Properties

Label 1295.2.j.a.186.12
Level $1295$
Weight $2$
Character 1295.186
Analytic conductor $10.341$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1295,2,Mod(186,1295)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1295.186"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1295 = 5 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1295.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3406270618\)
Analytic rank: \(0\)
Dimension: \(38\)
Relative dimension: \(19\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 186.12
Character \(\chi\) \(=\) 1295.186
Dual form 1295.2.j.a.926.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.357733 + 0.619611i) q^{2} +(0.00692605 - 0.0119963i) q^{3} +(0.744055 - 1.28874i) q^{4} +(-0.500000 - 0.866025i) q^{5} +0.00991070 q^{6} +(2.33024 - 1.25300i) q^{7} +2.49562 q^{8} +(1.49990 + 2.59791i) q^{9} +(0.357733 - 0.619611i) q^{10} +(-0.105422 + 0.182597i) q^{11} +(-0.0103067 - 0.0178518i) q^{12} +3.95119 q^{13} +(1.60997 + 0.995602i) q^{14} -0.0138521 q^{15} +(-0.595343 - 1.03117i) q^{16} +(-2.63704 + 4.56750i) q^{17} +(-1.07313 + 1.85872i) q^{18} +(0.483442 + 0.837346i) q^{19} -1.48811 q^{20} +(0.00110802 - 0.0366324i) q^{21} -0.150852 q^{22} +(0.367314 + 0.636207i) q^{23} +(0.0172848 - 0.0299381i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(1.41347 + 2.44820i) q^{26} +0.0831099 q^{27} +(0.119033 - 3.93537i) q^{28} +2.81857 q^{29} +(-0.00495535 - 0.00858292i) q^{30} +(3.55482 - 6.15713i) q^{31} +(2.92157 - 5.06031i) q^{32} +(0.00146032 + 0.00252935i) q^{33} -3.77343 q^{34} +(-2.25025 - 1.39154i) q^{35} +4.46404 q^{36} +(-0.500000 - 0.866025i) q^{37} +(-0.345886 + 0.599092i) q^{38} +(0.0273661 - 0.0473995i) q^{39} +(-1.24781 - 2.16127i) q^{40} -12.7537 q^{41} +(0.0230943 - 0.0124181i) q^{42} -3.80868 q^{43} +(0.156880 + 0.271724i) q^{44} +(1.49990 - 2.59791i) q^{45} +(-0.262801 + 0.455184i) q^{46} +(3.83255 + 6.63817i) q^{47} -0.0164935 q^{48} +(3.85999 - 5.83956i) q^{49} -0.715466 q^{50} +(0.0365286 + 0.0632694i) q^{51} +(2.93990 - 5.09205i) q^{52} +(3.78478 - 6.55543i) q^{53} +(0.0297311 + 0.0514958i) q^{54} +0.210845 q^{55} +(5.81539 - 3.12701i) q^{56} +0.0133934 q^{57} +(1.00830 + 1.74642i) q^{58} +(-0.959792 + 1.66241i) q^{59} +(-0.0103067 + 0.0178518i) q^{60} +(2.61415 + 4.52783i) q^{61} +5.08670 q^{62} +(6.75031 + 4.17436i) q^{63} +1.79919 q^{64} +(-1.97559 - 3.42183i) q^{65} +(-0.00104481 + 0.00180966i) q^{66} +(3.97468 - 6.88435i) q^{67} +(3.92421 + 6.79693i) q^{68} +0.0101761 q^{69} +(0.0572297 - 1.89208i) q^{70} +15.8240 q^{71} +(3.74319 + 6.48340i) q^{72} +(0.912840 - 1.58109i) q^{73} +(0.357733 - 0.619611i) q^{74} +(0.00692605 + 0.0119963i) q^{75} +1.43883 q^{76} +(-0.0168653 + 0.557587i) q^{77} +0.0391590 q^{78} +(-2.13301 - 3.69448i) q^{79} +(-0.595343 + 1.03117i) q^{80} +(-4.49914 + 7.79273i) q^{81} +(-4.56243 - 7.90236i) q^{82} -7.59105 q^{83} +(-0.0463853 - 0.0286845i) q^{84} +5.27409 q^{85} +(-1.36249 - 2.35990i) q^{86} +(0.0195216 - 0.0338124i) q^{87} +(-0.263094 + 0.455692i) q^{88} +(-8.23461 - 14.2628i) q^{89} +2.14626 q^{90} +(9.20719 - 4.95083i) q^{91} +1.09321 q^{92} +(-0.0492417 - 0.0852892i) q^{93} +(-2.74205 + 4.74938i) q^{94} +(0.483442 - 0.837346i) q^{95} +(-0.0404699 - 0.0700959i) q^{96} -4.84852 q^{97} +(4.99910 + 0.302693i) q^{98} -0.632493 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 3 q^{2} + q^{3} - 11 q^{4} - 19 q^{5} - 8 q^{6} - 18 q^{8} - 12 q^{9} + 3 q^{10} + 13 q^{11} + 4 q^{12} - 6 q^{13} - q^{14} - 2 q^{15} + 5 q^{16} + 2 q^{17} + 11 q^{18} + 12 q^{19} + 22 q^{20}+ \cdots - 142 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1295\mathbb{Z}\right)^\times\).

\(n\) \(556\) \(631\) \(1037\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.357733 + 0.619611i 0.252955 + 0.438131i 0.964338 0.264673i \(-0.0852641\pi\)
−0.711383 + 0.702805i \(0.751931\pi\)
\(3\) 0.00692605 0.0119963i 0.00399876 0.00692605i −0.864019 0.503459i \(-0.832060\pi\)
0.868018 + 0.496533i \(0.165394\pi\)
\(4\) 0.744055 1.28874i 0.372027 0.644370i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0.00991070 0.00404603
\(7\) 2.33024 1.25300i 0.880746 0.473589i
\(8\) 2.49562 0.882336
\(9\) 1.49990 + 2.59791i 0.499968 + 0.865970i
\(10\) 0.357733 0.619611i 0.113125 0.195938i
\(11\) −0.105422 + 0.182597i −0.0317860 + 0.0550550i −0.881481 0.472220i \(-0.843453\pi\)
0.849695 + 0.527275i \(0.176786\pi\)
\(12\) −0.0103067 0.0178518i −0.00297529 0.00515336i
\(13\) 3.95119 1.09586 0.547931 0.836524i \(-0.315416\pi\)
0.547931 + 0.836524i \(0.315416\pi\)
\(14\) 1.60997 + 0.995602i 0.430283 + 0.266086i
\(15\) −0.0138521 −0.00357660
\(16\) −0.595343 1.03117i −0.148836 0.257791i
\(17\) −2.63704 + 4.56750i −0.639577 + 1.10778i 0.345948 + 0.938254i \(0.387557\pi\)
−0.985526 + 0.169527i \(0.945776\pi\)
\(18\) −1.07313 + 1.85872i −0.252939 + 0.438103i
\(19\) 0.483442 + 0.837346i 0.110909 + 0.192100i 0.916137 0.400865i \(-0.131290\pi\)
−0.805228 + 0.592965i \(0.797957\pi\)
\(20\) −1.48811 −0.332751
\(21\) 0.00110802 0.0366324i 0.000241790 0.00799386i
\(22\) −0.150852 −0.0321618
\(23\) 0.367314 + 0.636207i 0.0765903 + 0.132658i 0.901777 0.432202i \(-0.142263\pi\)
−0.825186 + 0.564860i \(0.808930\pi\)
\(24\) 0.0172848 0.0299381i 0.00352824 0.00611110i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 1.41347 + 2.44820i 0.277204 + 0.480132i
\(27\) 0.0831099 0.0159945
\(28\) 0.119033 3.93537i 0.0224951 0.743714i
\(29\) 2.81857 0.523396 0.261698 0.965150i \(-0.415718\pi\)
0.261698 + 0.965150i \(0.415718\pi\)
\(30\) −0.00495535 0.00858292i −0.000904719 0.00156702i
\(31\) 3.55482 6.15713i 0.638465 1.10585i −0.347305 0.937752i \(-0.612903\pi\)
0.985770 0.168101i \(-0.0537635\pi\)
\(32\) 2.92157 5.06031i 0.516465 0.894544i
\(33\) 0.00146032 + 0.00252935i 0.000254209 + 0.000440303i
\(34\) −3.77343 −0.647138
\(35\) −2.25025 1.39154i −0.380361 0.235214i
\(36\) 4.46404 0.744007
\(37\) −0.500000 0.866025i −0.0821995 0.142374i
\(38\) −0.345886 + 0.599092i −0.0561101 + 0.0971856i
\(39\) 0.0273661 0.0473995i 0.00438208 0.00758999i
\(40\) −1.24781 2.16127i −0.197296 0.341727i
\(41\) −12.7537 −1.99180 −0.995899 0.0904715i \(-0.971163\pi\)
−0.995899 + 0.0904715i \(0.971163\pi\)
\(42\) 0.0230943 0.0124181i 0.00356352 0.00191615i
\(43\) −3.80868 −0.580818 −0.290409 0.956903i \(-0.593791\pi\)
−0.290409 + 0.956903i \(0.593791\pi\)
\(44\) 0.156880 + 0.271724i 0.0236505 + 0.0409639i
\(45\) 1.49990 2.59791i 0.223592 0.387274i
\(46\) −0.262801 + 0.455184i −0.0387478 + 0.0671132i
\(47\) 3.83255 + 6.63817i 0.559034 + 0.968276i 0.997577 + 0.0695657i \(0.0221614\pi\)
−0.438543 + 0.898710i \(0.644505\pi\)
\(48\) −0.0164935 −0.00238063
\(49\) 3.85999 5.83956i 0.551427 0.834223i
\(50\) −0.715466 −0.101182
\(51\) 0.0365286 + 0.0632694i 0.00511503 + 0.00885949i
\(52\) 2.93990 5.09205i 0.407691 0.706141i
\(53\) 3.78478 6.55543i 0.519879 0.900457i −0.479854 0.877348i \(-0.659310\pi\)
0.999733 0.0231086i \(-0.00735637\pi\)
\(54\) 0.0297311 + 0.0514958i 0.00404590 + 0.00700770i
\(55\) 0.210845 0.0284303
\(56\) 5.81539 3.12701i 0.777114 0.417864i
\(57\) 0.0133934 0.00177400
\(58\) 1.00830 + 1.74642i 0.132396 + 0.229316i
\(59\) −0.959792 + 1.66241i −0.124954 + 0.216427i −0.921715 0.387868i \(-0.873212\pi\)
0.796761 + 0.604295i \(0.206545\pi\)
\(60\) −0.0103067 + 0.0178518i −0.00133059 + 0.00230465i
\(61\) 2.61415 + 4.52783i 0.334707 + 0.579730i 0.983429 0.181296i \(-0.0580293\pi\)
−0.648721 + 0.761026i \(0.724696\pi\)
\(62\) 5.08670 0.646012
\(63\) 6.75031 + 4.17436i 0.850459 + 0.525921i
\(64\) 1.79919 0.224899
\(65\) −1.97559 3.42183i −0.245042 0.424426i
\(66\) −0.00104481 + 0.00180966i −0.000128607 + 0.000222754i
\(67\) 3.97468 6.88435i 0.485585 0.841058i −0.514278 0.857624i \(-0.671940\pi\)
0.999863 + 0.0165659i \(0.00527334\pi\)
\(68\) 3.92421 + 6.79693i 0.475880 + 0.824249i
\(69\) 0.0101761 0.00122506
\(70\) 0.0572297 1.89208i 0.00684026 0.226147i
\(71\) 15.8240 1.87796 0.938981 0.343968i \(-0.111771\pi\)
0.938981 + 0.343968i \(0.111771\pi\)
\(72\) 3.74319 + 6.48340i 0.441140 + 0.764076i
\(73\) 0.912840 1.58109i 0.106840 0.185052i −0.807649 0.589664i \(-0.799260\pi\)
0.914488 + 0.404612i \(0.132593\pi\)
\(74\) 0.357733 0.619611i 0.0415856 0.0720284i
\(75\) 0.00692605 + 0.0119963i 0.000799751 + 0.00138521i
\(76\) 1.43883 0.165045
\(77\) −0.0168653 + 0.557587i −0.00192198 + 0.0635430i
\(78\) 0.0391590 0.00443389
\(79\) −2.13301 3.69448i −0.239982 0.415661i 0.720727 0.693219i \(-0.243808\pi\)
−0.960709 + 0.277558i \(0.910475\pi\)
\(80\) −0.595343 + 1.03117i −0.0665614 + 0.115288i
\(81\) −4.49914 + 7.79273i −0.499904 + 0.865859i
\(82\) −4.56243 7.90236i −0.503836 0.872669i
\(83\) −7.59105 −0.833226 −0.416613 0.909084i \(-0.636783\pi\)
−0.416613 + 0.909084i \(0.636783\pi\)
\(84\) −0.0463853 0.0286845i −0.00506105 0.00312973i
\(85\) 5.27409 0.572055
\(86\) −1.36249 2.35990i −0.146921 0.254474i
\(87\) 0.0195216 0.0338124i 0.00209293 0.00362507i
\(88\) −0.263094 + 0.455692i −0.0280459 + 0.0485770i
\(89\) −8.23461 14.2628i −0.872867 1.51185i −0.859017 0.511947i \(-0.828925\pi\)
−0.0138500 0.999904i \(-0.504409\pi\)
\(90\) 2.14626 0.226236
\(91\) 9.20719 4.95083i 0.965176 0.518988i
\(92\) 1.09321 0.113975
\(93\) −0.0492417 0.0852892i −0.00510613 0.00884407i
\(94\) −2.74205 + 4.74938i −0.282821 + 0.489861i
\(95\) 0.483442 0.837346i 0.0496001 0.0859099i
\(96\) −0.0404699 0.0700959i −0.00413044 0.00715413i
\(97\) −4.84852 −0.492293 −0.246146 0.969233i \(-0.579164\pi\)
−0.246146 + 0.969233i \(0.579164\pi\)
\(98\) 4.99910 + 0.302693i 0.504986 + 0.0305766i
\(99\) −0.632493 −0.0635679
\(100\) 0.744055 + 1.28874i 0.0744055 + 0.128874i
\(101\) −8.22121 + 14.2395i −0.818041 + 1.41689i 0.0890831 + 0.996024i \(0.471606\pi\)
−0.907124 + 0.420864i \(0.861727\pi\)
\(102\) −0.0261350 + 0.0452671i −0.00258775 + 0.00448211i
\(103\) −8.03850 13.9231i −0.792057 1.37188i −0.924691 0.380718i \(-0.875677\pi\)
0.132634 0.991165i \(-0.457657\pi\)
\(104\) 9.86067 0.966918
\(105\) −0.0322786 + 0.0173566i −0.00315007 + 0.00169384i
\(106\) 5.41576 0.526025
\(107\) −0.579632 1.00395i −0.0560352 0.0970558i 0.836647 0.547742i \(-0.184513\pi\)
−0.892682 + 0.450687i \(0.851179\pi\)
\(108\) 0.0618383 0.107107i 0.00595039 0.0103064i
\(109\) −8.28363 + 14.3477i −0.793427 + 1.37426i 0.130406 + 0.991461i \(0.458372\pi\)
−0.923833 + 0.382796i \(0.874961\pi\)
\(110\) 0.0754260 + 0.130642i 0.00719159 + 0.0124562i
\(111\) −0.0138521 −0.00131478
\(112\) −2.67934 1.65689i −0.253174 0.156562i
\(113\) −7.74884 −0.728949 −0.364475 0.931213i \(-0.618751\pi\)
−0.364475 + 0.931213i \(0.618751\pi\)
\(114\) 0.00479125 + 0.00829869i 0.000448742 + 0.000777243i
\(115\) 0.367314 0.636207i 0.0342522 0.0593266i
\(116\) 2.09717 3.63241i 0.194718 0.337261i
\(117\) 5.92640 + 10.2648i 0.547896 + 0.948984i
\(118\) −1.37340 −0.126431
\(119\) −0.421872 + 13.9476i −0.0386729 + 1.27857i
\(120\) −0.0345696 −0.00315576
\(121\) 5.47777 + 9.48778i 0.497979 + 0.862525i
\(122\) −1.87033 + 3.23951i −0.169332 + 0.293291i
\(123\) −0.0883330 + 0.152997i −0.00796471 + 0.0137953i
\(124\) −5.28996 9.16248i −0.475053 0.822815i
\(125\) 1.00000 0.0894427
\(126\) −0.171678 + 5.67587i −0.0152943 + 0.505647i
\(127\) 13.0860 1.16119 0.580597 0.814191i \(-0.302819\pi\)
0.580597 + 0.814191i \(0.302819\pi\)
\(128\) −5.19951 9.00581i −0.459576 0.796009i
\(129\) −0.0263791 + 0.0456899i −0.00232255 + 0.00402277i
\(130\) 1.41347 2.44820i 0.123969 0.214721i
\(131\) 10.3459 + 17.9197i 0.903929 + 1.56565i 0.822349 + 0.568984i \(0.192663\pi\)
0.0815799 + 0.996667i \(0.474003\pi\)
\(132\) 0.00434623 0.000378291
\(133\) 2.17573 + 1.34546i 0.188659 + 0.116666i
\(134\) 5.68750 0.491325
\(135\) −0.0415550 0.0719753i −0.00357648 0.00619465i
\(136\) −6.58107 + 11.3987i −0.564322 + 0.977434i
\(137\) 7.91104 13.7023i 0.675886 1.17067i −0.300323 0.953837i \(-0.597095\pi\)
0.976209 0.216831i \(-0.0695721\pi\)
\(138\) 0.00364034 + 0.00630525i 0.000309886 + 0.000536739i
\(139\) −14.9798 −1.27057 −0.635283 0.772279i \(-0.719117\pi\)
−0.635283 + 0.772279i \(0.719117\pi\)
\(140\) −3.46764 + 1.86460i −0.293069 + 0.157587i
\(141\) 0.106178 0.00894177
\(142\) 5.66076 + 9.80473i 0.475041 + 0.822794i
\(143\) −0.416543 + 0.721474i −0.0348331 + 0.0603327i
\(144\) 1.78592 3.09330i 0.148826 0.257775i
\(145\) −1.40929 2.44096i −0.117035 0.202710i
\(146\) 1.30621 0.108103
\(147\) −0.0433184 0.0867506i −0.00357284 0.00715507i
\(148\) −1.48811 −0.122322
\(149\) 1.70855 + 2.95930i 0.139970 + 0.242435i 0.927485 0.373860i \(-0.121966\pi\)
−0.787515 + 0.616296i \(0.788633\pi\)
\(150\) −0.00495535 + 0.00858292i −0.000404603 + 0.000700792i
\(151\) 2.49223 4.31667i 0.202815 0.351286i −0.746619 0.665251i \(-0.768324\pi\)
0.949434 + 0.313966i \(0.101658\pi\)
\(152\) 1.20649 + 2.08970i 0.0978592 + 0.169497i
\(153\) −15.8213 −1.27907
\(154\) −0.351521 + 0.189017i −0.0283263 + 0.0152314i
\(155\) −7.10964 −0.571060
\(156\) −0.0407238 0.0705356i −0.00326051 0.00564737i
\(157\) −0.129386 + 0.224103i −0.0103261 + 0.0178854i −0.871142 0.491031i \(-0.836620\pi\)
0.860816 + 0.508916i \(0.169954\pi\)
\(158\) 1.52609 2.64327i 0.121410 0.210287i
\(159\) −0.0524271 0.0908064i −0.00415774 0.00720142i
\(160\) −5.84314 −0.461941
\(161\) 1.65309 + 1.02227i 0.130282 + 0.0805660i
\(162\) −6.43795 −0.505813
\(163\) 0.456938 + 0.791439i 0.0357901 + 0.0619903i 0.883366 0.468685i \(-0.155272\pi\)
−0.847576 + 0.530675i \(0.821939\pi\)
\(164\) −9.48947 + 16.4362i −0.741003 + 1.28346i
\(165\) 0.00146032 0.00252935i 0.000113686 0.000196909i
\(166\) −2.71557 4.70350i −0.210769 0.365062i
\(167\) −16.0074 −1.23869 −0.619343 0.785120i \(-0.712601\pi\)
−0.619343 + 0.785120i \(0.712601\pi\)
\(168\) 0.00276520 0.0914207i 0.000213340 0.00705326i
\(169\) 2.61188 0.200914
\(170\) 1.88671 + 3.26789i 0.144704 + 0.250635i
\(171\) −1.45023 + 2.51188i −0.110902 + 0.192088i
\(172\) −2.83386 + 4.90839i −0.216080 + 0.374262i
\(173\) −8.97904 15.5522i −0.682664 1.18241i −0.974165 0.225838i \(-0.927488\pi\)
0.291501 0.956570i \(-0.405845\pi\)
\(174\) 0.0279340 0.00211767
\(175\) −0.0799895 + 2.64454i −0.00604664 + 0.199909i
\(176\) 0.251050 0.0189236
\(177\) 0.0132951 + 0.0230278i 0.000999323 + 0.00173088i
\(178\) 5.89158 10.2045i 0.441593 0.764861i
\(179\) −9.85287 + 17.0657i −0.736438 + 1.27555i 0.217652 + 0.976027i \(0.430160\pi\)
−0.954090 + 0.299521i \(0.903173\pi\)
\(180\) −2.23202 3.86597i −0.166365 0.288153i
\(181\) 11.2099 0.833224 0.416612 0.909084i \(-0.363217\pi\)
0.416612 + 0.909084i \(0.363217\pi\)
\(182\) 6.36130 + 3.93381i 0.471531 + 0.291593i
\(183\) 0.0724228 0.00535365
\(184\) 0.916677 + 1.58773i 0.0675783 + 0.117049i
\(185\) −0.500000 + 0.866025i −0.0367607 + 0.0636715i
\(186\) 0.0352308 0.0610215i 0.00258324 0.00447431i
\(187\) −0.556006 0.963031i −0.0406592 0.0704238i
\(188\) 11.4065 0.831904
\(189\) 0.193666 0.104137i 0.0140871 0.00757482i
\(190\) 0.691772 0.0501864
\(191\) 5.48370 + 9.49804i 0.396786 + 0.687254i 0.993327 0.115328i \(-0.0367920\pi\)
−0.596541 + 0.802583i \(0.703459\pi\)
\(192\) 0.0124613 0.0215836i 0.000899316 0.00155766i
\(193\) 2.80685 4.86161i 0.202041 0.349946i −0.747145 0.664661i \(-0.768576\pi\)
0.949186 + 0.314715i \(0.101909\pi\)
\(194\) −1.73447 3.00420i −0.124528 0.215689i
\(195\) −0.0547322 −0.00391946
\(196\) −4.65363 9.31948i −0.332402 0.665677i
\(197\) 5.60002 0.398985 0.199492 0.979899i \(-0.436071\pi\)
0.199492 + 0.979899i \(0.436071\pi\)
\(198\) −0.226263 0.391900i −0.0160798 0.0278511i
\(199\) −10.1777 + 17.6283i −0.721478 + 1.24964i 0.238929 + 0.971037i \(0.423204\pi\)
−0.960407 + 0.278599i \(0.910130\pi\)
\(200\) −1.24781 + 2.16127i −0.0882336 + 0.152825i
\(201\) −0.0550577 0.0953627i −0.00388347 0.00672637i
\(202\) −11.7640 −0.827711
\(203\) 6.56794 3.53167i 0.460979 0.247874i
\(204\) 0.108717 0.00761172
\(205\) 6.37687 + 11.0451i 0.445380 + 0.771420i
\(206\) 5.75127 9.96149i 0.400710 0.694050i
\(207\) −1.10187 + 1.90850i −0.0765854 + 0.132650i
\(208\) −2.35231 4.07433i −0.163104 0.282504i
\(209\) −0.203862 −0.0141014
\(210\) −0.0223015 0.0137912i −0.00153895 0.000951681i
\(211\) −19.5963 −1.34907 −0.674533 0.738245i \(-0.735655\pi\)
−0.674533 + 0.738245i \(0.735655\pi\)
\(212\) −5.63216 9.75519i −0.386818 0.669989i
\(213\) 0.109598 0.189829i 0.00750951 0.0130069i
\(214\) 0.414707 0.718294i 0.0283488 0.0491015i
\(215\) 1.90434 + 3.29841i 0.129875 + 0.224950i
\(216\) 0.207411 0.0141125
\(217\) 0.568697 18.8017i 0.0386056 1.27635i
\(218\) −11.8533 −0.802807
\(219\) −0.0126447 0.0219013i −0.000854453 0.00147996i
\(220\) 0.156880 0.271724i 0.0105768 0.0183196i
\(221\) −10.4195 + 18.0470i −0.700888 + 1.21397i
\(222\) −0.00495535 0.00858292i −0.000332581 0.000576048i
\(223\) −5.46542 −0.365992 −0.182996 0.983114i \(-0.558579\pi\)
−0.182996 + 0.983114i \(0.558579\pi\)
\(224\) 0.467390 15.4524i 0.0312288 1.03246i
\(225\) −2.99981 −0.199987
\(226\) −2.77201 4.80127i −0.184392 0.319376i
\(227\) 5.32962 9.23117i 0.353739 0.612694i −0.633162 0.774019i \(-0.718243\pi\)
0.986901 + 0.161325i \(0.0515767\pi\)
\(228\) 0.00996540 0.0172606i 0.000659975 0.00114311i
\(229\) −3.08276 5.33950i −0.203715 0.352844i 0.746008 0.665937i \(-0.231968\pi\)
−0.949722 + 0.313093i \(0.898635\pi\)
\(230\) 0.525601 0.0346571
\(231\) 0.00657215 + 0.00406420i 0.000432416 + 0.000267405i
\(232\) 7.03409 0.461811
\(233\) −1.33450 2.31142i −0.0874258 0.151426i 0.818997 0.573798i \(-0.194531\pi\)
−0.906422 + 0.422373i \(0.861197\pi\)
\(234\) −4.24014 + 7.34413i −0.277186 + 0.480101i
\(235\) 3.83255 6.63817i 0.250008 0.433026i
\(236\) 1.42828 + 2.47385i 0.0929728 + 0.161034i
\(237\) −0.0590933 −0.00383852
\(238\) −8.79298 + 4.72810i −0.569964 + 0.306477i
\(239\) −19.9547 −1.29076 −0.645382 0.763860i \(-0.723302\pi\)
−0.645382 + 0.763860i \(0.723302\pi\)
\(240\) 0.00824675 + 0.0142838i 0.000532326 + 0.000922015i
\(241\) 12.7434 22.0722i 0.820872 1.42179i −0.0841615 0.996452i \(-0.526821\pi\)
0.905034 0.425340i \(-0.139846\pi\)
\(242\) −3.91916 + 6.78818i −0.251933 + 0.436361i
\(243\) 0.186987 + 0.323872i 0.0119952 + 0.0207764i
\(244\) 7.78027 0.498081
\(245\) −6.98720 0.423071i −0.446396 0.0270290i
\(246\) −0.126398 −0.00805887
\(247\) 1.91017 + 3.30851i 0.121541 + 0.210516i
\(248\) 8.87149 15.3659i 0.563340 0.975734i
\(249\) −0.0525760 + 0.0910643i −0.00333187 + 0.00577096i
\(250\) 0.357733 + 0.619611i 0.0226250 + 0.0391877i
\(251\) −10.1497 −0.640641 −0.320321 0.947309i \(-0.603791\pi\)
−0.320321 + 0.947309i \(0.603791\pi\)
\(252\) 10.4023 5.59344i 0.655281 0.352353i
\(253\) −0.154892 −0.00973800
\(254\) 4.68129 + 8.10823i 0.293730 + 0.508756i
\(255\) 0.0365286 0.0632694i 0.00228751 0.00396208i
\(256\) 5.51926 9.55964i 0.344954 0.597477i
\(257\) 6.84235 + 11.8513i 0.426814 + 0.739264i 0.996588 0.0825376i \(-0.0263025\pi\)
−0.569774 + 0.821802i \(0.692969\pi\)
\(258\) −0.0377466 −0.00235000
\(259\) −2.25025 1.39154i −0.139823 0.0864663i
\(260\) −5.87980 −0.364650
\(261\) 4.22759 + 7.32240i 0.261681 + 0.453245i
\(262\) −7.40216 + 12.8209i −0.457307 + 0.792079i
\(263\) 8.54079 14.7931i 0.526648 0.912180i −0.472870 0.881132i \(-0.656782\pi\)
0.999518 0.0310483i \(-0.00988455\pi\)
\(264\) 0.00364440 + 0.00631229i 0.000224298 + 0.000388495i
\(265\) −7.56955 −0.464994
\(266\) −0.0553345 + 1.82942i −0.00339278 + 0.112169i
\(267\) −0.228133 −0.0139615
\(268\) −5.91476 10.2447i −0.361302 0.625793i
\(269\) 3.43277 5.94574i 0.209300 0.362518i −0.742194 0.670185i \(-0.766215\pi\)
0.951494 + 0.307667i \(0.0995482\pi\)
\(270\) 0.0297311 0.0514958i 0.00180938 0.00313394i
\(271\) 13.7701 + 23.8506i 0.836476 + 1.44882i 0.892823 + 0.450408i \(0.148722\pi\)
−0.0563464 + 0.998411i \(0.517945\pi\)
\(272\) 6.27979 0.380768
\(273\) 0.00437800 0.144742i 0.000264969 0.00876016i
\(274\) 11.3202 0.683875
\(275\) −0.105422 0.182597i −0.00635720 0.0110110i
\(276\) 0.00757160 0.0131144i 0.000455757 0.000789394i
\(277\) −10.5776 + 18.3210i −0.635548 + 1.10080i 0.350851 + 0.936431i \(0.385892\pi\)
−0.986399 + 0.164370i \(0.947441\pi\)
\(278\) −5.35875 9.28163i −0.321396 0.556675i
\(279\) 21.3276 1.27685
\(280\) −5.61576 3.47277i −0.335606 0.207538i
\(281\) 0.630957 0.0376397 0.0188199 0.999823i \(-0.494009\pi\)
0.0188199 + 0.999823i \(0.494009\pi\)
\(282\) 0.0379832 + 0.0657889i 0.00226187 + 0.00391767i
\(283\) 3.21211 5.56354i 0.190940 0.330718i −0.754622 0.656160i \(-0.772180\pi\)
0.945562 + 0.325442i \(0.105513\pi\)
\(284\) 11.7739 20.3930i 0.698653 1.21010i
\(285\) −0.00669669 0.0115990i −0.000396678 0.000687066i
\(286\) −0.596044 −0.0352448
\(287\) −29.7192 + 15.9804i −1.75427 + 0.943293i
\(288\) 17.5283 1.03286
\(289\) −5.40801 9.36695i −0.318118 0.550997i
\(290\) 1.00830 1.74642i 0.0592092 0.102553i
\(291\) −0.0335811 + 0.0581642i −0.00196856 + 0.00340964i
\(292\) −1.35841 2.35283i −0.0794947 0.137689i
\(293\) −22.3355 −1.30485 −0.652426 0.757852i \(-0.726249\pi\)
−0.652426 + 0.757852i \(0.726249\pi\)
\(294\) 0.0382552 0.0578741i 0.00223109 0.00337529i
\(295\) 1.91958 0.111763
\(296\) −1.24781 2.16127i −0.0725275 0.125621i
\(297\) −0.00876164 + 0.0151756i −0.000508402 + 0.000880578i
\(298\) −1.22241 + 2.11728i −0.0708123 + 0.122651i
\(299\) 1.45133 + 2.51377i 0.0839324 + 0.145375i
\(300\) 0.0206134 0.00119012
\(301\) −8.87511 + 4.77226i −0.511553 + 0.275069i
\(302\) 3.56621 0.205212
\(303\) 0.113881 + 0.197248i 0.00654229 + 0.0113316i
\(304\) 0.575628 0.997017i 0.0330145 0.0571829i
\(305\) 2.61415 4.52783i 0.149686 0.259263i
\(306\) −5.65978 9.80303i −0.323548 0.560402i
\(307\) 6.05483 0.345568 0.172784 0.984960i \(-0.444724\pi\)
0.172784 + 0.984960i \(0.444724\pi\)
\(308\) 0.706036 + 0.436610i 0.0402301 + 0.0248782i
\(309\) −0.222700 −0.0126690
\(310\) −2.54335 4.40521i −0.144453 0.250199i
\(311\) −5.86602 + 10.1603i −0.332632 + 0.576135i −0.983027 0.183461i \(-0.941270\pi\)
0.650395 + 0.759596i \(0.274603\pi\)
\(312\) 0.0682955 0.118291i 0.00386647 0.00669692i
\(313\) −1.52595 2.64302i −0.0862518 0.149392i 0.819672 0.572833i \(-0.194156\pi\)
−0.905924 + 0.423440i \(0.860822\pi\)
\(314\) −0.185142 −0.0104482
\(315\) 0.239953 7.93312i 0.0135198 0.446981i
\(316\) −6.34830 −0.357120
\(317\) 11.9936 + 20.7736i 0.673630 + 1.16676i 0.976867 + 0.213846i \(0.0685992\pi\)
−0.303237 + 0.952915i \(0.598067\pi\)
\(318\) 0.0375098 0.0649689i 0.00210344 0.00364327i
\(319\) −0.297140 + 0.514662i −0.0166367 + 0.0288156i
\(320\) −0.899595 1.55815i −0.0502889 0.0871030i
\(321\) −0.0160582 −0.000896284
\(322\) −0.0420426 + 1.38997i −0.00234294 + 0.0774602i
\(323\) −5.09943 −0.283740
\(324\) 6.69521 + 11.5964i 0.371956 + 0.644246i
\(325\) −1.97559 + 3.42183i −0.109586 + 0.189809i
\(326\) −0.326923 + 0.566248i −0.0181066 + 0.0313615i
\(327\) 0.114746 + 0.198745i 0.00634544 + 0.0109906i
\(328\) −31.8285 −1.75743
\(329\) 17.2483 + 10.6663i 0.950932 + 0.588053i
\(330\) 0.00208962 0.000115030
\(331\) 10.1887 + 17.6473i 0.560021 + 0.969985i 0.997494 + 0.0707531i \(0.0225402\pi\)
−0.437473 + 0.899232i \(0.644126\pi\)
\(332\) −5.64816 + 9.78289i −0.309983 + 0.536906i
\(333\) 1.49990 2.59791i 0.0821942 0.142365i
\(334\) −5.72636 9.91834i −0.313332 0.542707i
\(335\) −7.94937 −0.434320
\(336\) −0.0384338 + 0.0206663i −0.00209673 + 0.00112744i
\(337\) −27.6151 −1.50429 −0.752146 0.658997i \(-0.770981\pi\)
−0.752146 + 0.658997i \(0.770981\pi\)
\(338\) 0.934354 + 1.61835i 0.0508221 + 0.0880265i
\(339\) −0.0536688 + 0.0929571i −0.00291489 + 0.00504874i
\(340\) 3.92421 6.79693i 0.212820 0.368615i
\(341\) 0.749514 + 1.29820i 0.0405885 + 0.0703013i
\(342\) −2.07518 −0.112213
\(343\) 1.67773 18.4441i 0.0905890 0.995888i
\(344\) −9.50501 −0.512476
\(345\) −0.00508807 0.00881280i −0.000273933 0.000474465i
\(346\) 6.42419 11.1270i 0.345367 0.598193i
\(347\) −5.42049 + 9.38856i −0.290987 + 0.504004i −0.974043 0.226361i \(-0.927317\pi\)
0.683056 + 0.730366i \(0.260650\pi\)
\(348\) −0.0290502 0.0503165i −0.00155726 0.00269725i
\(349\) −0.669951 −0.0358617 −0.0179308 0.999839i \(-0.505708\pi\)
−0.0179308 + 0.999839i \(0.505708\pi\)
\(350\) −1.66720 + 0.896477i −0.0891157 + 0.0479187i
\(351\) 0.328383 0.0175278
\(352\) 0.615997 + 1.06694i 0.0328327 + 0.0568680i
\(353\) −17.3231 + 30.0045i −0.922016 + 1.59698i −0.125725 + 0.992065i \(0.540126\pi\)
−0.796291 + 0.604913i \(0.793208\pi\)
\(354\) −0.00951221 + 0.0164756i −0.000505568 + 0.000875670i
\(355\) −7.91200 13.7040i −0.419925 0.727332i
\(356\) −24.5080 −1.29892
\(357\) 0.164397 + 0.101662i 0.00870079 + 0.00538054i
\(358\) −14.0988 −0.745143
\(359\) −5.63902 9.76707i −0.297616 0.515486i 0.677974 0.735086i \(-0.262858\pi\)
−0.975590 + 0.219600i \(0.929525\pi\)
\(360\) 3.74319 6.48340i 0.197284 0.341705i
\(361\) 9.03257 15.6449i 0.475398 0.823414i
\(362\) 4.01014 + 6.94577i 0.210769 + 0.365062i
\(363\) 0.151757 0.00796519
\(364\) 0.470322 15.5494i 0.0246516 0.815008i
\(365\) −1.82568 −0.0955605
\(366\) 0.0259080 + 0.0448740i 0.00135423 + 0.00234560i
\(367\) −5.89093 + 10.2034i −0.307504 + 0.532613i −0.977816 0.209467i \(-0.932827\pi\)
0.670312 + 0.742080i \(0.266160\pi\)
\(368\) 0.437356 0.757523i 0.0227988 0.0394886i
\(369\) −19.1294 33.1330i −0.995835 1.72484i
\(370\) −0.715466 −0.0371953
\(371\) 0.605485 20.0180i 0.0314352 1.03928i
\(372\) −0.146554 −0.00759848
\(373\) −12.4891 21.6318i −0.646663 1.12005i −0.983915 0.178638i \(-0.942831\pi\)
0.337252 0.941414i \(-0.390503\pi\)
\(374\) 0.397803 0.689016i 0.0205699 0.0356282i
\(375\) 0.00692605 0.0119963i 0.000357660 0.000619485i
\(376\) 9.56459 + 16.5664i 0.493256 + 0.854344i
\(377\) 11.1367 0.573570
\(378\) 0.133805 + 0.0827444i 0.00688217 + 0.00425591i
\(379\) −13.0471 −0.670186 −0.335093 0.942185i \(-0.608768\pi\)
−0.335093 + 0.942185i \(0.608768\pi\)
\(380\) −0.719415 1.24606i −0.0369052 0.0639217i
\(381\) 0.0906343 0.156983i 0.00464333 0.00804249i
\(382\) −3.92340 + 6.79552i −0.200738 + 0.347689i
\(383\) 3.68272 + 6.37866i 0.188178 + 0.325935i 0.944643 0.328100i \(-0.106408\pi\)
−0.756465 + 0.654035i \(0.773075\pi\)
\(384\) −0.144048 −0.00735093
\(385\) 0.491317 0.264188i 0.0250398 0.0134643i
\(386\) 4.01641 0.204430
\(387\) −5.71265 9.89460i −0.290390 0.502971i
\(388\) −3.60756 + 6.24848i −0.183146 + 0.317219i
\(389\) 3.04341 5.27134i 0.154307 0.267268i −0.778499 0.627645i \(-0.784019\pi\)
0.932806 + 0.360378i \(0.117352\pi\)
\(390\) −0.0195795 0.0339127i −0.000991447 0.00171724i
\(391\) −3.87450 −0.195942
\(392\) 9.63308 14.5733i 0.486544 0.736064i
\(393\) 0.286626 0.0144584
\(394\) 2.00331 + 3.46983i 0.100925 + 0.174808i
\(395\) −2.13301 + 3.69448i −0.107323 + 0.185889i
\(396\) −0.470609 + 0.815119i −0.0236490 + 0.0409613i
\(397\) −8.31279 14.3982i −0.417207 0.722624i 0.578450 0.815718i \(-0.303658\pi\)
−0.995657 + 0.0930938i \(0.970324\pi\)
\(398\) −14.5636 −0.730007
\(399\) 0.0312097 0.0167819i 0.00156244 0.000840144i
\(400\) 1.19069 0.0595343
\(401\) 8.47043 + 14.6712i 0.422993 + 0.732646i 0.996231 0.0867436i \(-0.0276461\pi\)
−0.573238 + 0.819389i \(0.694313\pi\)
\(402\) 0.0393919 0.0682287i 0.00196469 0.00340294i
\(403\) 14.0458 24.3280i 0.699669 1.21186i
\(404\) 12.2341 + 21.1900i 0.608667 + 1.05424i
\(405\) 8.99827 0.447128
\(406\) 4.53783 + 2.80618i 0.225209 + 0.139268i
\(407\) 0.210845 0.0104512
\(408\) 0.0911616 + 0.157896i 0.00451317 + 0.00781704i
\(409\) −8.84062 + 15.3124i −0.437140 + 0.757149i −0.997468 0.0711220i \(-0.977342\pi\)
0.560327 + 0.828271i \(0.310675\pi\)
\(410\) −4.56243 + 7.90236i −0.225322 + 0.390270i
\(411\) −0.109584 0.189806i −0.00540540 0.00936243i
\(412\) −23.9243 −1.17867
\(413\) −0.153547 + 5.07642i −0.00755553 + 0.249794i
\(414\) −1.57670 −0.0774907
\(415\) 3.79553 + 6.57404i 0.186315 + 0.322707i
\(416\) 11.5437 19.9942i 0.565975 0.980297i
\(417\) −0.103751 + 0.179701i −0.00508068 + 0.00880000i
\(418\) −0.0729282 0.126315i −0.00356703 0.00617829i
\(419\) −2.69275 −0.131550 −0.0657748 0.997834i \(-0.520952\pi\)
−0.0657748 + 0.997834i \(0.520952\pi\)
\(420\) −0.00164886 + 0.0545131i −8.04560e−5 + 0.00265997i
\(421\) −21.4737 −1.04656 −0.523282 0.852160i \(-0.675293\pi\)
−0.523282 + 0.852160i \(0.675293\pi\)
\(422\) −7.01024 12.1421i −0.341253 0.591068i
\(423\) −11.4969 + 19.9132i −0.558999 + 0.968214i
\(424\) 9.44537 16.3599i 0.458708 0.794505i
\(425\) −2.63704 4.56750i −0.127915 0.221556i
\(426\) 0.156827 0.00759829
\(427\) 11.7649 + 7.27540i 0.569345 + 0.352081i
\(428\) −1.72511 −0.0833865
\(429\) 0.00576999 + 0.00999392i 0.000278578 + 0.000482511i
\(430\) −1.36249 + 2.35990i −0.0657050 + 0.113804i
\(431\) −8.16486 + 14.1419i −0.393287 + 0.681194i −0.992881 0.119111i \(-0.961996\pi\)
0.599594 + 0.800305i \(0.295329\pi\)
\(432\) −0.0494789 0.0857000i −0.00238056 0.00412325i
\(433\) 10.3461 0.497201 0.248601 0.968606i \(-0.420029\pi\)
0.248601 + 0.968606i \(0.420029\pi\)
\(434\) 11.8532 6.37363i 0.568973 0.305944i
\(435\) −0.0390432 −0.00187198
\(436\) 12.3269 + 21.3509i 0.590353 + 1.02252i
\(437\) −0.355150 + 0.615138i −0.0169891 + 0.0294261i
\(438\) 0.00904688 0.0156697i 0.000432277 0.000748725i
\(439\) 6.17518 + 10.6957i 0.294725 + 0.510479i 0.974921 0.222551i \(-0.0714385\pi\)
−0.680196 + 0.733031i \(0.738105\pi\)
\(440\) 0.526188 0.0250850
\(441\) 20.9603 + 1.26913i 0.998108 + 0.0604349i
\(442\) −14.9095 −0.709174
\(443\) 10.2818 + 17.8086i 0.488503 + 0.846112i 0.999913 0.0132254i \(-0.00420990\pi\)
−0.511410 + 0.859337i \(0.670877\pi\)
\(444\) −0.0103067 + 0.0178518i −0.000489135 + 0.000847207i
\(445\) −8.23461 + 14.2628i −0.390358 + 0.676120i
\(446\) −1.95516 3.38644i −0.0925795 0.160352i
\(447\) 0.0473341 0.00223883
\(448\) 4.19254 2.25438i 0.198079 0.106510i
\(449\) 8.26869 0.390224 0.195112 0.980781i \(-0.437493\pi\)
0.195112 + 0.980781i \(0.437493\pi\)
\(450\) −1.07313 1.85872i −0.0505878 0.0876207i
\(451\) 1.34453 2.32879i 0.0633113 0.109658i
\(452\) −5.76556 + 9.98624i −0.271189 + 0.469713i
\(453\) −0.0345226 0.0597949i −0.00162201 0.00280941i
\(454\) 7.62632 0.357921
\(455\) −8.89114 5.49825i −0.416823 0.257762i
\(456\) 0.0334248 0.00156526
\(457\) 4.89242 + 8.47392i 0.228858 + 0.396393i 0.957470 0.288533i \(-0.0931676\pi\)
−0.728612 + 0.684926i \(0.759834\pi\)
\(458\) 2.20561 3.82023i 0.103061 0.178508i
\(459\) −0.219165 + 0.379604i −0.0102297 + 0.0177184i
\(460\) −0.546603 0.946745i −0.0254855 0.0441422i
\(461\) −2.82065 −0.131371 −0.0656853 0.997840i \(-0.520923\pi\)
−0.0656853 + 0.997840i \(0.520923\pi\)
\(462\) −0.000167147 0.00552608i −7.77640e−6 0.000257096i
\(463\) 36.2445 1.68442 0.842211 0.539147i \(-0.181253\pi\)
0.842211 + 0.539147i \(0.181253\pi\)
\(464\) −1.67802 2.90641i −0.0779001 0.134927i
\(465\) −0.0492417 + 0.0852892i −0.00228353 + 0.00395519i
\(466\) 0.954786 1.65374i 0.0442296 0.0766079i
\(467\) 16.2974 + 28.2279i 0.754153 + 1.30623i 0.945794 + 0.324767i \(0.105286\pi\)
−0.191641 + 0.981465i \(0.561381\pi\)
\(468\) 17.6383 0.815329
\(469\) 0.635866 21.0224i 0.0293616 0.970726i
\(470\) 5.48411 0.252963
\(471\) 0.00179227 + 0.00310430i 8.25832e−5 + 0.000143038i
\(472\) −2.39528 + 4.14874i −0.110252 + 0.190961i
\(473\) 0.401519 0.695452i 0.0184619 0.0319769i
\(474\) −0.0211396 0.0366149i −0.000970974 0.00168178i
\(475\) −0.966884 −0.0443637
\(476\) 17.6609 + 10.9214i 0.809485 + 0.500583i
\(477\) 22.7072 1.03969
\(478\) −7.13846 12.3642i −0.326506 0.565524i
\(479\) 5.57842 9.66211i 0.254885 0.441473i −0.709980 0.704222i \(-0.751296\pi\)
0.964864 + 0.262749i \(0.0846292\pi\)
\(480\) −0.0404699 + 0.0700959i −0.00184719 + 0.00319942i
\(481\) −1.97559 3.42183i −0.0900793 0.156022i
\(482\) 18.2349 0.830576
\(483\) 0.0237128 0.0127507i 0.00107897 0.000580176i
\(484\) 16.3030 0.741048
\(485\) 2.42426 + 4.19894i 0.110080 + 0.190664i
\(486\) −0.133783 + 0.231719i −0.00606852 + 0.0105110i
\(487\) 16.9639 29.3823i 0.768708 1.33144i −0.169556 0.985521i \(-0.554233\pi\)
0.938264 0.345921i \(-0.112433\pi\)
\(488\) 6.52392 + 11.2998i 0.295324 + 0.511516i
\(489\) 0.0126591 0.000572464
\(490\) −2.23741 4.48070i −0.101076 0.202417i
\(491\) −0.491585 −0.0221849 −0.0110925 0.999938i \(-0.503531\pi\)
−0.0110925 + 0.999938i \(0.503531\pi\)
\(492\) 0.131449 + 0.227676i 0.00592618 + 0.0102644i
\(493\) −7.43270 + 12.8738i −0.334752 + 0.579808i
\(494\) −1.36666 + 2.36713i −0.0614890 + 0.106502i
\(495\) 0.316247 + 0.547755i 0.0142142 + 0.0246198i
\(496\) −8.46536 −0.380106
\(497\) 36.8736 19.8274i 1.65401 0.889382i
\(498\) −0.0752326 −0.00337125
\(499\) −1.94784 3.37377i −0.0871975 0.151030i 0.819128 0.573611i \(-0.194458\pi\)
−0.906325 + 0.422580i \(0.861124\pi\)
\(500\) 0.744055 1.28874i 0.0332751 0.0576342i
\(501\) −0.110868 + 0.192029i −0.00495320 + 0.00857920i
\(502\) −3.63087 6.28885i −0.162054 0.280685i
\(503\) −22.8507 −1.01886 −0.509430 0.860512i \(-0.670144\pi\)
−0.509430 + 0.860512i \(0.670144\pi\)
\(504\) 16.8462 + 10.4176i 0.750390 + 0.464038i
\(505\) 16.4424 0.731678
\(506\) −0.0554101 0.0959730i −0.00246328 0.00426652i
\(507\) 0.0180900 0.0313328i 0.000803404 0.00139154i
\(508\) 9.73670 16.8645i 0.431996 0.748239i
\(509\) −16.4327 28.4623i −0.728367 1.26157i −0.957573 0.288191i \(-0.906946\pi\)
0.229206 0.973378i \(-0.426387\pi\)
\(510\) 0.0522699 0.00231455
\(511\) 0.146035 4.82809i 0.00646022 0.213582i
\(512\) −12.9004 −0.570121
\(513\) 0.0401788 + 0.0695918i 0.00177394 + 0.00307255i
\(514\) −4.89547 + 8.47920i −0.215930 + 0.374001i
\(515\) −8.03850 + 13.9231i −0.354219 + 0.613525i
\(516\) 0.0392549 + 0.0679915i 0.00172810 + 0.00299316i
\(517\) −1.61614 −0.0710779
\(518\) 0.0572297 1.89208i 0.00251453 0.0831332i
\(519\) −0.248757 −0.0109192
\(520\) −4.93033 8.53959i −0.216209 0.374486i
\(521\) −8.95418 + 15.5091i −0.392290 + 0.679466i −0.992751 0.120188i \(-0.961650\pi\)
0.600461 + 0.799654i \(0.294984\pi\)
\(522\) −3.02469 + 5.23892i −0.132387 + 0.229302i
\(523\) 9.20709 + 15.9471i 0.402598 + 0.697320i 0.994039 0.109029i \(-0.0347740\pi\)
−0.591441 + 0.806348i \(0.701441\pi\)
\(524\) 30.7918 1.34514
\(525\) 0.0311706 + 0.0192758i 0.00136040 + 0.000841265i
\(526\) 12.2213 0.532873
\(527\) 18.7484 + 32.4733i 0.816695 + 1.41456i
\(528\) 0.00173878 0.00301166i 7.56708e−5 0.000131066i
\(529\) 11.2302 19.4512i 0.488268 0.845705i
\(530\) −2.70788 4.69018i −0.117623 0.203728i
\(531\) −5.75838 −0.249893
\(532\) 3.35281 1.80285i 0.145363 0.0781635i
\(533\) −50.3924 −2.18274
\(534\) −0.0816108 0.141354i −0.00353164 0.00611699i
\(535\) −0.579632 + 1.00395i −0.0250597 + 0.0434047i
\(536\) 9.91931 17.1807i 0.428449 0.742095i
\(537\) 0.136483 + 0.236395i 0.00588967 + 0.0102012i
\(538\) 4.91206 0.211774
\(539\) 0.659355 + 1.32044i 0.0284004 + 0.0568754i
\(540\) −0.123677 −0.00532219
\(541\) 8.53819 + 14.7886i 0.367085 + 0.635811i 0.989108 0.147188i \(-0.0470224\pi\)
−0.622023 + 0.782999i \(0.713689\pi\)
\(542\) −9.85206 + 17.0643i −0.423182 + 0.732973i
\(543\) 0.0776402 0.134477i 0.00333186 0.00577095i
\(544\) 15.4086 + 26.6885i 0.660639 + 1.14426i
\(545\) 16.5673 0.709663
\(546\) 0.0912497 0.0490662i 0.00390513 0.00209984i
\(547\) −29.9033 −1.27857 −0.639286 0.768969i \(-0.720770\pi\)
−0.639286 + 0.768969i \(0.720770\pi\)
\(548\) −11.7725 20.3906i −0.502896 0.871041i
\(549\) −7.84193 + 13.5826i −0.334686 + 0.579692i
\(550\) 0.0754260 0.130642i 0.00321618 0.00557058i
\(551\) 1.36262 + 2.36012i 0.0580494 + 0.100545i
\(552\) 0.0253958 0.00108092
\(553\) −9.59959 5.93635i −0.408216 0.252439i
\(554\) −15.1359 −0.643061
\(555\) 0.00692605 + 0.0119963i 0.000293994 + 0.000509213i
\(556\) −11.1458 + 19.3050i −0.472685 + 0.818715i
\(557\) 21.1997 36.7189i 0.898259 1.55583i 0.0685399 0.997648i \(-0.478166\pi\)
0.829719 0.558181i \(-0.188501\pi\)
\(558\) 7.62957 + 13.2148i 0.322985 + 0.559427i
\(559\) −15.0488 −0.636496
\(560\) −0.0952424 + 3.14882i −0.00402473 + 0.133062i
\(561\) −0.0154037 −0.000650345
\(562\) 0.225714 + 0.390948i 0.00952116 + 0.0164911i
\(563\) 7.12065 12.3333i 0.300100 0.519788i −0.676059 0.736848i \(-0.736313\pi\)
0.976158 + 0.217060i \(0.0696467\pi\)
\(564\) 0.0790019 0.136835i 0.00332658 0.00576181i
\(565\) 3.87442 + 6.71069i 0.162998 + 0.282321i
\(566\) 4.59631 0.193197
\(567\) −0.719767 + 23.7963i −0.0302274 + 0.999351i
\(568\) 39.4907 1.65699
\(569\) 9.51091 + 16.4734i 0.398718 + 0.690600i 0.993568 0.113237i \(-0.0361219\pi\)
−0.594850 + 0.803837i \(0.702789\pi\)
\(570\) 0.00479125 0.00829869i 0.000200683 0.000347594i
\(571\) −20.8079 + 36.0403i −0.870781 + 1.50824i −0.00959173 + 0.999954i \(0.503053\pi\)
−0.861190 + 0.508284i \(0.830280\pi\)
\(572\) 0.619861 + 1.07363i 0.0259177 + 0.0448908i
\(573\) 0.151921 0.00634661
\(574\) −20.5332 12.6976i −0.857038 0.529989i
\(575\) −0.734628 −0.0306361
\(576\) 2.69861 + 4.67414i 0.112442 + 0.194756i
\(577\) −8.02041 + 13.8918i −0.333894 + 0.578321i −0.983272 0.182145i \(-0.941696\pi\)
0.649378 + 0.760466i \(0.275029\pi\)
\(578\) 3.86925 6.70173i 0.160939 0.278755i
\(579\) −0.0388807 0.0673434i −0.00161583 0.00279870i
\(580\) −4.19434 −0.174161
\(581\) −17.6889 + 9.51157i −0.733861 + 0.394606i
\(582\) −0.0480522 −0.00199183
\(583\) 0.798000 + 1.38218i 0.0330498 + 0.0572439i
\(584\) 2.27810 3.94579i 0.0942686 0.163278i
\(585\) 5.92640 10.2648i 0.245027 0.424398i
\(586\) −7.99013 13.8393i −0.330069 0.571697i
\(587\) 35.6597 1.47183 0.735916 0.677073i \(-0.236752\pi\)
0.735916 + 0.677073i \(0.236752\pi\)
\(588\) −0.144030 0.00872095i −0.00593971 0.000359646i
\(589\) 6.87420 0.283246
\(590\) 0.686698 + 1.18940i 0.0282709 + 0.0489667i
\(591\) 0.0387860 0.0671793i 0.00159544 0.00276339i
\(592\) −0.595343 + 1.03117i −0.0244685 + 0.0423806i
\(593\) −15.1309 26.2075i −0.621351 1.07621i −0.989234 0.146340i \(-0.953251\pi\)
0.367883 0.929872i \(-0.380083\pi\)
\(594\) −0.0125373 −0.000514412
\(595\) 12.2899 6.60842i 0.503836 0.270919i
\(596\) 5.08503 0.208291
\(597\) 0.140982 + 0.244189i 0.00577003 + 0.00999398i
\(598\) −1.03837 + 1.79852i −0.0424623 + 0.0735468i
\(599\) 14.7305 25.5140i 0.601872 1.04247i −0.390666 0.920533i \(-0.627755\pi\)
0.992538 0.121940i \(-0.0389115\pi\)
\(600\) 0.0172848 + 0.0299381i 0.000705649 + 0.00122222i
\(601\) −6.17362 −0.251827 −0.125914 0.992041i \(-0.540186\pi\)
−0.125914 + 0.992041i \(0.540186\pi\)
\(602\) −6.13187 3.79192i −0.249916 0.154547i
\(603\) 23.8466 0.971108
\(604\) −3.70871 6.42368i −0.150905 0.261376i
\(605\) 5.47777 9.48778i 0.222703 0.385733i
\(606\) −0.0814779 + 0.141124i −0.00330981 + 0.00573277i
\(607\) −0.791970 1.37173i −0.0321451 0.0556769i 0.849505 0.527580i \(-0.176901\pi\)
−0.881650 + 0.471903i \(0.843567\pi\)
\(608\) 5.64964 0.229123
\(609\) 0.00312304 0.103251i 0.000126552 0.00418395i
\(610\) 3.74066 0.151455
\(611\) 15.1431 + 26.2286i 0.612625 + 1.06110i
\(612\) −11.7719 + 20.3895i −0.475850 + 0.824196i
\(613\) −1.37117 + 2.37493i −0.0553810 + 0.0959226i −0.892387 0.451271i \(-0.850971\pi\)
0.837006 + 0.547194i \(0.184304\pi\)
\(614\) 2.16601 + 3.75164i 0.0874131 + 0.151404i
\(615\) 0.176666 0.00712386
\(616\) −0.0420895 + 1.39153i −0.00169584 + 0.0560662i
\(617\) −20.0279 −0.806294 −0.403147 0.915135i \(-0.632084\pi\)
−0.403147 + 0.915135i \(0.632084\pi\)
\(618\) −0.0796672 0.137988i −0.00320468 0.00555067i
\(619\) −17.2470 + 29.8727i −0.693215 + 1.20068i 0.277564 + 0.960707i \(0.410473\pi\)
−0.970779 + 0.239976i \(0.922860\pi\)
\(620\) −5.28996 + 9.16248i −0.212450 + 0.367974i
\(621\) 0.0305274 + 0.0528751i 0.00122502 + 0.00212180i
\(622\) −8.39388 −0.336564
\(623\) −37.0598 22.9177i −1.48477 0.918176i
\(624\) −0.0651689 −0.00260885
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 1.09176 1.89099i 0.0436357 0.0755792i
\(627\) −0.00141196 + 0.00244559i −5.63882e−5 + 9.76673e-5i
\(628\) 0.192540 + 0.333490i 0.00768319 + 0.0133077i
\(629\) 5.27409 0.210292
\(630\) 5.00129 2.68926i 0.199256 0.107143i
\(631\) 33.8314 1.34681 0.673404 0.739275i \(-0.264832\pi\)
0.673404 + 0.739275i \(0.264832\pi\)
\(632\) −5.32318 9.22002i −0.211745 0.366753i
\(633\) −0.135725 + 0.235083i −0.00539458 + 0.00934369i
\(634\) −8.58104 + 14.8628i −0.340797 + 0.590277i
\(635\) −6.54300 11.3328i −0.259651 0.449729i
\(636\) −0.156034 −0.00618717
\(637\) 15.2515 23.0732i 0.604288 0.914193i
\(638\) −0.425187 −0.0168333
\(639\) 23.7345 + 41.1093i 0.938921 + 1.62626i
\(640\) −5.19951 + 9.00581i −0.205529 + 0.355986i
\(641\) 11.9424 20.6848i 0.471696 0.817001i −0.527780 0.849381i \(-0.676975\pi\)
0.999476 + 0.0323801i \(0.0103087\pi\)
\(642\) −0.00574456 0.00994987i −0.000226720 0.000392690i
\(643\) −5.59825 −0.220773 −0.110387 0.993889i \(-0.535209\pi\)
−0.110387 + 0.993889i \(0.535209\pi\)
\(644\) 2.54743 1.36979i 0.100383 0.0539771i
\(645\) 0.0527581 0.00207735
\(646\) −1.82423 3.15967i −0.0717736 0.124315i
\(647\) 15.2748 26.4568i 0.600515 1.04012i −0.392228 0.919868i \(-0.628295\pi\)
0.992743 0.120255i \(-0.0383712\pi\)
\(648\) −11.2281 + 19.4477i −0.441083 + 0.763978i
\(649\) −0.202367 0.350510i −0.00794360 0.0137587i
\(650\) −2.82694 −0.110882
\(651\) −0.221612 0.137044i −0.00868566 0.00537118i
\(652\) 1.35995 0.0532596
\(653\) 10.3089 + 17.8556i 0.403420 + 0.698744i 0.994136 0.108135i \(-0.0344880\pi\)
−0.590716 + 0.806880i \(0.701155\pi\)
\(654\) −0.0820965 + 0.142195i −0.00321023 + 0.00556028i
\(655\) 10.3459 17.9197i 0.404249 0.700180i
\(656\) 7.59285 + 13.1512i 0.296451 + 0.513468i
\(657\) 5.47669 0.213666
\(658\) −0.438671 + 14.5030i −0.0171012 + 0.565384i
\(659\) 2.12038 0.0825982 0.0412991 0.999147i \(-0.486850\pi\)
0.0412991 + 0.999147i \(0.486850\pi\)
\(660\) −0.00217311 0.00376394i −8.45884e−5 0.000146511i
\(661\) 15.5231 26.8868i 0.603779 1.04578i −0.388465 0.921464i \(-0.626994\pi\)
0.992243 0.124312i \(-0.0396722\pi\)
\(662\) −7.28965 + 12.6261i −0.283320 + 0.490725i
\(663\) 0.144331 + 0.249989i 0.00560536 + 0.00970878i
\(664\) −18.9444 −0.735185
\(665\) 0.0773406 2.55697i 0.00299914 0.0991549i
\(666\) 2.14626 0.0831659
\(667\) 1.03530 + 1.79320i 0.0400870 + 0.0694328i
\(668\) −11.9103 + 20.6293i −0.460825 + 0.798173i
\(669\) −0.0378538 + 0.0655646i −0.00146351 + 0.00253488i
\(670\) −2.84375 4.92552i −0.109864 0.190289i
\(671\) −1.10236 −0.0425560
\(672\) −0.182134 0.112631i −0.00702598 0.00434484i
\(673\) −1.94529 −0.0749853 −0.0374926 0.999297i \(-0.511937\pi\)
−0.0374926 + 0.999297i \(0.511937\pi\)
\(674\) −9.87883 17.1106i −0.380518 0.659077i
\(675\) −0.0415550 + 0.0719753i −0.00159945 + 0.00277033i
\(676\) 1.94338 3.36603i 0.0747453 0.129463i
\(677\) 2.16425 + 3.74860i 0.0831790 + 0.144070i 0.904614 0.426232i \(-0.140159\pi\)
−0.821435 + 0.570302i \(0.806826\pi\)
\(678\) −0.0767964 −0.00294935
\(679\) −11.2982 + 6.07519i −0.433585 + 0.233144i
\(680\) 13.1621 0.504745
\(681\) −0.0738264 0.127871i −0.00282903 0.00490003i
\(682\) −0.536252 + 0.928815i −0.0205341 + 0.0355662i
\(683\) 2.24213 3.88348i 0.0857927 0.148597i −0.819936 0.572455i \(-0.805991\pi\)
0.905729 + 0.423858i \(0.139324\pi\)
\(684\) 2.15811 + 3.73795i 0.0825172 + 0.142924i
\(685\) −15.8221 −0.604531
\(686\) 12.0284 5.55852i 0.459245 0.212225i
\(687\) −0.0854055 −0.00325842
\(688\) 2.26747 + 3.92737i 0.0864465 + 0.149730i
\(689\) 14.9544 25.9017i 0.569716 0.986777i
\(690\) 0.00364034 0.00630525i 0.000138585 0.000240037i
\(691\) −12.7984 22.1675i −0.486875 0.843292i 0.513012 0.858382i \(-0.328530\pi\)
−0.999886 + 0.0150902i \(0.995196\pi\)
\(692\) −26.7236 −1.01588
\(693\) −1.47386 + 0.792513i −0.0559872 + 0.0301051i
\(694\) −7.75635 −0.294427
\(695\) 7.48988 + 12.9729i 0.284107 + 0.492088i
\(696\) 0.0487185 0.0843829i 0.00184667 0.00319852i
\(697\) 33.6322 58.2526i 1.27391 2.20647i
\(698\) −0.239664 0.415110i −0.00907140 0.0157121i
\(699\) −0.0369711 −0.00139838
\(700\) 3.34861 + 2.07077i 0.126566 + 0.0782677i
\(701\) −21.7865 −0.822866 −0.411433 0.911440i \(-0.634972\pi\)
−0.411433 + 0.911440i \(0.634972\pi\)
\(702\) 0.117473 + 0.203470i 0.00443374 + 0.00767947i
\(703\) 0.483442 0.837346i 0.0182334 0.0315811i
\(704\) −0.189675 + 0.328526i −0.00714864 + 0.0123818i
\(705\) −0.0530888 0.0919525i −0.00199944 0.00346313i
\(706\) −24.7882 −0.932915
\(707\) −1.31522 + 43.4827i −0.0494640 + 1.63533i
\(708\) 0.0395692 0.00148710
\(709\) 13.2287 + 22.9129i 0.496816 + 0.860511i 0.999993 0.00367257i \(-0.00116902\pi\)
−0.503177 + 0.864183i \(0.667836\pi\)
\(710\) 5.66076 9.80473i 0.212445 0.367965i
\(711\) 6.39862 11.0827i 0.239967 0.415635i
\(712\) −20.5505 35.5945i −0.770162 1.33396i
\(713\) 5.22294 0.195601
\(714\) −0.00418104 + 0.138230i −0.000156472 + 0.00517313i
\(715\) 0.833086 0.0311557
\(716\) 14.6621 + 25.3956i 0.547950 + 0.949077i
\(717\) −0.138207 + 0.239382i −0.00516145 + 0.00893989i
\(718\) 4.03452 6.98800i 0.150567 0.260790i
\(719\) 15.4575 + 26.7732i 0.576469 + 0.998473i 0.995880 + 0.0906768i \(0.0289030\pi\)
−0.419412 + 0.907796i \(0.637764\pi\)
\(720\) −3.57183 −0.133114
\(721\) −36.1772 22.3719i −1.34731 0.833171i
\(722\) 12.9250 0.481018
\(723\) −0.176522 0.305746i −0.00656493 0.0113708i
\(724\) 8.34077 14.4466i 0.309982 0.536905i
\(725\) −1.40929 + 2.44096i −0.0523396 + 0.0906548i
\(726\) 0.0542885 + 0.0940305i 0.00201484 + 0.00348980i
\(727\) 27.4712 1.01885 0.509425 0.860515i \(-0.329858\pi\)
0.509425 + 0.860515i \(0.329858\pi\)
\(728\) 22.9777 12.3554i 0.851609 0.457921i
\(729\) −26.9896 −0.999616
\(730\) −0.653106 1.13121i −0.0241725 0.0418680i
\(731\) 10.0436 17.3961i 0.371478 0.643418i
\(732\) 0.0538865 0.0933342i 0.00199170 0.00344973i
\(733\) −12.2834 21.2755i −0.453699 0.785830i 0.544913 0.838493i \(-0.316563\pi\)
−0.998612 + 0.0526622i \(0.983229\pi\)
\(734\) −8.42952 −0.311139
\(735\) −0.0534690 + 0.0808902i −0.00197223 + 0.00298368i
\(736\) 4.29253 0.158225
\(737\) 0.838040 + 1.45153i 0.0308696 + 0.0534677i
\(738\) 13.6864 23.7056i 0.503804 0.872613i
\(739\) −5.33188 + 9.23509i −0.196136 + 0.339718i −0.947272 0.320429i \(-0.896173\pi\)
0.751136 + 0.660147i \(0.229506\pi\)
\(740\) 0.744055 + 1.28874i 0.0273520 + 0.0473750i
\(741\) 0.0529197 0.00194405
\(742\) 12.6200 6.78593i 0.463294 0.249119i
\(743\) 12.9938 0.476696 0.238348 0.971180i \(-0.423394\pi\)
0.238348 + 0.971180i \(0.423394\pi\)
\(744\) −0.122889 0.212849i −0.00450532 0.00780344i
\(745\) 1.70855 2.95930i 0.0625965 0.108420i
\(746\) 8.93554 15.4768i 0.327153 0.566646i
\(747\) −11.3858 19.7209i −0.416586 0.721549i
\(748\) −1.65480 −0.0605054
\(749\) −2.60863 1.61317i −0.0953173 0.0589439i
\(750\) 0.00991070 0.000361888
\(751\) 4.81675 + 8.34285i 0.175766 + 0.304435i 0.940426 0.339999i \(-0.110427\pi\)
−0.764660 + 0.644434i \(0.777093\pi\)
\(752\) 4.56336 7.90398i 0.166409 0.288228i
\(753\) −0.0702971 + 0.121758i −0.00256177 + 0.00443711i
\(754\) 3.98397 + 6.90043i 0.145087 + 0.251299i
\(755\) −4.98446 −0.181403
\(756\) 0.00989283 0.327068i 0.000359799 0.0118953i
\(757\) 40.5703 1.47455 0.737276 0.675591i \(-0.236112\pi\)
0.737276 + 0.675591i \(0.236112\pi\)
\(758\) −4.66739 8.08415i −0.169527 0.293630i
\(759\) −0.00107279 + 0.00185813i −3.89399e−5 + 6.74458e-5i
\(760\) 1.20649 2.08970i 0.0437639 0.0758014i
\(761\) 0.0297730 + 0.0515683i 0.00107927 + 0.00186935i 0.866565 0.499065i \(-0.166323\pi\)
−0.865485 + 0.500934i \(0.832990\pi\)
\(762\) 0.129691 0.00469822
\(763\) −1.32521 + 43.8128i −0.0479757 + 1.58613i
\(764\) 16.3207 0.590462
\(765\) 7.91063 + 13.7016i 0.286009 + 0.495383i
\(766\) −2.63486 + 4.56371i −0.0952014 + 0.164894i
\(767\) −3.79232 + 6.56849i −0.136933 + 0.237174i
\(768\) −0.0764533 0.132421i −0.00275877 0.00477833i
\(769\) 47.2742 1.70475 0.852376 0.522930i \(-0.175161\pi\)
0.852376 + 0.522930i \(0.175161\pi\)
\(770\) 0.339454 + 0.209917i 0.0122331 + 0.00756489i
\(771\) 0.189562 0.00682690
\(772\) −4.17690 7.23460i −0.150330 0.260379i
\(773\) −14.8494 + 25.7199i −0.534095 + 0.925079i 0.465112 + 0.885252i \(0.346014\pi\)
−0.999207 + 0.0398272i \(0.987319\pi\)
\(774\) 4.08720 7.07924i 0.146911 0.254458i
\(775\) 3.55482 + 6.15713i 0.127693 + 0.221171i
\(776\) −12.1001 −0.434367
\(777\) −0.0322786 + 0.0173566i −0.00115799 + 0.000622666i
\(778\) 4.35491 0.156131
\(779\) −6.16569 10.6793i −0.220909 0.382625i
\(780\) −0.0407238 + 0.0705356i −0.00145814 + 0.00252558i
\(781\) −1.66820 + 2.88941i −0.0596929 + 0.103391i
\(782\) −1.38603 2.40068i −0.0495645 0.0858482i
\(783\) 0.234251 0.00837146
\(784\) −8.31957 0.503745i −0.297128 0.0179909i
\(785\) 0.258772 0.00923596
\(786\) 0.102535 + 0.177597i 0.00365732 + 0.00633466i
\(787\) 22.9297 39.7153i 0.817354 1.41570i −0.0902709 0.995917i \(-0.528773\pi\)
0.907625 0.419782i \(-0.137893\pi\)
\(788\) 4.16672 7.21697i 0.148433 0.257094i
\(789\) −0.118308 0.204915i −0.00421187 0.00729517i
\(790\) −3.05219 −0.108592
\(791\) −18.0566 + 9.70928i −0.642019 + 0.345222i
\(792\) −1.57846 −0.0560883
\(793\) 10.3290 + 17.8903i 0.366793 + 0.635304i
\(794\) 5.94752 10.3014i 0.211069 0.365583i
\(795\) −0.0524271 + 0.0908064i −0.00185940 + 0.00322057i
\(796\) 15.1455 + 26.2328i 0.536819 + 0.929798i
\(797\) −13.2190 −0.468243 −0.234121 0.972207i \(-0.575221\pi\)
−0.234121 + 0.972207i \(0.575221\pi\)
\(798\) 0.0215630 + 0.0133345i 0.000763321 + 0.000472035i
\(799\) −40.4264 −1.43018
\(800\) 2.92157 + 5.06031i 0.103293 + 0.178909i
\(801\) 24.7023 42.7856i 0.872812 1.51175i
\(802\) −6.06030 + 10.4968i −0.213997 + 0.370653i
\(803\) 0.192467 + 0.333363i 0.00679202 + 0.0117641i
\(804\) −0.163864 −0.00577903
\(805\) 0.0587625 1.94276i 0.00207111 0.0684731i
\(806\) 20.0985 0.707940
\(807\) −0.0475511 0.0823609i −0.00167388 0.00289924i
\(808\) −20.5170 + 35.5365i −0.721786 + 1.25017i
\(809\) 6.02150 10.4295i 0.211705 0.366683i −0.740544 0.672008i \(-0.765432\pi\)
0.952248 + 0.305325i \(0.0987652\pi\)
\(810\) 3.21898 + 5.57543i 0.113103 + 0.195901i
\(811\) −10.1408 −0.356093 −0.178047 0.984022i \(-0.556978\pi\)
−0.178047 + 0.984022i \(0.556978\pi\)
\(812\) 0.335503 11.0921i 0.0117739 0.389257i
\(813\) 0.381491 0.0133795
\(814\) 0.0754260 + 0.130642i 0.00264368 + 0.00457899i
\(815\) 0.456938 0.791439i 0.0160058 0.0277229i
\(816\) 0.0434941 0.0753340i 0.00152260 0.00263722i
\(817\) −1.84127 3.18918i −0.0644180 0.111575i
\(818\) −12.6503 −0.442308
\(819\) 26.6717 + 16.4937i 0.931985 + 0.576336i
\(820\) 18.9789 0.662773
\(821\) −26.1578 45.3066i −0.912912 1.58121i −0.809930 0.586526i \(-0.800495\pi\)
−0.102982 0.994683i \(-0.532838\pi\)
\(822\) 0.0784039 0.135800i 0.00273465 0.00473655i
\(823\) 17.2011 29.7932i 0.599594 1.03853i −0.393287 0.919416i \(-0.628662\pi\)
0.992881 0.119112i \(-0.0380046\pi\)
\(824\) −20.0611 34.7468i −0.698860 1.21046i
\(825\) −0.00292064 −0.000101684
\(826\) −3.20034 + 1.72086i −0.111354 + 0.0598765i
\(827\) −25.0842 −0.872264 −0.436132 0.899883i \(-0.643652\pi\)
−0.436132 + 0.899883i \(0.643652\pi\)
\(828\) 1.63971 + 2.84005i 0.0569837 + 0.0986987i
\(829\) −1.12592 + 1.95016i −0.0391049 + 0.0677318i −0.884915 0.465752i \(-0.845784\pi\)
0.845811 + 0.533483i \(0.179117\pi\)
\(830\) −2.71557 + 4.70350i −0.0942587 + 0.163261i
\(831\) 0.146522 + 0.253784i 0.00508280 + 0.00880367i
\(832\) 7.10894 0.246458
\(833\) 16.4932 + 33.0297i 0.571455 + 1.14441i
\(834\) −0.148460 −0.00514074
\(835\) 8.00368 + 13.8628i 0.276979 + 0.479741i
\(836\) −0.151685 + 0.262725i −0.00524612 + 0.00908655i
\(837\) 0.295441 0.511719i 0.0102119 0.0176876i
\(838\) −0.963286 1.66846i −0.0332762 0.0576360i
\(839\) 49.6406 1.71378 0.856891 0.515497i \(-0.172393\pi\)
0.856891 + 0.515497i \(0.172393\pi\)
\(840\) −0.0805553 + 0.0433156i −0.00277942 + 0.00149453i
\(841\) −21.0556 −0.726057
\(842\) −7.68184 13.3053i −0.264734 0.458532i
\(843\) 0.00437004 0.00756912i 0.000150512 0.000260695i
\(844\) −14.5807 + 25.2545i −0.501889 + 0.869297i
\(845\) −1.30594 2.26195i −0.0449256 0.0778135i
\(846\) −16.4513 −0.565607
\(847\) 24.6527 + 15.2451i 0.847076 + 0.523829i
\(848\) −9.01297 −0.309507
\(849\) −0.0444945 0.0770667i −0.00152705 0.00264492i
\(850\) 1.88671 3.26789i 0.0647138 0.112088i
\(851\) 0.367314 0.636207i 0.0125914 0.0218089i
\(852\) −0.163093 0.282486i −0.00558749 0.00967781i
\(853\) −43.8842 −1.50257 −0.751284 0.659979i \(-0.770565\pi\)
−0.751284 + 0.659979i \(0.770565\pi\)
\(854\) −0.299214 + 9.89234i −0.0102389 + 0.338509i
\(855\) 2.90047 0.0991939
\(856\) −1.44654 2.50549i −0.0494418 0.0856358i
\(857\) −22.8744 + 39.6196i −0.781373 + 1.35338i 0.149768 + 0.988721i \(0.452147\pi\)
−0.931142 + 0.364657i \(0.881186\pi\)
\(858\) −0.00412823 + 0.00715031i −0.000140936 + 0.000244107i
\(859\) 22.3800 + 38.7634i 0.763597 + 1.32259i 0.940985 + 0.338448i \(0.109902\pi\)
−0.177388 + 0.984141i \(0.556765\pi\)
\(860\) 5.66773 0.193268
\(861\) −0.0141314 + 0.467200i −0.000481597 + 0.0159221i
\(862\) −11.6833 −0.397936
\(863\) 22.1918 + 38.4373i 0.755417 + 1.30842i 0.945167 + 0.326587i \(0.105899\pi\)
−0.189750 + 0.981832i \(0.560768\pi\)
\(864\) 0.242811 0.420562i 0.00826061 0.0143078i
\(865\) −8.97904 + 15.5522i −0.305296 + 0.528789i
\(866\) 3.70113 + 6.41055i 0.125770 + 0.217839i
\(867\) −0.149825 −0.00508831
\(868\) −23.8074 14.7224i −0.808077 0.499712i
\(869\) 0.899466 0.0305123
\(870\) −0.0139670 0.0241916i −0.000473526 0.000820171i
\(871\) 15.7047 27.2014i 0.532134 0.921683i
\(872\) −20.6728 + 35.8063i −0.700069 + 1.21256i
\(873\) −7.27232 12.5960i −0.246131 0.426311i
\(874\) −0.508195 −0.0171900
\(875\) 2.33024 1.25300i 0.0787763 0.0423591i
\(876\) −0.0376335 −0.00127152
\(877\) −27.6436 47.8801i −0.933457 1.61680i −0.777362 0.629053i \(-0.783443\pi\)
−0.156095 0.987742i \(-0.549891\pi\)
\(878\) −4.41813 + 7.65243i −0.149105 + 0.258257i
\(879\) −0.154697 + 0.267942i −0.00521779 + 0.00903747i
\(880\) −0.125525 0.217415i −0.00423144 0.00732907i
\(881\) 14.8771 0.501223 0.250612 0.968088i \(-0.419368\pi\)
0.250612 + 0.968088i \(0.419368\pi\)
\(882\) 6.71181 + 13.4412i 0.225998 + 0.452590i
\(883\) −52.1314 −1.75436 −0.877180 0.480161i \(-0.840578\pi\)
−0.877180 + 0.480161i \(0.840578\pi\)
\(884\) 15.5053 + 26.8559i 0.521499 + 0.903263i
\(885\) 0.0132951 0.0230278i 0.000446911 0.000774073i
\(886\) −7.35627 + 12.7414i −0.247139 + 0.428057i
\(887\) 6.51951 + 11.2921i 0.218904 + 0.379152i 0.954473 0.298297i \(-0.0964186\pi\)
−0.735569 + 0.677449i \(0.763085\pi\)
\(888\) −0.0345696 −0.00116008
\(889\) 30.4935 16.3967i 1.02272 0.549929i
\(890\) −11.7832 −0.394973
\(891\) −0.948618 1.64306i −0.0317799 0.0550444i
\(892\) −4.06657 + 7.04351i −0.136159 + 0.235834i
\(893\) −3.70563 + 6.41834i −0.124004 + 0.214781i
\(894\) 0.0169330 + 0.0293287i 0.000566323 + 0.000980900i
\(895\) 19.7057 0.658690
\(896\) −23.4003 14.4707i −0.781751 0.483432i
\(897\) 0.0402078 0.00134250
\(898\) 2.95798 + 5.12337i 0.0987091 + 0.170969i
\(899\) 10.0195 17.3543i 0.334170 0.578799i
\(900\) −2.23202 + 3.86597i −0.0744007 + 0.128866i
\(901\) 19.9613 + 34.5739i 0.665006 + 1.15182i
\(902\) 1.92393 0.0640597
\(903\) −0.00422010 + 0.139521i −0.000140436 + 0.00464297i
\(904\) −19.3382 −0.643178
\(905\) −5.60494 9.70805i −0.186315 0.322706i
\(906\) 0.0246997 0.0427812i 0.000820594 0.00142131i
\(907\) 21.0928 36.5337i 0.700374 1.21308i −0.267961 0.963430i \(-0.586350\pi\)
0.968335 0.249654i \(-0.0803167\pi\)
\(908\) −7.93106 13.7370i −0.263201 0.455878i
\(909\) −49.3241 −1.63598
\(910\) 0.226125 7.47596i 0.00749598 0.247826i
\(911\) 33.0226 1.09409 0.547044 0.837104i \(-0.315753\pi\)
0.547044 + 0.837104i \(0.315753\pi\)
\(912\) −0.00797366 0.0138108i −0.000264034 0.000457321i
\(913\) 0.800266 1.38610i 0.0264849 0.0458732i
\(914\) −3.50036 + 6.06280i −0.115781 + 0.200539i
\(915\) −0.0362114 0.0627200i −0.00119711 0.00207346i
\(916\) −9.17498 −0.303150
\(917\) 46.5618 + 28.7937i 1.53761 + 0.950850i
\(918\) −0.313609 −0.0103507
\(919\) 9.91827 + 17.1789i 0.327173 + 0.566681i 0.981950 0.189142i \(-0.0605705\pi\)
−0.654776 + 0.755823i \(0.727237\pi\)
\(920\) 0.916677 1.58773i 0.0302219 0.0523460i
\(921\) 0.0419361 0.0726354i 0.00138184 0.00239342i
\(922\) −1.00904 1.74770i −0.0332309 0.0575576i
\(923\) 62.5236 2.05799
\(924\) 0.0101277 0.00544582i 0.000333178 0.000179154i
\(925\) 1.00000 0.0328798
\(926\) 12.9658 + 22.4575i 0.426084 + 0.737999i
\(927\) 24.1140 41.7666i 0.792007 1.37180i
\(928\) 8.23466 14.2628i 0.270316 0.468201i
\(929\) 7.27055 + 12.5930i 0.238539 + 0.413162i 0.960295 0.278986i \(-0.0899982\pi\)
−0.721756 + 0.692147i \(0.756665\pi\)
\(930\) −0.0704615 −0.00231052
\(931\) 6.75582 + 0.409061i 0.221413 + 0.0134064i
\(932\) −3.97175 −0.130099
\(933\) 0.0812567 + 0.140741i 0.00266023 + 0.00460765i
\(934\) −11.6602 + 20.1961i −0.381534 + 0.660837i
\(935\) −0.556006 + 0.963031i −0.0181834 + 0.0314945i
\(936\) 14.7901 + 25.6171i 0.483428 + 0.837322i
\(937\) 26.6115 0.869361 0.434680 0.900585i \(-0.356861\pi\)
0.434680 + 0.900585i \(0.356861\pi\)
\(938\) 13.2532 7.12642i 0.432733 0.232686i
\(939\) −0.0422752 −0.00137960
\(940\) −5.70325 9.87831i −0.186019 0.322195i
\(941\) 19.5605 33.8799i 0.637656 1.10445i −0.348290 0.937387i \(-0.613238\pi\)
0.985946 0.167065i \(-0.0534290\pi\)
\(942\) −0.00128230 + 0.00222102i −4.17797e−5 + 7.23646e-5i
\(943\) −4.68463 8.11401i −0.152552 0.264228i
\(944\) 2.28562 0.0743907
\(945\) −0.187018 0.115651i −0.00608369 0.00376213i
\(946\) 0.574546 0.0186801
\(947\) −4.08592 7.07702i −0.132775 0.229972i 0.791971 0.610559i \(-0.209055\pi\)
−0.924745 + 0.380587i \(0.875722\pi\)
\(948\) −0.0439686 + 0.0761559i −0.00142803 + 0.00247343i
\(949\) 3.60680 6.24716i 0.117082 0.202792i
\(950\) −0.345886 0.599092i −0.0112220 0.0194371i
\(951\) 0.332274 0.0107747
\(952\) −1.05283 + 34.8078i −0.0341225 + 1.12813i
\(953\) 29.1012 0.942682 0.471341 0.881951i \(-0.343770\pi\)
0.471341 + 0.881951i \(0.343770\pi\)
\(954\) 8.12311 + 14.0696i 0.262996 + 0.455522i
\(955\) 5.48370 9.49804i 0.177448 0.307349i
\(956\) −14.8474 + 25.7165i −0.480199 + 0.831730i
\(957\) 0.00411602 + 0.00712915i 0.000133052 + 0.000230453i
\(958\) 7.98234 0.257898
\(959\) 1.26560 41.8422i 0.0408684 1.35115i
\(960\) −0.0249226 −0.000804372
\(961\) −9.77350 16.9282i −0.315274 0.546071i
\(962\) 1.41347 2.44820i 0.0455721 0.0789331i
\(963\) 1.73879 3.01167i 0.0560316 0.0970496i
\(964\) −18.9635 32.8458i −0.610774 1.05789i
\(965\) −5.61370 −0.180711
\(966\) 0.0163833 + 0.0101314i 0.000527125 + 0.000325972i
\(967\) −1.96419 −0.0631642 −0.0315821 0.999501i \(-0.510055\pi\)
−0.0315821 + 0.999501i \(0.510055\pi\)
\(968\) 13.6704 + 23.6779i 0.439385 + 0.761037i
\(969\) −0.0353189 + 0.0611742i −0.00113461 + 0.00196520i
\(970\) −1.73447 + 3.00420i −0.0556906 + 0.0964590i
\(971\) 6.00715 + 10.4047i 0.192779 + 0.333902i 0.946170 0.323670i \(-0.104917\pi\)
−0.753391 + 0.657572i \(0.771583\pi\)
\(972\) 0.556515 0.0178502
\(973\) −34.9064 + 18.7696i −1.11905 + 0.601726i
\(974\) 24.2742 0.777795
\(975\) 0.0273661 + 0.0473995i 0.000876417 + 0.00151800i
\(976\) 3.11263 5.39123i 0.0996328 0.172569i
\(977\) −18.1644 + 31.4617i −0.581131 + 1.00655i 0.414215 + 0.910179i \(0.364056\pi\)
−0.995346 + 0.0963693i \(0.969277\pi\)
\(978\) 0.00452857 + 0.00784372i 0.000144808 + 0.000250814i
\(979\) 3.47245 0.110980
\(980\) −5.74409 + 8.68990i −0.183488 + 0.277589i
\(981\) −49.6986 −1.58675
\(982\) −0.175856 0.304592i −0.00561179 0.00971991i
\(983\) 12.5471 21.7322i 0.400190 0.693150i −0.593559 0.804791i \(-0.702277\pi\)
0.993749 + 0.111641i \(0.0356108\pi\)
\(984\) −0.220446 + 0.381823i −0.00702755 + 0.0121721i
\(985\) −2.80001 4.84976i −0.0892157 0.154526i
\(986\) −10.6357 −0.338709
\(987\) 0.247419 0.133040i 0.00787543 0.00423472i
\(988\) 5.68508 0.180867
\(989\) −1.39898 2.42311i −0.0444850 0.0770503i
\(990\) −0.226263 + 0.391900i −0.00719113 + 0.0124554i
\(991\) −24.8276 + 43.0027i −0.788674 + 1.36602i 0.138105 + 0.990418i \(0.455899\pi\)
−0.926779 + 0.375607i \(0.877434\pi\)
\(992\) −20.7713 35.9770i −0.659490 1.14227i
\(993\) 0.282269 0.00895755
\(994\) 25.4762 + 15.7544i 0.808056 + 0.499699i
\(995\) 20.3554 0.645309
\(996\) 0.0782388 + 0.135514i 0.00247909 + 0.00429391i
\(997\) 2.18691 3.78783i 0.0692600 0.119962i −0.829316 0.558780i \(-0.811270\pi\)
0.898576 + 0.438818i \(0.144603\pi\)
\(998\) 1.39362 2.41381i 0.0441141 0.0764079i
\(999\) −0.0415550 0.0719753i −0.00131474 0.00227720i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1295.2.j.a.186.12 38
7.2 even 3 inner 1295.2.j.a.926.12 yes 38
7.3 odd 6 9065.2.a.s.1.8 19
7.4 even 3 9065.2.a.r.1.8 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.j.a.186.12 38 1.1 even 1 trivial
1295.2.j.a.926.12 yes 38 7.2 even 3 inner
9065.2.a.r.1.8 19 7.4 even 3
9065.2.a.s.1.8 19 7.3 odd 6