −34.9457 −1.12378 −0.561889 0.827213i \(-0.689925\pi\)
−0.561889 + 0.827213i \(0.689925\pi\)
\(968\) −17.2024 29.7955i −0.552907 0.957664i
\(969\) 2.41602 4.18467i 0.0776137 0.134431i
\(970\) −1.69765 + 2.94041i −0.0545082 + 0.0944109i
\(971\) −24.8922 43.1145i −0.798828 1.38361i −0.920380 0.391026i \(-0.872120\pi\)
0.121551 0.992585i \(-0.461213\pi\)
\(972\) −21.9805 −0.705025
\(973\) 43.1518 + 25.3462i 1.38338 + 0.812563i
\(974\) 32.8367 1.05216
\(975\) −4.24642 7.35501i −0.135994 0.235549i
\(976\) 1.43635 2.48783i 0.0459764 0.0796335i
\(977\) 1.36248 2.35989i 0.0435897 0.0754996i −0.843407 0.537275i \(-0.819454\pi\)
0.886997 + 0.461775i \(0.152787\pi\)
\(978\) −2.13909 3.70501i −0.0684006 0.118473i
\(979\) 68.4245 2.18686
\(980\) −3.94802 7.08088i −0.126115 0.226190i
\(981\) −4.47001 −0.142717
\(982\) −7.95072 13.7711i −0.253718 0.439452i
\(983\) 12.1254 21.0019i 0.386741 0.669855i −0.605268 0.796022i \(-0.706934\pi\)
0.992009 + 0.126167i \(0.0402674\pi\)
\(984\) −1.72393 + 2.98593i −0.0549569 + 0.0951881i
\(985\) −9.33665 16.1716i −0.297490 0.515269i
\(986\) 0.563139 0.0179340
\(987\) −2.86817 1.68469i −0.0912948 0.0536241i
\(988\) −20.6255 −0.656185
\(989\) 1.69098 + 2.92887i 0.0537702 + 0.0931327i
\(990\) −4.79312 + 8.30192i −0.152335 + 0.263852i
\(991\) 4.15664 7.19951i 0.132040 0.228700i −0.792423 0.609972i \(-0.791181\pi\)
0.924463 + 0.381272i \(0.124514\pi\)
\(992\) 17.1792 + 29.7552i 0.545440 + 0.944730i
\(993\) 56.7789 1.80182
\(994\) 0.0845331 11.2937i 0.00268123 0.358215i
\(995\) 19.3354 0.612975
\(996\) −1.91653 3.31953i −0.0607276 0.105183i
\(997\) −3.39040 + 5.87234i −0.107375 + 0.185979i −0.914706 0.404120i \(-0.867578\pi\)
0.807331 + 0.590099i \(0.200911\pi\)
\(998\) −6.65524 + 11.5272i −0.210668 + 0.364887i
\(999\) −0.928334 1.60792i −0.0293712 0.0508724i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1295.2.j.a.186.13 38
7.2 even 3 inner 1295.2.j.a.926.13 yes 38
7.3 odd 6 9065.2.a.s.1.7 19
7.4 even 3 9065.2.a.r.1.7 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.j.a.186.13 38 1.1 even 1 trivial
1295.2.j.a.926.13 yes 38 7.2 even 3 inner
9065.2.a.r.1.7 19 7.4 even 3
9065.2.a.s.1.7 19 7.3 odd 6