Properties

Label 1295.2.j.a.186.11
Level $1295$
Weight $2$
Character 1295.186
Analytic conductor $10.341$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1295,2,Mod(186,1295)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1295.186"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1295 = 5 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1295.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3406270618\)
Analytic rank: \(0\)
Dimension: \(38\)
Relative dimension: \(19\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 186.11
Character \(\chi\) \(=\) 1295.186
Dual form 1295.2.j.a.926.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.306680 + 0.531185i) q^{2} +(-0.923254 + 1.59912i) q^{3} +(0.811895 - 1.40624i) q^{4} +(-0.500000 - 0.866025i) q^{5} -1.13257 q^{6} +(2.55098 - 0.701777i) q^{7} +2.22269 q^{8} +(-0.204795 - 0.354715i) q^{9} +(0.306680 - 0.531185i) q^{10} +(0.610494 - 1.05741i) q^{11} +(1.49917 + 2.59664i) q^{12} -0.894144 q^{13} +(1.15511 + 1.13982i) q^{14} +1.84651 q^{15} +(-0.942136 - 1.63183i) q^{16} +(3.26775 - 5.65992i) q^{17} +(0.125613 - 0.217568i) q^{18} +(-3.62207 - 6.27362i) q^{19} -1.62379 q^{20} +(-1.23298 + 4.72725i) q^{21} +0.748905 q^{22} +(1.33143 + 2.30610i) q^{23} +(-2.05210 + 3.55435i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(-0.274216 - 0.474956i) q^{26} -4.78321 q^{27} +(1.08426 - 4.15707i) q^{28} -7.01553 q^{29} +(0.566287 + 0.980838i) q^{30} +(-0.422759 + 0.732240i) q^{31} +(2.80056 - 4.85070i) q^{32} +(1.12728 + 1.95251i) q^{33} +4.00862 q^{34} +(-1.88325 - 1.85833i) q^{35} -0.665087 q^{36} +(-0.500000 - 0.866025i) q^{37} +(2.22163 - 3.84798i) q^{38} +(0.825521 - 1.42985i) q^{39} +(-1.11134 - 1.92490i) q^{40} +5.41518 q^{41} +(-2.88917 + 0.794814i) q^{42} +11.9780 q^{43} +(-0.991314 - 1.71701i) q^{44} +(-0.204795 + 0.354715i) q^{45} +(-0.816645 + 1.41447i) q^{46} +(-4.22567 - 7.31907i) q^{47} +3.47932 q^{48} +(6.01502 - 3.58044i) q^{49} -0.613360 q^{50} +(6.03393 + 10.4511i) q^{51} +(-0.725951 + 1.25738i) q^{52} +(-4.62310 + 8.00744i) q^{53} +(-1.46692 - 2.54077i) q^{54} -1.22099 q^{55} +(5.67004 - 1.55983i) q^{56} +13.3764 q^{57} +(-2.15152 - 3.72655i) q^{58} +(-1.52723 + 2.64525i) q^{59} +(1.49917 - 2.59664i) q^{60} +(-0.697727 - 1.20850i) q^{61} -0.518607 q^{62} +(-0.771358 - 0.761151i) q^{63} -0.333046 q^{64} +(0.447072 + 0.774351i) q^{65} +(-0.691430 + 1.19759i) q^{66} +(5.75859 - 9.97416i) q^{67} +(-5.30614 - 9.19051i) q^{68} -4.91699 q^{69} +(0.409562 - 1.57026i) q^{70} +5.48766 q^{71} +(-0.455195 - 0.788420i) q^{72} +(4.56109 - 7.90003i) q^{73} +(0.306680 - 0.531185i) q^{74} +(-0.923254 - 1.59912i) q^{75} -11.7630 q^{76} +(0.815296 - 3.12586i) q^{77} +1.01268 q^{78} +(6.67586 + 11.5629i) q^{79} +(-0.942136 + 1.63183i) q^{80} +(5.03050 - 8.71309i) q^{81} +(1.66073 + 2.87647i) q^{82} -9.04827 q^{83} +(5.64662 + 5.57189i) q^{84} -6.53551 q^{85} +(3.67341 + 6.36253i) q^{86} +(6.47712 - 11.2187i) q^{87} +(1.35694 - 2.35028i) q^{88} +(7.48032 + 12.9563i) q^{89} -0.251226 q^{90} +(-2.28094 + 0.627489i) q^{91} +4.32392 q^{92} +(-0.780628 - 1.35209i) q^{93} +(2.59186 - 4.48923i) q^{94} +(-3.62207 + 6.27362i) q^{95} +(5.17125 + 8.95686i) q^{96} +0.0414843 q^{97} +(3.74656 + 2.09704i) q^{98} -0.500104 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 3 q^{2} + q^{3} - 11 q^{4} - 19 q^{5} - 8 q^{6} - 18 q^{8} - 12 q^{9} + 3 q^{10} + 13 q^{11} + 4 q^{12} - 6 q^{13} - q^{14} - 2 q^{15} + 5 q^{16} + 2 q^{17} + 11 q^{18} + 12 q^{19} + 22 q^{20}+ \cdots - 142 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1295\mathbb{Z}\right)^\times\).

\(n\) \(556\) \(631\) \(1037\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.306680 + 0.531185i 0.216855 + 0.375605i 0.953845 0.300300i \(-0.0970866\pi\)
−0.736989 + 0.675904i \(0.763753\pi\)
\(3\) −0.923254 + 1.59912i −0.533041 + 0.923254i 0.466215 + 0.884672i \(0.345617\pi\)
−0.999255 + 0.0385821i \(0.987716\pi\)
\(4\) 0.811895 1.40624i 0.405947 0.703122i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −1.13257 −0.462371
\(7\) 2.55098 0.701777i 0.964181 0.265247i
\(8\) 2.22269 0.785839
\(9\) −0.204795 0.354715i −0.0682649 0.118238i
\(10\) 0.306680 0.531185i 0.0969807 0.167976i
\(11\) 0.610494 1.05741i 0.184071 0.318820i −0.759192 0.650867i \(-0.774406\pi\)
0.943263 + 0.332046i \(0.107739\pi\)
\(12\) 1.49917 + 2.59664i 0.432773 + 0.749585i
\(13\) −0.894144 −0.247991 −0.123995 0.992283i \(-0.539571\pi\)
−0.123995 + 0.992283i \(0.539571\pi\)
\(14\) 1.15511 + 1.13982i 0.308716 + 0.304631i
\(15\) 1.84651 0.476766
\(16\) −0.942136 1.63183i −0.235534 0.407957i
\(17\) 3.26775 5.65992i 0.792547 1.37273i −0.131839 0.991271i \(-0.542088\pi\)
0.924385 0.381460i \(-0.124579\pi\)
\(18\) 0.125613 0.217568i 0.0296072 0.0512812i
\(19\) −3.62207 6.27362i −0.830961 1.43927i −0.897277 0.441468i \(-0.854458\pi\)
0.0663165 0.997799i \(-0.478875\pi\)
\(20\) −1.62379 −0.363090
\(21\) −1.23298 + 4.72725i −0.269058 + 1.03157i
\(22\) 0.748905 0.159667
\(23\) 1.33143 + 2.30610i 0.277622 + 0.480856i 0.970793 0.239917i \(-0.0771203\pi\)
−0.693171 + 0.720773i \(0.743787\pi\)
\(24\) −2.05210 + 3.55435i −0.418884 + 0.725528i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −0.274216 0.474956i −0.0537782 0.0931465i
\(27\) −4.78321 −0.920530
\(28\) 1.08426 4.15707i 0.204906 0.785612i
\(29\) −7.01553 −1.30275 −0.651376 0.758755i \(-0.725808\pi\)
−0.651376 + 0.758755i \(0.725808\pi\)
\(30\) 0.566287 + 0.980838i 0.103389 + 0.179076i
\(31\) −0.422759 + 0.732240i −0.0759298 + 0.131514i −0.901490 0.432799i \(-0.857526\pi\)
0.825560 + 0.564314i \(0.190859\pi\)
\(32\) 2.80056 4.85070i 0.495073 0.857492i
\(33\) 1.12728 + 1.95251i 0.196235 + 0.339888i
\(34\) 4.00862 0.687472
\(35\) −1.88325 1.85833i −0.318327 0.314115i
\(36\) −0.665087 −0.110848
\(37\) −0.500000 0.866025i −0.0821995 0.142374i
\(38\) 2.22163 3.84798i 0.360397 0.624226i
\(39\) 0.825521 1.42985i 0.132189 0.228958i
\(40\) −1.11134 1.92490i −0.175719 0.304354i
\(41\) 5.41518 0.845709 0.422855 0.906198i \(-0.361028\pi\)
0.422855 + 0.906198i \(0.361028\pi\)
\(42\) −2.88917 + 0.794814i −0.445809 + 0.122642i
\(43\) 11.9780 1.82663 0.913313 0.407259i \(-0.133515\pi\)
0.913313 + 0.407259i \(0.133515\pi\)
\(44\) −0.991314 1.71701i −0.149446 0.258848i
\(45\) −0.204795 + 0.354715i −0.0305290 + 0.0528778i
\(46\) −0.816645 + 1.41447i −0.120408 + 0.208552i
\(47\) −4.22567 7.31907i −0.616377 1.06760i −0.990141 0.140073i \(-0.955266\pi\)
0.373764 0.927524i \(-0.378067\pi\)
\(48\) 3.47932 0.502197
\(49\) 6.01502 3.58044i 0.859288 0.511491i
\(50\) −0.613360 −0.0867422
\(51\) 6.03393 + 10.4511i 0.844919 + 1.46344i
\(52\) −0.725951 + 1.25738i −0.100671 + 0.174368i
\(53\) −4.62310 + 8.00744i −0.635032 + 1.09991i 0.351477 + 0.936197i \(0.385680\pi\)
−0.986508 + 0.163711i \(0.947654\pi\)
\(54\) −1.46692 2.54077i −0.199622 0.345755i
\(55\) −1.22099 −0.164638
\(56\) 5.67004 1.55983i 0.757690 0.208441i
\(57\) 13.3764 1.77174
\(58\) −2.15152 3.72655i −0.282509 0.489320i
\(59\) −1.52723 + 2.64525i −0.198829 + 0.344382i −0.948149 0.317826i \(-0.897047\pi\)
0.749320 + 0.662208i \(0.230380\pi\)
\(60\) 1.49917 2.59664i 0.193542 0.335225i
\(61\) −0.697727 1.20850i −0.0893348 0.154732i 0.817895 0.575367i \(-0.195141\pi\)
−0.907230 + 0.420635i \(0.861807\pi\)
\(62\) −0.518607 −0.0658632
\(63\) −0.771358 0.761151i −0.0971820 0.0958960i
\(64\) −0.333046 −0.0416308
\(65\) 0.447072 + 0.774351i 0.0554524 + 0.0960464i
\(66\) −0.691430 + 1.19759i −0.0851091 + 0.147413i
\(67\) 5.75859 9.97416i 0.703523 1.21854i −0.263699 0.964605i \(-0.584942\pi\)
0.967222 0.253933i \(-0.0817242\pi\)
\(68\) −5.30614 9.19051i −0.643465 1.11451i
\(69\) −4.91699 −0.591936
\(70\) 0.409562 1.57026i 0.0489520 0.187683i
\(71\) 5.48766 0.651265 0.325632 0.945496i \(-0.394423\pi\)
0.325632 + 0.945496i \(0.394423\pi\)
\(72\) −0.455195 0.788420i −0.0536452 0.0929162i
\(73\) 4.56109 7.90003i 0.533835 0.924629i −0.465384 0.885109i \(-0.654084\pi\)
0.999219 0.0395199i \(-0.0125829\pi\)
\(74\) 0.306680 0.531185i 0.0356508 0.0617490i
\(75\) −0.923254 1.59912i −0.106608 0.184651i
\(76\) −11.7630 −1.34931
\(77\) 0.815296 3.12586i 0.0929116 0.356224i
\(78\) 1.01268 0.114664
\(79\) 6.67586 + 11.5629i 0.751093 + 1.30093i 0.947293 + 0.320367i \(0.103806\pi\)
−0.196200 + 0.980564i \(0.562860\pi\)
\(80\) −0.942136 + 1.63183i −0.105334 + 0.182444i
\(81\) 5.03050 8.71309i 0.558945 0.968121i
\(82\) 1.66073 + 2.87647i 0.183397 + 0.317652i
\(83\) −9.04827 −0.993177 −0.496588 0.867986i \(-0.665414\pi\)
−0.496588 + 0.867986i \(0.665414\pi\)
\(84\) 5.64662 + 5.57189i 0.616096 + 0.607944i
\(85\) −6.53551 −0.708875
\(86\) 3.67341 + 6.36253i 0.396114 + 0.686089i
\(87\) 6.47712 11.2187i 0.694420 1.20277i
\(88\) 1.35694 2.35028i 0.144650 0.250541i
\(89\) 7.48032 + 12.9563i 0.792912 + 1.37336i 0.924157 + 0.382014i \(0.124769\pi\)
−0.131245 + 0.991350i \(0.541897\pi\)
\(90\) −0.251226 −0.0264815
\(91\) −2.28094 + 0.627489i −0.239108 + 0.0657788i
\(92\) 4.32392 0.450800
\(93\) −0.780628 1.35209i −0.0809473 0.140205i
\(94\) 2.59186 4.48923i 0.267329 0.463028i
\(95\) −3.62207 + 6.27362i −0.371617 + 0.643659i
\(96\) 5.17125 + 8.95686i 0.527788 + 0.914156i
\(97\) 0.0414843 0.00421209 0.00210604 0.999998i \(-0.499330\pi\)
0.00210604 + 0.999998i \(0.499330\pi\)
\(98\) 3.74656 + 2.09704i 0.378460 + 0.211833i
\(99\) −0.500104 −0.0502623
\(100\) 0.811895 + 1.40624i 0.0811895 + 0.140624i
\(101\) 1.36191 2.35890i 0.135515 0.234719i −0.790279 0.612747i \(-0.790064\pi\)
0.925794 + 0.378028i \(0.123398\pi\)
\(102\) −3.70097 + 6.41027i −0.366451 + 0.634711i
\(103\) 4.24225 + 7.34779i 0.418001 + 0.724000i 0.995738 0.0922234i \(-0.0293974\pi\)
−0.577737 + 0.816223i \(0.696064\pi\)
\(104\) −1.98740 −0.194881
\(105\) 4.71041 1.29584i 0.459689 0.126461i
\(106\) −5.67125 −0.550840
\(107\) 8.68507 + 15.0430i 0.839617 + 1.45426i 0.890215 + 0.455541i \(0.150554\pi\)
−0.0505978 + 0.998719i \(0.516113\pi\)
\(108\) −3.88347 + 6.72636i −0.373687 + 0.647244i
\(109\) 4.99861 8.65785i 0.478780 0.829272i −0.520924 0.853603i \(-0.674412\pi\)
0.999704 + 0.0243315i \(0.00774571\pi\)
\(110\) −0.374453 0.648571i −0.0357027 0.0618388i
\(111\) 1.84651 0.175263
\(112\) −3.54855 3.50159i −0.335307 0.330869i
\(113\) 13.8605 1.30388 0.651942 0.758269i \(-0.273955\pi\)
0.651942 + 0.758269i \(0.273955\pi\)
\(114\) 4.10227 + 7.10533i 0.384212 + 0.665475i
\(115\) 1.33143 2.30610i 0.124156 0.215045i
\(116\) −5.69588 + 9.86555i −0.528849 + 0.915993i
\(117\) 0.183116 + 0.317166i 0.0169291 + 0.0293220i
\(118\) −1.87349 −0.172469
\(119\) 4.36398 16.7316i 0.400046 1.53378i
\(120\) 4.10421 0.374661
\(121\) 4.75459 + 8.23520i 0.432236 + 0.748654i
\(122\) 0.427958 0.741245i 0.0387455 0.0671092i
\(123\) −4.99959 + 8.65954i −0.450798 + 0.780804i
\(124\) 0.686472 + 1.18900i 0.0616470 + 0.106776i
\(125\) 1.00000 0.0894427
\(126\) 0.167752 0.643164i 0.0149445 0.0572976i
\(127\) −10.4305 −0.925560 −0.462780 0.886473i \(-0.653148\pi\)
−0.462780 + 0.886473i \(0.653148\pi\)
\(128\) −5.70325 9.87832i −0.504101 0.873128i
\(129\) −11.0587 + 19.1543i −0.973666 + 1.68644i
\(130\) −0.274216 + 0.474956i −0.0240503 + 0.0416564i
\(131\) 6.50246 + 11.2626i 0.568123 + 0.984018i 0.996752 + 0.0805369i \(0.0256635\pi\)
−0.428629 + 0.903481i \(0.641003\pi\)
\(132\) 3.66094 0.318644
\(133\) −13.6425 13.4620i −1.18296 1.16730i
\(134\) 7.06417 0.610251
\(135\) 2.39161 + 4.14238i 0.205837 + 0.356520i
\(136\) 7.26320 12.5802i 0.622814 1.07875i
\(137\) −5.22238 + 9.04543i −0.446178 + 0.772803i −0.998133 0.0610705i \(-0.980549\pi\)
0.551955 + 0.833874i \(0.313882\pi\)
\(138\) −1.50794 2.61183i −0.128365 0.222334i
\(139\) −18.4314 −1.56333 −0.781666 0.623697i \(-0.785630\pi\)
−0.781666 + 0.623697i \(0.785630\pi\)
\(140\) −4.14226 + 1.13954i −0.350085 + 0.0963085i
\(141\) 15.6055 1.31422
\(142\) 1.68295 + 2.91496i 0.141230 + 0.244618i
\(143\) −0.545869 + 0.945474i −0.0456479 + 0.0790645i
\(144\) −0.385889 + 0.668379i −0.0321574 + 0.0556983i
\(145\) 3.50777 + 6.07563i 0.291304 + 0.504554i
\(146\) 5.59517 0.463060
\(147\) 0.172174 + 12.9244i 0.0142007 + 1.06599i
\(148\) −1.62379 −0.133475
\(149\) −4.61790 7.99844i −0.378313 0.655257i 0.612504 0.790468i \(-0.290162\pi\)
−0.990817 + 0.135210i \(0.956829\pi\)
\(150\) 0.566287 0.980838i 0.0462371 0.0800850i
\(151\) −9.72939 + 16.8518i −0.791767 + 1.37138i 0.133105 + 0.991102i \(0.457505\pi\)
−0.924872 + 0.380278i \(0.875828\pi\)
\(152\) −8.05074 13.9443i −0.653001 1.13103i
\(153\) −2.67687 −0.216413
\(154\) 1.91044 0.525564i 0.153948 0.0423512i
\(155\) 0.845518 0.0679137
\(156\) −1.34047 2.32177i −0.107324 0.185890i
\(157\) 5.09901 8.83175i 0.406945 0.704850i −0.587600 0.809151i \(-0.699927\pi\)
0.994546 + 0.104301i \(0.0332606\pi\)
\(158\) −4.09471 + 7.09224i −0.325757 + 0.564228i
\(159\) −8.53659 14.7858i −0.676996 1.17259i
\(160\) −5.60111 −0.442807
\(161\) 5.01482 + 4.94846i 0.395223 + 0.389993i
\(162\) 6.17102 0.484841
\(163\) −11.8692 20.5580i −0.929667 1.61023i −0.783878 0.620915i \(-0.786761\pi\)
−0.145789 0.989316i \(-0.546572\pi\)
\(164\) 4.39656 7.61506i 0.343314 0.594636i
\(165\) 1.12728 1.95251i 0.0877588 0.152003i
\(166\) −2.77492 4.80631i −0.215376 0.373042i
\(167\) 6.50639 0.503480 0.251740 0.967795i \(-0.418997\pi\)
0.251740 + 0.967795i \(0.418997\pi\)
\(168\) −2.74052 + 10.5072i −0.211436 + 0.810648i
\(169\) −12.2005 −0.938501
\(170\) −2.00431 3.47157i −0.153724 0.266257i
\(171\) −1.48356 + 2.56961i −0.113451 + 0.196503i
\(172\) 9.72486 16.8440i 0.741514 1.28434i
\(173\) −0.0346485 0.0600129i −0.00263428 0.00456270i 0.864705 0.502280i \(-0.167505\pi\)
−0.867340 + 0.497717i \(0.834172\pi\)
\(174\) 7.94561 0.602355
\(175\) −0.667734 + 2.56010i −0.0504760 + 0.193526i
\(176\) −2.30067 −0.173420
\(177\) −2.82005 4.88447i −0.211968 0.367139i
\(178\) −4.58813 + 7.94687i −0.343895 + 0.595643i
\(179\) −6.53518 + 11.3193i −0.488462 + 0.846041i −0.999912 0.0132719i \(-0.995775\pi\)
0.511450 + 0.859313i \(0.329109\pi\)
\(180\) 0.332544 + 0.575982i 0.0247863 + 0.0429312i
\(181\) −20.2904 −1.50817 −0.754085 0.656777i \(-0.771919\pi\)
−0.754085 + 0.656777i \(0.771919\pi\)
\(182\) −1.03283 1.01917i −0.0765587 0.0755456i
\(183\) 2.57672 0.190476
\(184\) 2.95935 + 5.12575i 0.218166 + 0.377875i
\(185\) −0.500000 + 0.866025i −0.0367607 + 0.0636715i
\(186\) 0.478806 0.829316i 0.0351078 0.0608084i
\(187\) −3.98989 6.91069i −0.291770 0.505360i
\(188\) −13.7232 −1.00087
\(189\) −12.2019 + 3.35675i −0.887557 + 0.244167i
\(190\) −4.44327 −0.322349
\(191\) 11.1521 + 19.3160i 0.806936 + 1.39765i 0.914976 + 0.403508i \(0.132209\pi\)
−0.108040 + 0.994147i \(0.534458\pi\)
\(192\) 0.307486 0.532582i 0.0221909 0.0384358i
\(193\) 9.94192 17.2199i 0.715635 1.23952i −0.247079 0.968995i \(-0.579471\pi\)
0.962714 0.270521i \(-0.0871960\pi\)
\(194\) 0.0127224 + 0.0220358i 0.000913415 + 0.00158208i
\(195\) −1.65104 −0.118234
\(196\) −0.151407 11.3655i −0.0108148 0.811823i
\(197\) 5.56939 0.396802 0.198401 0.980121i \(-0.436425\pi\)
0.198401 + 0.980121i \(0.436425\pi\)
\(198\) −0.153372 0.265648i −0.0108997 0.0188788i
\(199\) −2.99412 + 5.18597i −0.212247 + 0.367623i −0.952418 0.304796i \(-0.901412\pi\)
0.740170 + 0.672420i \(0.234745\pi\)
\(200\) −1.11134 + 1.92490i −0.0785839 + 0.136111i
\(201\) 10.6333 + 18.4174i 0.750013 + 1.29906i
\(202\) 1.67068 0.117549
\(203\) −17.8965 + 4.92334i −1.25609 + 0.345551i
\(204\) 19.5957 1.37197
\(205\) −2.70759 4.68969i −0.189106 0.327542i
\(206\) −2.60203 + 4.50684i −0.181292 + 0.314007i
\(207\) 0.545339 0.944555i 0.0379037 0.0656511i
\(208\) 0.842405 + 1.45909i 0.0584103 + 0.101170i
\(209\) −8.84502 −0.611823
\(210\) 2.13292 + 2.10469i 0.147185 + 0.145238i
\(211\) 8.23779 0.567113 0.283557 0.958956i \(-0.408486\pi\)
0.283557 + 0.958956i \(0.408486\pi\)
\(212\) 7.50694 + 13.0024i 0.515579 + 0.893009i
\(213\) −5.06650 + 8.77543i −0.347151 + 0.601283i
\(214\) −5.32707 + 9.22676i −0.364151 + 0.630728i
\(215\) −5.98899 10.3732i −0.408446 0.707449i
\(216\) −10.6316 −0.723388
\(217\) −0.564582 + 2.16461i −0.0383263 + 0.146944i
\(218\) 6.13190 0.415305
\(219\) 8.42208 + 14.5875i 0.569111 + 0.985730i
\(220\) −0.991314 + 1.71701i −0.0668344 + 0.115761i
\(221\) −2.92184 + 5.06078i −0.196544 + 0.340425i
\(222\) 0.566287 + 0.980838i 0.0380067 + 0.0658295i
\(223\) −19.8585 −1.32982 −0.664911 0.746923i \(-0.731530\pi\)
−0.664911 + 0.746923i \(0.731530\pi\)
\(224\) 3.74005 14.3394i 0.249893 0.958093i
\(225\) 0.409589 0.0273060
\(226\) 4.25073 + 7.36248i 0.282754 + 0.489745i
\(227\) −2.65801 + 4.60380i −0.176418 + 0.305565i −0.940651 0.339375i \(-0.889784\pi\)
0.764233 + 0.644940i \(0.223118\pi\)
\(228\) 10.8602 18.8104i 0.719235 1.24575i
\(229\) 5.74141 + 9.94442i 0.379403 + 0.657146i 0.990976 0.134043i \(-0.0427959\pi\)
−0.611572 + 0.791189i \(0.709463\pi\)
\(230\) 1.63329 0.107696
\(231\) 4.24590 + 4.18972i 0.279360 + 0.275663i
\(232\) −15.5933 −1.02375
\(233\) −10.3777 17.9746i −0.679863 1.17756i −0.975022 0.222109i \(-0.928706\pi\)
0.295159 0.955448i \(-0.404628\pi\)
\(234\) −0.112316 + 0.194537i −0.00734232 + 0.0127173i
\(235\) −4.22567 + 7.31907i −0.275652 + 0.477444i
\(236\) 2.47991 + 4.29532i 0.161428 + 0.279602i
\(237\) −24.6541 −1.60145
\(238\) 10.2259 2.81316i 0.662848 0.182350i
\(239\) 4.52752 0.292861 0.146430 0.989221i \(-0.453222\pi\)
0.146430 + 0.989221i \(0.453222\pi\)
\(240\) −1.73966 3.01318i −0.112295 0.194500i
\(241\) 10.7241 18.5746i 0.690798 1.19650i −0.280778 0.959773i \(-0.590593\pi\)
0.971577 0.236725i \(-0.0760741\pi\)
\(242\) −2.91628 + 5.05114i −0.187465 + 0.324700i
\(243\) 2.11404 + 3.66163i 0.135616 + 0.234893i
\(244\) −2.26593 −0.145061
\(245\) −6.10826 3.41894i −0.390243 0.218428i
\(246\) −6.13309 −0.391032
\(247\) 3.23865 + 5.60951i 0.206071 + 0.356925i
\(248\) −0.939661 + 1.62754i −0.0596686 + 0.103349i
\(249\) 8.35385 14.4693i 0.529404 0.916954i
\(250\) 0.306680 + 0.531185i 0.0193961 + 0.0335951i
\(251\) 13.7926 0.870582 0.435291 0.900290i \(-0.356646\pi\)
0.435291 + 0.900290i \(0.356646\pi\)
\(252\) −1.69663 + 0.466743i −0.106877 + 0.0294020i
\(253\) 3.25132 0.204409
\(254\) −3.19883 5.54054i −0.200713 0.347645i
\(255\) 6.03393 10.4511i 0.377859 0.654472i
\(256\) 3.16510 5.48211i 0.197819 0.342632i
\(257\) 10.4218 + 18.0511i 0.650096 + 1.12600i 0.983099 + 0.183074i \(0.0586047\pi\)
−0.333003 + 0.942926i \(0.608062\pi\)
\(258\) −13.5660 −0.844579
\(259\) −1.88325 1.85833i −0.117019 0.115471i
\(260\) 1.45190 0.0900431
\(261\) 1.43674 + 2.48851i 0.0889322 + 0.154035i
\(262\) −3.98835 + 6.90802i −0.246401 + 0.426779i
\(263\) 11.4010 19.7471i 0.703015 1.21766i −0.264388 0.964416i \(-0.585170\pi\)
0.967403 0.253241i \(-0.0814966\pi\)
\(264\) 2.50560 + 4.33982i 0.154209 + 0.267097i
\(265\) 9.24620 0.567990
\(266\) 2.96692 11.3752i 0.181914 0.697460i
\(267\) −27.6249 −1.69062
\(268\) −9.35073 16.1959i −0.571187 0.989325i
\(269\) −4.60329 + 7.97314i −0.280668 + 0.486131i −0.971549 0.236837i \(-0.923889\pi\)
0.690882 + 0.722968i \(0.257223\pi\)
\(270\) −1.46692 + 2.54077i −0.0892736 + 0.154626i
\(271\) −9.70939 16.8172i −0.589803 1.02157i −0.994258 0.107011i \(-0.965872\pi\)
0.404454 0.914558i \(-0.367461\pi\)
\(272\) −12.3147 −0.746687
\(273\) 1.10246 4.22684i 0.0667238 0.255820i
\(274\) −6.40640 −0.387025
\(275\) 0.610494 + 1.05741i 0.0368142 + 0.0637640i
\(276\) −3.99208 + 6.91448i −0.240295 + 0.416203i
\(277\) 12.0909 20.9420i 0.726469 1.25828i −0.231897 0.972740i \(-0.574493\pi\)
0.958366 0.285541i \(-0.0921733\pi\)
\(278\) −5.65255 9.79050i −0.339017 0.587195i
\(279\) 0.346315 0.0207334
\(280\) −4.18587 4.13048i −0.250154 0.246843i
\(281\) −27.6954 −1.65217 −0.826086 0.563544i \(-0.809437\pi\)
−0.826086 + 0.563544i \(0.809437\pi\)
\(282\) 4.78588 + 8.28939i 0.284995 + 0.493626i
\(283\) 2.51376 4.35395i 0.149427 0.258816i −0.781589 0.623794i \(-0.785590\pi\)
0.931016 + 0.364979i \(0.118924\pi\)
\(284\) 4.45540 7.71698i 0.264379 0.457918i
\(285\) −6.68819 11.5843i −0.396174 0.686193i
\(286\) −0.669629 −0.0395960
\(287\) 13.8140 3.80025i 0.815417 0.224322i
\(288\) −2.29416 −0.135184
\(289\) −12.8564 22.2680i −0.756261 1.30988i
\(290\) −2.15152 + 3.72655i −0.126342 + 0.218830i
\(291\) −0.0383005 + 0.0663384i −0.00224522 + 0.00388883i
\(292\) −7.40624 12.8280i −0.433418 0.750701i
\(293\) 15.0493 0.879190 0.439595 0.898196i \(-0.355122\pi\)
0.439595 + 0.898196i \(0.355122\pi\)
\(294\) −6.81245 + 4.05511i −0.397310 + 0.236499i
\(295\) 3.05447 0.177838
\(296\) −1.11134 1.92490i −0.0645955 0.111883i
\(297\) −2.92012 + 5.05780i −0.169443 + 0.293483i
\(298\) 2.83243 4.90592i 0.164079 0.284192i
\(299\) −1.19049 2.06199i −0.0688478 0.119248i
\(300\) −2.99834 −0.173109
\(301\) 30.5556 8.40587i 1.76120 0.484506i
\(302\) −11.9352 −0.686796
\(303\) 2.51478 + 4.35573i 0.144470 + 0.250230i
\(304\) −6.82497 + 11.8212i −0.391439 + 0.677992i
\(305\) −0.697727 + 1.20850i −0.0399518 + 0.0691985i
\(306\) −0.820944 1.42192i −0.0469302 0.0812856i
\(307\) 6.13202 0.349973 0.174987 0.984571i \(-0.444012\pi\)
0.174987 + 0.984571i \(0.444012\pi\)
\(308\) −3.73378 3.68437i −0.212752 0.209937i
\(309\) −15.6667 −0.891247
\(310\) 0.259304 + 0.449127i 0.0147275 + 0.0255087i
\(311\) −8.52719 + 14.7695i −0.483533 + 0.837503i −0.999821 0.0189117i \(-0.993980\pi\)
0.516289 + 0.856415i \(0.327313\pi\)
\(312\) 1.83488 3.17810i 0.103879 0.179924i
\(313\) 0.960649 + 1.66389i 0.0542991 + 0.0940488i 0.891897 0.452238i \(-0.149374\pi\)
−0.837598 + 0.546287i \(0.816041\pi\)
\(314\) 6.25506 0.352993
\(315\) −0.273497 + 1.04859i −0.0154098 + 0.0590814i
\(316\) 21.6804 1.21962
\(317\) 9.81040 + 16.9921i 0.551007 + 0.954372i 0.998202 + 0.0599357i \(0.0190896\pi\)
−0.447195 + 0.894436i \(0.647577\pi\)
\(318\) 5.23600 9.06902i 0.293620 0.508565i
\(319\) −4.28294 + 7.41827i −0.239799 + 0.415344i
\(320\) 0.166523 + 0.288427i 0.00930893 + 0.0161235i
\(321\) −32.0741 −1.79020
\(322\) −1.09060 + 4.18139i −0.0607770 + 0.233020i
\(323\) −47.3442 −2.63430
\(324\) −8.16848 14.1482i −0.453804 0.786012i
\(325\) 0.447072 0.774351i 0.0247991 0.0429533i
\(326\) 7.28009 12.6095i 0.403207 0.698375i
\(327\) 9.22998 + 15.9868i 0.510419 + 0.884071i
\(328\) 12.0363 0.664591
\(329\) −15.9160 15.7053i −0.877475 0.865864i
\(330\) 1.38286 0.0761239
\(331\) 10.2630 + 17.7760i 0.564104 + 0.977056i 0.997132 + 0.0756760i \(0.0241115\pi\)
−0.433029 + 0.901380i \(0.642555\pi\)
\(332\) −7.34624 + 12.7241i −0.403177 + 0.698324i
\(333\) −0.204795 + 0.354715i −0.0112227 + 0.0194383i
\(334\) 1.99538 + 3.45610i 0.109182 + 0.189109i
\(335\) −11.5172 −0.629250
\(336\) 8.87569 2.44171i 0.484208 0.133206i
\(337\) −15.7590 −0.858449 −0.429224 0.903198i \(-0.641213\pi\)
−0.429224 + 0.903198i \(0.641213\pi\)
\(338\) −3.74165 6.48073i −0.203519 0.352505i
\(339\) −12.7967 + 22.1646i −0.695023 + 1.20381i
\(340\) −5.30614 + 9.19051i −0.287766 + 0.498426i
\(341\) 0.516184 + 0.894057i 0.0279529 + 0.0484159i
\(342\) −1.81992 −0.0984098
\(343\) 12.8315 13.3548i 0.692838 0.721094i
\(344\) 26.6233 1.43543
\(345\) 2.45849 + 4.25824i 0.132361 + 0.229256i
\(346\) 0.0212520 0.0368095i 0.00114251 0.00197889i
\(347\) −16.6891 + 28.9063i −0.895916 + 1.55177i −0.0632496 + 0.997998i \(0.520146\pi\)
−0.832667 + 0.553775i \(0.813187\pi\)
\(348\) −10.5175 18.2168i −0.563796 0.976523i
\(349\) −17.1211 −0.916473 −0.458236 0.888830i \(-0.651519\pi\)
−0.458236 + 0.888830i \(0.651519\pi\)
\(350\) −1.56467 + 0.430442i −0.0836351 + 0.0230081i
\(351\) 4.27688 0.228283
\(352\) −3.41945 5.92265i −0.182257 0.315679i
\(353\) −3.60262 + 6.23993i −0.191748 + 0.332118i −0.945830 0.324663i \(-0.894749\pi\)
0.754081 + 0.656781i \(0.228082\pi\)
\(354\) 1.72970 2.99594i 0.0919328 0.159232i
\(355\) −2.74383 4.75245i −0.145627 0.252234i
\(356\) 24.2929 1.28752
\(357\) 22.7268 + 22.4260i 1.20283 + 1.18691i
\(358\) −8.01683 −0.423703
\(359\) 6.41812 + 11.1165i 0.338735 + 0.586707i 0.984195 0.177088i \(-0.0566676\pi\)
−0.645460 + 0.763794i \(0.723334\pi\)
\(360\) −0.455195 + 0.788420i −0.0239909 + 0.0415534i
\(361\) −16.7388 + 28.9925i −0.880992 + 1.52592i
\(362\) −6.22265 10.7779i −0.327055 0.566476i
\(363\) −17.5588 −0.921597
\(364\) −0.969484 + 3.71702i −0.0508148 + 0.194825i
\(365\) −9.12217 −0.477476
\(366\) 0.790228 + 1.36871i 0.0413059 + 0.0715439i
\(367\) −13.1887 + 22.8436i −0.688447 + 1.19242i 0.283893 + 0.958856i \(0.408374\pi\)
−0.972340 + 0.233569i \(0.924960\pi\)
\(368\) 2.50877 4.34532i 0.130779 0.226516i
\(369\) −1.10900 1.92085i −0.0577323 0.0999952i
\(370\) −0.613360 −0.0318871
\(371\) −6.17401 + 23.6712i −0.320538 + 1.22895i
\(372\) −2.53515 −0.131441
\(373\) 9.05719 + 15.6875i 0.468963 + 0.812268i 0.999371 0.0354746i \(-0.0112943\pi\)
−0.530407 + 0.847743i \(0.677961\pi\)
\(374\) 2.44724 4.23874i 0.126544 0.219180i
\(375\) −0.923254 + 1.59912i −0.0476766 + 0.0825783i
\(376\) −9.39234 16.2680i −0.484373 0.838958i
\(377\) 6.27290 0.323071
\(378\) −5.52513 5.45202i −0.284182 0.280421i
\(379\) 7.36478 0.378303 0.189152 0.981948i \(-0.439426\pi\)
0.189152 + 0.981948i \(0.439426\pi\)
\(380\) 5.88149 + 10.1870i 0.301714 + 0.522584i
\(381\) 9.63002 16.6797i 0.493361 0.854526i
\(382\) −6.84024 + 11.8476i −0.349977 + 0.606178i
\(383\) 6.57836 + 11.3941i 0.336138 + 0.582209i 0.983703 0.179802i \(-0.0575456\pi\)
−0.647564 + 0.762011i \(0.724212\pi\)
\(384\) 21.0622 1.07483
\(385\) −3.11472 + 0.856861i −0.158741 + 0.0436697i
\(386\) 12.1960 0.620758
\(387\) −2.45303 4.24877i −0.124694 0.215977i
\(388\) 0.0336809 0.0583370i 0.00170989 0.00296161i
\(389\) −7.20366 + 12.4771i −0.365240 + 0.632614i −0.988815 0.149150i \(-0.952346\pi\)
0.623575 + 0.781764i \(0.285680\pi\)
\(390\) −0.506342 0.877010i −0.0256396 0.0444091i
\(391\) 17.4031 0.880114
\(392\) 13.3695 7.95820i 0.675262 0.401950i
\(393\) −24.0137 −1.21133
\(394\) 1.70802 + 2.95838i 0.0860488 + 0.149041i
\(395\) 6.67586 11.5629i 0.335899 0.581794i
\(396\) −0.406032 + 0.703268i −0.0204039 + 0.0353405i
\(397\) 17.5248 + 30.3539i 0.879546 + 1.52342i 0.851840 + 0.523802i \(0.175487\pi\)
0.0277058 + 0.999616i \(0.491180\pi\)
\(398\) −3.67295 −0.184108
\(399\) 34.1229 9.38723i 1.70828 0.469949i
\(400\) 1.88427 0.0942136
\(401\) −10.4891 18.1676i −0.523799 0.907246i −0.999616 0.0277019i \(-0.991181\pi\)
0.475818 0.879544i \(-0.342152\pi\)
\(402\) −6.52202 + 11.2965i −0.325289 + 0.563417i
\(403\) 0.378007 0.654728i 0.0188299 0.0326143i
\(404\) −2.21146 3.83036i −0.110024 0.190567i
\(405\) −10.0610 −0.499935
\(406\) −8.10370 7.99647i −0.402180 0.396858i
\(407\) −1.22099 −0.0605221
\(408\) 13.4115 + 23.2295i 0.663970 + 1.15003i
\(409\) 3.90204 6.75854i 0.192944 0.334188i −0.753281 0.657699i \(-0.771530\pi\)
0.946224 + 0.323511i \(0.104863\pi\)
\(410\) 1.66073 2.87647i 0.0820175 0.142058i
\(411\) −9.64316 16.7025i −0.475662 0.823871i
\(412\) 13.7770 0.678746
\(413\) −2.03957 + 7.81975i −0.100361 + 0.384785i
\(414\) 0.668979 0.0328785
\(415\) 4.52413 + 7.83603i 0.222081 + 0.384656i
\(416\) −2.50410 + 4.33723i −0.122774 + 0.212650i
\(417\) 17.0169 29.4741i 0.833320 1.44335i
\(418\) −2.71259 4.69834i −0.132677 0.229804i
\(419\) 22.9107 1.11926 0.559631 0.828742i \(-0.310943\pi\)
0.559631 + 0.828742i \(0.310943\pi\)
\(420\) 2.00209 7.67606i 0.0976922 0.374553i
\(421\) −5.90725 −0.287902 −0.143951 0.989585i \(-0.545981\pi\)
−0.143951 + 0.989585i \(0.545981\pi\)
\(422\) 2.52637 + 4.37579i 0.122982 + 0.213010i
\(423\) −1.73079 + 2.99781i −0.0841538 + 0.145759i
\(424\) −10.2757 + 17.7980i −0.499032 + 0.864350i
\(425\) 3.26775 + 5.65992i 0.158509 + 0.274546i
\(426\) −6.21517 −0.301126
\(427\) −2.62799 2.59321i −0.127177 0.125494i
\(428\) 28.2054 1.36336
\(429\) −1.00795 1.74582i −0.0486644 0.0842892i
\(430\) 3.67341 6.36253i 0.177147 0.306828i
\(431\) 9.14309 15.8363i 0.440407 0.762808i −0.557312 0.830303i \(-0.688167\pi\)
0.997720 + 0.0674951i \(0.0215007\pi\)
\(432\) 4.50644 + 7.80538i 0.216816 + 0.375536i
\(433\) 2.02060 0.0971040 0.0485520 0.998821i \(-0.484539\pi\)
0.0485520 + 0.998821i \(0.484539\pi\)
\(434\) −1.32296 + 0.363946i −0.0635040 + 0.0174700i
\(435\) −12.9542 −0.621108
\(436\) −8.11670 14.0585i −0.388719 0.673281i
\(437\) 9.64507 16.7057i 0.461386 0.799144i
\(438\) −5.16576 + 8.94737i −0.246830 + 0.427522i
\(439\) 6.35313 + 11.0039i 0.303218 + 0.525190i 0.976863 0.213866i \(-0.0686055\pi\)
−0.673645 + 0.739055i \(0.735272\pi\)
\(440\) −2.71388 −0.129379
\(441\) −2.50188 1.40036i −0.119137 0.0666839i
\(442\) −3.58428 −0.170487
\(443\) 1.58322 + 2.74222i 0.0752211 + 0.130287i 0.901182 0.433440i \(-0.142700\pi\)
−0.825961 + 0.563727i \(0.809367\pi\)
\(444\) 1.49917 2.59664i 0.0711474 0.123231i
\(445\) 7.48032 12.9563i 0.354601 0.614187i
\(446\) −6.09020 10.5485i −0.288379 0.499487i
\(447\) 17.0540 0.806625
\(448\) −0.849595 + 0.233724i −0.0401396 + 0.0110424i
\(449\) −34.1666 −1.61242 −0.806211 0.591629i \(-0.798485\pi\)
−0.806211 + 0.591629i \(0.798485\pi\)
\(450\) 0.125613 + 0.217568i 0.00592145 + 0.0102562i
\(451\) 3.30594 5.72605i 0.155670 0.269629i
\(452\) 11.2532 19.4912i 0.529308 0.916788i
\(453\) −17.9654 31.1170i −0.844088 1.46200i
\(454\) −3.26063 −0.153029
\(455\) 1.68389 + 1.66161i 0.0789422 + 0.0778975i
\(456\) 29.7315 1.39230
\(457\) 12.9349 + 22.4040i 0.605071 + 1.04801i 0.992040 + 0.125921i \(0.0401885\pi\)
−0.386970 + 0.922092i \(0.626478\pi\)
\(458\) −3.52155 + 6.09951i −0.164551 + 0.285011i
\(459\) −15.6304 + 27.0726i −0.729563 + 1.26364i
\(460\) −2.16196 3.74463i −0.100802 0.174594i
\(461\) −29.0280 −1.35197 −0.675984 0.736917i \(-0.736281\pi\)
−0.675984 + 0.736917i \(0.736281\pi\)
\(462\) −0.923383 + 3.54026i −0.0429596 + 0.164708i
\(463\) −15.3934 −0.715393 −0.357696 0.933838i \(-0.616438\pi\)
−0.357696 + 0.933838i \(0.616438\pi\)
\(464\) 6.60959 + 11.4481i 0.306842 + 0.531467i
\(465\) −0.780628 + 1.35209i −0.0362008 + 0.0627015i
\(466\) 6.36524 11.0249i 0.294864 0.510720i
\(467\) 17.9105 + 31.0219i 0.828800 + 1.43552i 0.898980 + 0.437990i \(0.144309\pi\)
−0.0701798 + 0.997534i \(0.522357\pi\)
\(468\) 0.594683 0.0274892
\(469\) 7.69041 29.4852i 0.355110 1.36150i
\(470\) −5.18371 −0.239107
\(471\) 9.41536 + 16.3079i 0.433837 + 0.751428i
\(472\) −3.39456 + 5.87956i −0.156247 + 0.270628i
\(473\) 7.31249 12.6656i 0.336229 0.582365i
\(474\) −7.56090 13.0959i −0.347284 0.601513i
\(475\) 7.24415 0.332384
\(476\) −19.9856 19.7211i −0.916037 0.903915i
\(477\) 3.78715 0.173402
\(478\) 1.38850 + 2.40495i 0.0635084 + 0.110000i
\(479\) −10.2728 + 17.7930i −0.469375 + 0.812981i −0.999387 0.0350090i \(-0.988854\pi\)
0.530012 + 0.847990i \(0.322187\pi\)
\(480\) 5.17125 8.95686i 0.236034 0.408823i
\(481\) 0.447072 + 0.774351i 0.0203847 + 0.0353074i
\(482\) 13.1554 0.599214
\(483\) −12.5431 + 3.45063i −0.570733 + 0.157009i
\(484\) 15.4409 0.701860
\(485\) −0.0207421 0.0359264i −0.000941852 0.00163134i
\(486\) −1.29667 + 2.24590i −0.0588181 + 0.101876i
\(487\) −21.5982 + 37.4091i −0.978706 + 1.69517i −0.311588 + 0.950217i \(0.600861\pi\)
−0.667118 + 0.744952i \(0.732472\pi\)
\(488\) −1.55083 2.68612i −0.0702028 0.121595i
\(489\) 43.8331 1.98220
\(490\) −0.0571916 4.29314i −0.00258365 0.193944i
\(491\) 8.73043 0.393999 0.196999 0.980404i \(-0.436880\pi\)
0.196999 + 0.980404i \(0.436880\pi\)
\(492\) 8.11828 + 14.0613i 0.366000 + 0.633931i
\(493\) −22.9250 + 39.7073i −1.03249 + 1.78833i
\(494\) −1.98646 + 3.44065i −0.0893751 + 0.154802i
\(495\) 0.250052 + 0.433103i 0.0112390 + 0.0194665i
\(496\) 1.59319 0.0715362
\(497\) 13.9989 3.85111i 0.627937 0.172746i
\(498\) 10.2478 0.459216
\(499\) −7.24609 12.5506i −0.324380 0.561842i 0.657007 0.753885i \(-0.271822\pi\)
−0.981387 + 0.192042i \(0.938489\pi\)
\(500\) 0.811895 1.40624i 0.0363090 0.0628891i
\(501\) −6.00705 + 10.4045i −0.268375 + 0.464839i
\(502\) 4.22992 + 7.32643i 0.188790 + 0.326995i
\(503\) 31.0306 1.38359 0.691793 0.722096i \(-0.256821\pi\)
0.691793 + 0.722096i \(0.256821\pi\)
\(504\) −1.71449 1.69180i −0.0763694 0.0753588i
\(505\) −2.72382 −0.121209
\(506\) 0.997114 + 1.72705i 0.0443271 + 0.0767769i
\(507\) 11.2642 19.5101i 0.500259 0.866474i
\(508\) −8.46849 + 14.6679i −0.375729 + 0.650781i
\(509\) −10.7434 18.6081i −0.476193 0.824791i 0.523435 0.852066i \(-0.324650\pi\)
−0.999628 + 0.0272748i \(0.991317\pi\)
\(510\) 7.40194 0.327764
\(511\) 6.09119 23.3537i 0.269458 1.03311i
\(512\) −18.9303 −0.836609
\(513\) 17.3251 + 30.0080i 0.764924 + 1.32489i
\(514\) −6.39233 + 11.0718i −0.281954 + 0.488358i
\(515\) 4.24225 7.34779i 0.186936 0.323782i
\(516\) 17.9570 + 31.1025i 0.790514 + 1.36921i
\(517\) −10.3190 −0.453828
\(518\) 0.409562 1.57026i 0.0179951 0.0689935i
\(519\) 0.127957 0.00561671
\(520\) 0.993701 + 1.72114i 0.0435767 + 0.0754770i
\(521\) 2.86889 4.96906i 0.125688 0.217698i −0.796314 0.604884i \(-0.793219\pi\)
0.922002 + 0.387186i \(0.126553\pi\)
\(522\) −0.881241 + 1.52635i −0.0385709 + 0.0668067i
\(523\) 3.00532 + 5.20536i 0.131413 + 0.227615i 0.924222 0.381857i \(-0.124715\pi\)
−0.792808 + 0.609471i \(0.791382\pi\)
\(524\) 21.1173 0.922512
\(525\) −3.47743 3.43141i −0.151768 0.149759i
\(526\) 13.9858 0.609810
\(527\) 2.76295 + 4.78556i 0.120356 + 0.208462i
\(528\) 2.12411 3.67906i 0.0924398 0.160110i
\(529\) 7.95459 13.7778i 0.345852 0.599033i
\(530\) 2.83562 + 4.91145i 0.123172 + 0.213340i
\(531\) 1.25108 0.0542921
\(532\) −30.0071 + 8.25498i −1.30097 + 0.357899i
\(533\) −4.84195 −0.209728
\(534\) −8.47201 14.6739i −0.366620 0.635004i
\(535\) 8.68507 15.0430i 0.375488 0.650365i
\(536\) 12.7995 22.1694i 0.552856 0.957574i
\(537\) −12.0673 20.9011i −0.520740 0.901949i
\(538\) −5.64695 −0.243457
\(539\) −0.113849 8.54616i −0.00490381 0.368109i
\(540\) 7.76693 0.334235
\(541\) 0.860663 + 1.49071i 0.0370028 + 0.0640907i 0.883934 0.467612i \(-0.154886\pi\)
−0.846931 + 0.531703i \(0.821552\pi\)
\(542\) 5.95535 10.3150i 0.255804 0.443066i
\(543\) 18.7331 32.4468i 0.803916 1.39242i
\(544\) −18.3031 31.7018i −0.784737 1.35920i
\(545\) −9.99723 −0.428234
\(546\) 2.58334 0.710678i 0.110557 0.0304142i
\(547\) 30.3531 1.29780 0.648901 0.760872i \(-0.275229\pi\)
0.648901 + 0.760872i \(0.275229\pi\)
\(548\) 8.48005 + 14.6879i 0.362250 + 0.627435i
\(549\) −0.285782 + 0.494989i −0.0121969 + 0.0211256i
\(550\) −0.374453 + 0.648571i −0.0159667 + 0.0276552i
\(551\) 25.4108 + 44.0128i 1.08254 + 1.87501i
\(552\) −10.9289 −0.465166
\(553\) 25.1446 + 24.8119i 1.06926 + 1.05511i
\(554\) 14.8321 0.630155
\(555\) −0.923254 1.59912i −0.0391899 0.0678790i
\(556\) −14.9644 + 25.9191i −0.634631 + 1.09921i
\(557\) 3.59513 6.22695i 0.152331 0.263844i −0.779753 0.626087i \(-0.784655\pi\)
0.932084 + 0.362243i \(0.117989\pi\)
\(558\) 0.106208 + 0.183958i 0.00449614 + 0.00778755i
\(559\) −10.7100 −0.452986
\(560\) −1.25819 + 4.82393i −0.0531684 + 0.203848i
\(561\) 14.7347 0.622100
\(562\) −8.49364 14.7114i −0.358282 0.620563i
\(563\) −15.1285 + 26.2034i −0.637592 + 1.10434i 0.348368 + 0.937358i \(0.386736\pi\)
−0.985960 + 0.166984i \(0.946597\pi\)
\(564\) 12.6700 21.9451i 0.533503 0.924054i
\(565\) −6.93023 12.0035i −0.291557 0.504992i
\(566\) 3.08368 0.129617
\(567\) 6.71808 25.7572i 0.282133 1.08170i
\(568\) 12.1973 0.511789
\(569\) −14.9224 25.8464i −0.625581 1.08354i −0.988428 0.151689i \(-0.951529\pi\)
0.362847 0.931849i \(-0.381805\pi\)
\(570\) 4.10227 7.10533i 0.171825 0.297610i
\(571\) 20.9683 36.3181i 0.877495 1.51987i 0.0234134 0.999726i \(-0.492547\pi\)
0.854081 0.520140i \(-0.174120\pi\)
\(572\) 0.886377 + 1.53525i 0.0370613 + 0.0641920i
\(573\) −41.1848 −1.72052
\(574\) 6.25512 + 6.17235i 0.261084 + 0.257629i
\(575\) −2.66286 −0.111049
\(576\) 0.0682061 + 0.118137i 0.00284192 + 0.00492235i
\(577\) 13.3864 23.1858i 0.557281 0.965240i −0.440441 0.897782i \(-0.645178\pi\)
0.997722 0.0674579i \(-0.0214888\pi\)
\(578\) 7.88562 13.6583i 0.327999 0.568110i
\(579\) 18.3578 + 31.7967i 0.762926 + 1.32143i
\(580\) 11.3918 0.473017
\(581\) −23.0820 + 6.34987i −0.957602 + 0.263437i
\(582\) −0.0469840 −0.00194755
\(583\) 5.64475 + 9.77700i 0.233782 + 0.404922i
\(584\) 10.1379 17.5593i 0.419508 0.726609i
\(585\) 0.183116 0.317166i 0.00757091 0.0131132i
\(586\) 4.61532 + 7.99397i 0.190657 + 0.330228i
\(587\) 8.99965 0.371455 0.185728 0.982601i \(-0.440536\pi\)
0.185728 + 0.982601i \(0.440536\pi\)
\(588\) 18.3146 + 10.2511i 0.755283 + 0.422750i
\(589\) 6.12506 0.252379
\(590\) 0.936744 + 1.62249i 0.0385651 + 0.0667968i
\(591\) −5.14196 + 8.90613i −0.211512 + 0.366349i
\(592\) −0.942136 + 1.63183i −0.0387215 + 0.0670677i
\(593\) 12.6349 + 21.8842i 0.518852 + 0.898678i 0.999760 + 0.0219070i \(0.00697378\pi\)
−0.480908 + 0.876771i \(0.659693\pi\)
\(594\) −3.58217 −0.146978
\(595\) −16.6720 + 4.58647i −0.683484 + 0.188027i
\(596\) −14.9970 −0.614301
\(597\) −5.52866 9.57592i −0.226273 0.391916i
\(598\) 0.730198 1.26474i 0.0298600 0.0517191i
\(599\) 1.43234 2.48088i 0.0585236 0.101366i −0.835279 0.549826i \(-0.814694\pi\)
0.893803 + 0.448460i \(0.148027\pi\)
\(600\) −2.05210 3.55435i −0.0837768 0.145106i
\(601\) −8.34798 −0.340521 −0.170261 0.985399i \(-0.554461\pi\)
−0.170261 + 0.985399i \(0.554461\pi\)
\(602\) 13.8359 + 13.6528i 0.563908 + 0.556446i
\(603\) −4.71731 −0.192104
\(604\) 15.7985 + 27.3638i 0.642831 + 1.11342i
\(605\) 4.75459 8.23520i 0.193302 0.334808i
\(606\) −1.54246 + 2.67163i −0.0626584 + 0.108527i
\(607\) −7.78775 13.4888i −0.316095 0.547493i 0.663575 0.748110i \(-0.269039\pi\)
−0.979670 + 0.200617i \(0.935705\pi\)
\(608\) −40.5753 −1.64554
\(609\) 8.64999 33.1642i 0.350515 1.34388i
\(610\) −0.855916 −0.0346550
\(611\) 3.77835 + 6.54430i 0.152856 + 0.264754i
\(612\) −2.17334 + 3.76434i −0.0878521 + 0.152164i
\(613\) 17.7265 30.7032i 0.715967 1.24009i −0.246618 0.969113i \(-0.579319\pi\)
0.962585 0.270979i \(-0.0873474\pi\)
\(614\) 1.88057 + 3.25724i 0.0758936 + 0.131452i
\(615\) 9.99917 0.403206
\(616\) 1.81215 6.94780i 0.0730135 0.279935i
\(617\) −23.2116 −0.934462 −0.467231 0.884135i \(-0.654748\pi\)
−0.467231 + 0.884135i \(0.654748\pi\)
\(618\) −4.80466 8.32192i −0.193272 0.334757i
\(619\) −18.9396 + 32.8044i −0.761248 + 1.31852i 0.180960 + 0.983491i \(0.442080\pi\)
−0.942208 + 0.335030i \(0.891254\pi\)
\(620\) 0.686472 1.18900i 0.0275694 0.0477516i
\(621\) −6.36851 11.0306i −0.255559 0.442642i
\(622\) −10.4605 −0.419427
\(623\) 28.1746 + 27.8017i 1.12879 + 1.11385i
\(624\) −3.11101 −0.124540
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −0.589224 + 1.02057i −0.0235501 + 0.0407900i
\(627\) 8.16620 14.1443i 0.326126 0.564868i
\(628\) −8.27972 14.3409i −0.330397 0.572264i
\(629\) −6.53551 −0.260588
\(630\) −0.640872 + 0.176304i −0.0255330 + 0.00702414i
\(631\) 14.3898 0.572850 0.286425 0.958103i \(-0.407533\pi\)
0.286425 + 0.958103i \(0.407533\pi\)
\(632\) 14.8384 + 25.7008i 0.590238 + 1.02232i
\(633\) −7.60557 + 13.1732i −0.302294 + 0.523589i
\(634\) −6.01731 + 10.4223i −0.238978 + 0.413922i
\(635\) 5.21526 + 9.03310i 0.206961 + 0.358468i
\(636\) −27.7232 −1.09930
\(637\) −5.37829 + 3.20143i −0.213096 + 0.126845i
\(638\) −5.25397 −0.208007
\(639\) −1.12384 1.94655i −0.0444585 0.0770044i
\(640\) −5.70325 + 9.87832i −0.225441 + 0.390475i
\(641\) −1.29369 + 2.24074i −0.0510977 + 0.0885039i −0.890443 0.455095i \(-0.849605\pi\)
0.839345 + 0.543599i \(0.182939\pi\)
\(642\) −9.83648 17.0373i −0.388215 0.672408i
\(643\) −13.0819 −0.515900 −0.257950 0.966158i \(-0.583047\pi\)
−0.257950 + 0.966158i \(0.583047\pi\)
\(644\) 11.0302 3.03443i 0.434653 0.119573i
\(645\) 22.1174 0.870873
\(646\) −14.5195 25.1485i −0.571263 0.989456i
\(647\) −11.0716 + 19.1765i −0.435268 + 0.753906i −0.997317 0.0731974i \(-0.976680\pi\)
0.562050 + 0.827104i \(0.310013\pi\)
\(648\) 11.1812 19.3665i 0.439240 0.760787i
\(649\) 1.86473 + 3.22981i 0.0731972 + 0.126781i
\(650\) 0.548432 0.0215113
\(651\) −2.94023 2.90132i −0.115237 0.113712i
\(652\) −38.5461 −1.50958
\(653\) −1.17318 2.03201i −0.0459101 0.0795186i 0.842157 0.539232i \(-0.181285\pi\)
−0.888067 + 0.459713i \(0.847952\pi\)
\(654\) −5.66130 + 9.80565i −0.221374 + 0.383431i
\(655\) 6.50246 11.2626i 0.254072 0.440066i
\(656\) −5.10184 8.83664i −0.199193 0.345013i
\(657\) −3.73634 −0.145769
\(658\) 3.46134 13.2708i 0.134937 0.517351i
\(659\) −12.8538 −0.500713 −0.250356 0.968154i \(-0.580548\pi\)
−0.250356 + 0.968154i \(0.580548\pi\)
\(660\) −1.83047 3.17046i −0.0712509 0.123410i
\(661\) −5.11932 + 8.86692i −0.199118 + 0.344883i −0.948243 0.317546i \(-0.897141\pi\)
0.749124 + 0.662429i \(0.230475\pi\)
\(662\) −6.29489 + 10.9031i −0.244658 + 0.423760i
\(663\) −5.39520 9.34476i −0.209532 0.362921i
\(664\) −20.1115 −0.780477
\(665\) −4.83717 + 18.5458i −0.187577 + 0.719174i
\(666\) −0.251226 −0.00973480
\(667\) −9.34069 16.1785i −0.361673 0.626436i
\(668\) 5.28251 9.14957i 0.204386 0.354007i
\(669\) 18.3344 31.7561i 0.708849 1.22776i
\(670\) −3.53209 6.11775i −0.136456 0.236349i
\(671\) −1.70383 −0.0657758
\(672\) 19.4775 + 19.2197i 0.751360 + 0.741417i
\(673\) −9.56675 −0.368771 −0.184386 0.982854i \(-0.559030\pi\)
−0.184386 + 0.982854i \(0.559030\pi\)
\(674\) −4.83298 8.37096i −0.186159 0.322437i
\(675\) 2.39161 4.14238i 0.0920530 0.159440i
\(676\) −9.90553 + 17.1569i −0.380982 + 0.659880i
\(677\) −7.74837 13.4206i −0.297794 0.515795i 0.677837 0.735212i \(-0.262918\pi\)
−0.975631 + 0.219418i \(0.929584\pi\)
\(678\) −15.6980 −0.602878
\(679\) 0.105826 0.0291127i 0.00406121 0.00111724i
\(680\) −14.5264 −0.557062
\(681\) −4.90803 8.50095i −0.188076 0.325757i
\(682\) −0.316607 + 0.548379i −0.0121235 + 0.0209985i
\(683\) 1.72698 2.99122i 0.0660812 0.114456i −0.831092 0.556135i \(-0.812284\pi\)
0.897173 + 0.441679i \(0.145617\pi\)
\(684\) 2.40899 + 4.17250i 0.0921102 + 0.159540i
\(685\) 10.4448 0.399074
\(686\) 11.0291 + 2.72026i 0.421092 + 0.103860i
\(687\) −21.2031 −0.808950
\(688\) −11.2849 19.5460i −0.430232 0.745184i
\(689\) 4.13372 7.15981i 0.157482 0.272767i
\(690\) −1.50794 + 2.61183i −0.0574064 + 0.0994307i
\(691\) 0.866437 + 1.50071i 0.0329608 + 0.0570898i 0.882035 0.471183i \(-0.156173\pi\)
−0.849074 + 0.528273i \(0.822840\pi\)
\(692\) −0.112524 −0.00427751
\(693\) −1.27576 + 0.350961i −0.0484620 + 0.0133319i
\(694\) −20.4728 −0.777137
\(695\) 9.21571 + 15.9621i 0.349572 + 0.605476i
\(696\) 14.3966 24.9357i 0.545702 0.945184i
\(697\) 17.6955 30.6495i 0.670264 1.16093i
\(698\) −5.25071 9.09449i −0.198742 0.344231i
\(699\) 38.3249 1.44958
\(700\) 3.05800 + 3.01753i 0.115581 + 0.114052i
\(701\) −30.4442 −1.14986 −0.574930 0.818202i \(-0.694971\pi\)
−0.574930 + 0.818202i \(0.694971\pi\)
\(702\) 1.31163 + 2.27182i 0.0495044 + 0.0857441i
\(703\) −3.62207 + 6.27362i −0.136609 + 0.236614i
\(704\) −0.203323 + 0.352166i −0.00766302 + 0.0132727i
\(705\) −7.80273 13.5147i −0.293868 0.508994i
\(706\) −4.41941 −0.166327
\(707\) 1.81879 6.97327i 0.0684026 0.262257i
\(708\) −9.15833 −0.344191
\(709\) −2.74858 4.76068i −0.103225 0.178791i 0.809787 0.586725i \(-0.199583\pi\)
−0.913012 + 0.407934i \(0.866250\pi\)
\(710\) 1.68295 2.91496i 0.0631601 0.109397i
\(711\) 2.73436 4.73605i 0.102547 0.177616i
\(712\) 16.6264 + 28.7978i 0.623101 + 1.07924i
\(713\) −2.25150 −0.0843192
\(714\) −4.94253 + 18.9497i −0.184970 + 0.709176i
\(715\) 1.09174 0.0408287
\(716\) 10.6118 + 18.3801i 0.396580 + 0.686896i
\(717\) −4.18005 + 7.24005i −0.156107 + 0.270385i
\(718\) −3.93661 + 6.81842i −0.146913 + 0.254461i
\(719\) 11.1786 + 19.3619i 0.416892 + 0.722077i 0.995625 0.0934395i \(-0.0297862\pi\)
−0.578733 + 0.815517i \(0.696453\pi\)
\(720\) 0.771778 0.0287625
\(721\) 15.9784 + 15.7670i 0.595067 + 0.587193i
\(722\) −20.5339 −0.764191
\(723\) 19.8021 + 34.2982i 0.736447 + 1.27556i
\(724\) −16.4736 + 28.5332i −0.612238 + 1.06043i
\(725\) 3.50777 6.07563i 0.130275 0.225643i
\(726\) −5.38493 9.32697i −0.199853 0.346156i
\(727\) 11.1657 0.414113 0.207056 0.978329i \(-0.433612\pi\)
0.207056 + 0.978329i \(0.433612\pi\)
\(728\) −5.06983 + 1.39471i −0.187900 + 0.0516915i
\(729\) 22.3758 0.828734
\(730\) −2.79759 4.84556i −0.103543 0.179342i
\(731\) 39.1411 67.7944i 1.44769 2.50747i
\(732\) 2.09202 3.62349i 0.0773234 0.133928i
\(733\) −22.5737 39.0988i −0.833778 1.44415i −0.895021 0.446023i \(-0.852840\pi\)
0.0612434 0.998123i \(-0.480493\pi\)
\(734\) −16.1789 −0.597174
\(735\) 11.1068 6.61131i 0.409680 0.243862i
\(736\) 14.9150 0.549773
\(737\) −7.03117 12.1783i −0.258996 0.448595i
\(738\) 0.680217 1.17817i 0.0250391 0.0433690i
\(739\) 10.7162 18.5610i 0.394202 0.682777i −0.598797 0.800901i \(-0.704354\pi\)
0.992999 + 0.118123i \(0.0376878\pi\)
\(740\) 0.811895 + 1.40624i 0.0298458 + 0.0516945i
\(741\) −11.9604 −0.439376
\(742\) −14.4673 + 3.97995i −0.531110 + 0.146109i
\(743\) 2.90342 0.106516 0.0532581 0.998581i \(-0.483039\pi\)
0.0532581 + 0.998581i \(0.483039\pi\)
\(744\) −1.73509 3.00527i −0.0636116 0.110178i
\(745\) −4.61790 + 7.99844i −0.169187 + 0.293040i
\(746\) −5.55532 + 9.62209i −0.203395 + 0.352290i
\(747\) 1.85304 + 3.20956i 0.0677991 + 0.117431i
\(748\) −12.9575 −0.473772
\(749\) 32.7123 + 32.2794i 1.19528 + 1.17946i
\(750\) −1.13257 −0.0413557
\(751\) 10.8341 + 18.7652i 0.395342 + 0.684752i 0.993145 0.116891i \(-0.0372929\pi\)
−0.597803 + 0.801643i \(0.703960\pi\)
\(752\) −7.96231 + 13.7911i −0.290355 + 0.502910i
\(753\) −12.7341 + 22.0561i −0.464055 + 0.803768i
\(754\) 1.92377 + 3.33207i 0.0700596 + 0.121347i
\(755\) 19.4588 0.708178
\(756\) −5.18625 + 19.8841i −0.188622 + 0.723179i
\(757\) −7.17306 −0.260709 −0.130355 0.991467i \(-0.541612\pi\)
−0.130355 + 0.991467i \(0.541612\pi\)
\(758\) 2.25863 + 3.91206i 0.0820371 + 0.142093i
\(759\) −3.00179 + 5.19926i −0.108958 + 0.188721i
\(760\) −8.05074 + 13.9443i −0.292031 + 0.505812i
\(761\) −14.1292 24.4725i −0.512184 0.887129i −0.999900 0.0141268i \(-0.995503\pi\)
0.487716 0.873002i \(-0.337830\pi\)
\(762\) 11.8133 0.427952
\(763\) 6.67549 25.5939i 0.241669 0.926563i
\(764\) 36.2173 1.31029
\(765\) 1.33844 + 2.31824i 0.0483913 + 0.0838162i
\(766\) −4.03490 + 6.98866i −0.145787 + 0.252510i
\(767\) 1.36557 2.36523i 0.0493077 0.0854035i
\(768\) 5.84438 + 10.1228i 0.210891 + 0.365274i
\(769\) 20.4331 0.736837 0.368418 0.929660i \(-0.379899\pi\)
0.368418 + 0.929660i \(0.379899\pi\)
\(770\) −1.41037 1.39171i −0.0508264 0.0501538i
\(771\) −38.4880 −1.38611
\(772\) −16.1436 27.9615i −0.581021 1.00636i
\(773\) 12.3091 21.3200i 0.442728 0.766827i −0.555163 0.831742i \(-0.687344\pi\)
0.997891 + 0.0649145i \(0.0206775\pi\)
\(774\) 1.50459 2.60602i 0.0540813 0.0936716i
\(775\) −0.422759 0.732240i −0.0151860 0.0263029i
\(776\) 0.0922066 0.00331002
\(777\) 4.71041 1.29584i 0.168985 0.0464879i
\(778\) −8.83687 −0.316817
\(779\) −19.6142 33.9728i −0.702751 1.21720i
\(780\) −1.34047 + 2.32177i −0.0479966 + 0.0831326i
\(781\) 3.35018 5.80269i 0.119879 0.207636i
\(782\) 5.33719 + 9.24429i 0.190858 + 0.330575i
\(783\) 33.5568 1.19922
\(784\) −11.5096 6.44221i −0.411058 0.230079i
\(785\) −10.1980 −0.363983
\(786\) −7.36452 12.7557i −0.262684 0.454981i
\(787\) −10.4718 + 18.1376i −0.373278 + 0.646537i −0.990068 0.140591i \(-0.955100\pi\)
0.616790 + 0.787128i \(0.288433\pi\)
\(788\) 4.52176 7.83191i 0.161081 0.279000i
\(789\) 21.0520 + 36.4631i 0.749471 + 1.29812i
\(790\) 8.18941 0.291366
\(791\) 35.3578 9.72696i 1.25718 0.345851i
\(792\) −1.11157 −0.0394981
\(793\) 0.623869 + 1.08057i 0.0221542 + 0.0383722i
\(794\) −10.7490 + 18.6179i −0.381469 + 0.660723i
\(795\) −8.53659 + 14.7858i −0.302762 + 0.524398i
\(796\) 4.86182 + 8.42092i 0.172323 + 0.298472i
\(797\) −3.87594 −0.137293 −0.0686463 0.997641i \(-0.521868\pi\)
−0.0686463 + 0.997641i \(0.521868\pi\)
\(798\) 15.4512 + 15.2467i 0.546965 + 0.539727i
\(799\) −55.2338 −1.95403
\(800\) 2.80056 + 4.85070i 0.0990146 + 0.171498i
\(801\) 3.06386 5.30676i 0.108256 0.187505i
\(802\) 6.43357 11.1433i 0.227177 0.393482i
\(803\) −5.56903 9.64585i −0.196527 0.340395i
\(804\) 34.5324 1.21786
\(805\) 1.77808 6.81719i 0.0626692 0.240274i
\(806\) 0.463709 0.0163335
\(807\) −8.50001 14.7225i −0.299215 0.518255i
\(808\) 3.02710 5.24310i 0.106493 0.184452i
\(809\) 3.65295 6.32710i 0.128431 0.222449i −0.794638 0.607084i \(-0.792339\pi\)
0.923069 + 0.384635i \(0.125673\pi\)
\(810\) −3.08551 5.34426i −0.108414 0.187778i
\(811\) −25.5843 −0.898387 −0.449194 0.893434i \(-0.648289\pi\)
−0.449194 + 0.893434i \(0.648289\pi\)
\(812\) −7.60667 + 29.1641i −0.266942 + 1.02346i
\(813\) 35.8569 1.25756
\(814\) −0.374453 0.648571i −0.0131246 0.0227324i
\(815\) −11.8692 + 20.5580i −0.415760 + 0.720117i
\(816\) 11.3696 19.6927i 0.398014 0.689381i
\(817\) −43.3852 75.1453i −1.51785 2.62900i
\(818\) 4.78671 0.167363
\(819\) 0.689705 + 0.680578i 0.0241002 + 0.0237813i
\(820\) −8.79312 −0.307069
\(821\) 5.35642 + 9.27760i 0.186941 + 0.323790i 0.944229 0.329290i \(-0.106810\pi\)
−0.757288 + 0.653081i \(0.773476\pi\)
\(822\) 5.91473 10.2446i 0.206300 0.357322i
\(823\) 26.4244 45.7685i 0.921098 1.59539i 0.123379 0.992360i \(-0.460627\pi\)
0.797719 0.603029i \(-0.206040\pi\)
\(824\) 9.42920 + 16.3318i 0.328482 + 0.568947i
\(825\) −2.25456 −0.0784938
\(826\) −4.77923 + 1.31477i −0.166291 + 0.0457467i
\(827\) 37.3813 1.29988 0.649938 0.759988i \(-0.274795\pi\)
0.649938 + 0.759988i \(0.274795\pi\)
\(828\) −0.885516 1.53376i −0.0307738 0.0533018i
\(829\) −4.61059 + 7.98578i −0.160132 + 0.277358i −0.934916 0.354869i \(-0.884525\pi\)
0.774784 + 0.632227i \(0.217859\pi\)
\(830\) −2.77492 + 4.80631i −0.0963190 + 0.166829i
\(831\) 22.3259 + 38.6695i 0.774475 + 1.34143i
\(832\) 0.297791 0.0103241
\(833\) −0.609391 45.7445i −0.0211141 1.58495i
\(834\) 20.8749 0.722840
\(835\) −3.25320 5.63470i −0.112581 0.194997i
\(836\) −7.18123 + 12.4382i −0.248368 + 0.430186i
\(837\) 2.02215 3.50246i 0.0698956 0.121063i
\(838\) 7.02626 + 12.1698i 0.242718 + 0.420400i
\(839\) −30.7541 −1.06175 −0.530874 0.847451i \(-0.678136\pi\)
−0.530874 + 0.847451i \(0.678136\pi\)
\(840\) 10.4698 2.88024i 0.361241 0.0993777i
\(841\) 20.2177 0.697163
\(842\) −1.81164 3.13785i −0.0624331 0.108137i
\(843\) 25.5699 44.2884i 0.880675 1.52537i
\(844\) 6.68822 11.5843i 0.230218 0.398749i
\(845\) 6.10025 + 10.5659i 0.209855 + 0.363480i
\(846\) −2.12319 −0.0729969
\(847\) 17.9082 + 17.6712i 0.615331 + 0.607189i
\(848\) 17.4224 0.598286
\(849\) 4.64167 + 8.03961i 0.159302 + 0.275919i
\(850\) −2.00431 + 3.47157i −0.0687472 + 0.119074i
\(851\) 1.33143 2.30610i 0.0456408 0.0790522i
\(852\) 8.22693 + 14.2495i 0.281850 + 0.488178i
\(853\) 29.1851 0.999280 0.499640 0.866233i \(-0.333466\pi\)
0.499640 + 0.866233i \(0.333466\pi\)
\(854\) 0.571525 2.19123i 0.0195572 0.0749825i
\(855\) 2.96713 0.101474
\(856\) 19.3042 + 33.4358i 0.659804 + 1.14281i
\(857\) 7.68678 13.3139i 0.262575 0.454794i −0.704350 0.709853i \(-0.748761\pi\)
0.966926 + 0.255059i \(0.0820948\pi\)
\(858\) 0.618237 1.07082i 0.0211063 0.0365571i
\(859\) −12.4476 21.5598i −0.424705 0.735611i 0.571687 0.820471i \(-0.306289\pi\)
−0.996393 + 0.0848601i \(0.972956\pi\)
\(860\) −19.4497 −0.663230
\(861\) −6.67679 + 25.5989i −0.227544 + 0.872409i
\(862\) 11.2160 0.382019
\(863\) −6.76622 11.7194i −0.230325 0.398934i 0.727579 0.686024i \(-0.240646\pi\)
−0.957904 + 0.287090i \(0.907312\pi\)
\(864\) −13.3957 + 23.2020i −0.455729 + 0.789346i
\(865\) −0.0346485 + 0.0600129i −0.00117808 + 0.00204050i
\(866\) 0.619678 + 1.07331i 0.0210575 + 0.0364727i
\(867\) 47.4790 1.61247
\(868\) 2.58559 + 2.55138i 0.0877608 + 0.0865994i
\(869\) 16.3023 0.553017
\(870\) −3.97280 6.88110i −0.134691 0.233291i
\(871\) −5.14900 + 8.91833i −0.174467 + 0.302186i
\(872\) 11.1104 19.2437i 0.376244 0.651674i
\(873\) −0.00849576 0.0147151i −0.000287538 0.000498030i
\(874\) 11.8318 0.400217
\(875\) 2.55098 0.701777i 0.0862389 0.0237244i
\(876\) 27.3514 0.924117
\(877\) −11.6679 20.2094i −0.393997 0.682423i 0.598975 0.800767i \(-0.295575\pi\)
−0.992973 + 0.118344i \(0.962241\pi\)
\(878\) −3.89676 + 6.74938i −0.131509 + 0.227781i
\(879\) −13.8943 + 24.0657i −0.468644 + 0.811715i
\(880\) 1.15034 + 1.99244i 0.0387779 + 0.0671652i
\(881\) 16.5070 0.556134 0.278067 0.960562i \(-0.410306\pi\)
0.278067 + 0.960562i \(0.410306\pi\)
\(882\) −0.0234251 1.75842i −0.000788763 0.0592092i
\(883\) 40.7966 1.37292 0.686458 0.727170i \(-0.259165\pi\)
0.686458 + 0.727170i \(0.259165\pi\)
\(884\) 4.74446 + 8.21764i 0.159573 + 0.276389i
\(885\) −2.82005 + 4.88447i −0.0947949 + 0.164190i
\(886\) −0.971085 + 1.68197i −0.0326242 + 0.0565068i
\(887\) −18.8418 32.6350i −0.632646 1.09578i −0.987009 0.160667i \(-0.948635\pi\)
0.354363 0.935108i \(-0.384698\pi\)
\(888\) 4.10421 0.137728
\(889\) −26.6081 + 7.31990i −0.892407 + 0.245502i
\(890\) 9.17625 0.307589
\(891\) −6.14218 10.6386i −0.205771 0.356406i
\(892\) −16.1230 + 27.9258i −0.539838 + 0.935026i
\(893\) −30.6114 + 53.0204i −1.02437 + 1.77426i
\(894\) 5.23011 + 9.05882i 0.174921 + 0.302972i
\(895\) 13.0704 0.436894
\(896\) −21.4813 21.1970i −0.717639 0.708142i
\(897\) 4.39649 0.146795
\(898\) −10.4782 18.1488i −0.349662 0.605633i
\(899\) 2.96588 5.13706i 0.0989177 0.171330i
\(900\) 0.332544 0.575982i 0.0110848 0.0191994i
\(901\) 30.2143 + 52.3327i 1.00658 + 1.74346i
\(902\) 4.05546 0.135032
\(903\) −14.7686 + 56.6229i −0.491467 + 1.88429i
\(904\) 30.8075 1.02464
\(905\) 10.1452 + 17.5720i 0.337237 + 0.584112i
\(906\) 11.0193 19.0859i 0.366090 0.634087i
\(907\) 25.9823 45.0026i 0.862727 1.49429i −0.00655986 0.999978i \(-0.502088\pi\)
0.869287 0.494308i \(-0.164579\pi\)
\(908\) 4.31604 + 7.47560i 0.143233 + 0.248087i
\(909\) −1.11565 −0.0370037
\(910\) −0.366207 + 1.40404i −0.0121396 + 0.0465436i
\(911\) 12.2789 0.406818 0.203409 0.979094i \(-0.434798\pi\)
0.203409 + 0.979094i \(0.434798\pi\)
\(912\) −12.6024 21.8279i −0.417306 0.722795i
\(913\) −5.52392 + 9.56770i −0.182815 + 0.316645i
\(914\) −7.93377 + 13.7417i −0.262426 + 0.454535i
\(915\) −1.28836 2.23150i −0.0425918 0.0737712i
\(916\) 18.6457 0.616071
\(917\) 24.4915 + 24.1674i 0.808780 + 0.798078i
\(918\) −19.1741 −0.632839
\(919\) 21.0446 + 36.4503i 0.694196 + 1.20238i 0.970451 + 0.241299i \(0.0775733\pi\)
−0.276255 + 0.961084i \(0.589093\pi\)
\(920\) 2.95935 5.12575i 0.0975669 0.168991i
\(921\) −5.66141 + 9.80585i −0.186550 + 0.323114i
\(922\) −8.90230 15.4192i −0.293182 0.507805i
\(923\) −4.90675 −0.161508
\(924\) 9.33899 2.56916i 0.307230 0.0845192i
\(925\) 1.00000 0.0328798
\(926\) −4.72085 8.17676i −0.155137 0.268705i
\(927\) 1.73758 3.00958i 0.0570697 0.0988475i
\(928\) −19.6474 + 34.0303i −0.644957 + 1.11710i
\(929\) −18.1807 31.4900i −0.596491 1.03315i −0.993335 0.115266i \(-0.963228\pi\)
0.396844 0.917886i \(-0.370106\pi\)
\(930\) −0.957612 −0.0314013
\(931\) −44.2491 24.7673i −1.45021 0.811715i
\(932\) −33.7023 −1.10395
\(933\) −15.7455 27.2720i −0.515485 0.892846i
\(934\) −10.9856 + 19.0276i −0.359460 + 0.622603i
\(935\) −3.98989 + 6.91069i −0.130483 + 0.226004i
\(936\) 0.407009 + 0.704961i 0.0133035 + 0.0230424i
\(937\) 43.7966 1.43077 0.715386 0.698730i \(-0.246251\pi\)
0.715386 + 0.698730i \(0.246251\pi\)
\(938\) 18.0206 4.95747i 0.588393 0.161867i
\(939\) −3.54769 −0.115775
\(940\) 6.86160 + 11.8846i 0.223801 + 0.387634i
\(941\) 16.8960 29.2647i 0.550793 0.954002i −0.447424 0.894322i \(-0.647659\pi\)
0.998218 0.0596803i \(-0.0190081\pi\)
\(942\) −5.77501 + 10.0026i −0.188160 + 0.325902i
\(943\) 7.20993 + 12.4880i 0.234788 + 0.406664i
\(944\) 5.75545 0.187324
\(945\) 9.00797 + 8.88877i 0.293029 + 0.289152i
\(946\) 8.97038 0.291652
\(947\) −3.74367 6.48423i −0.121653 0.210709i 0.798767 0.601641i \(-0.205486\pi\)
−0.920420 + 0.390932i \(0.872153\pi\)
\(948\) −20.0165 + 34.6696i −0.650106 + 1.12602i
\(949\) −4.07827 + 7.06376i −0.132386 + 0.229299i
\(950\) 2.22163 + 3.84798i 0.0720794 + 0.124845i
\(951\) −36.2300 −1.17484
\(952\) 9.69977 37.1891i 0.314371 1.20530i
\(953\) −12.2657 −0.397325 −0.198662 0.980068i \(-0.563660\pi\)
−0.198662 + 0.980068i \(0.563660\pi\)
\(954\) 1.16144 + 2.01168i 0.0376031 + 0.0651304i
\(955\) 11.1521 19.3160i 0.360873 0.625050i
\(956\) 3.67587 6.36679i 0.118886 0.205917i
\(957\) −7.90849 13.6979i −0.255645 0.442790i
\(958\) −12.6018 −0.407146
\(959\) −6.97433 + 26.7397i −0.225213 + 0.863469i
\(960\) −0.614973 −0.0198482
\(961\) 15.1425 + 26.2277i 0.488469 + 0.846054i
\(962\) −0.274216 + 0.474956i −0.00884108 + 0.0153132i
\(963\) 3.55731 6.16145i 0.114633 0.198550i
\(964\) −17.4136 30.1613i −0.560856 0.971430i
\(965\) −19.8838 −0.640084
\(966\) −5.67965 5.60450i −0.182740 0.180322i
\(967\) −25.6492 −0.824822 −0.412411 0.910998i \(-0.635313\pi\)
−0.412411 + 0.910998i \(0.635313\pi\)
\(968\) 10.5680 + 18.3043i 0.339668 + 0.588322i
\(969\) 43.7107 75.7091i 1.40419 2.43213i
\(970\) 0.0127224 0.0220358i 0.000408491 0.000707528i
\(971\) 5.93240 + 10.2752i 0.190380 + 0.329748i 0.945376 0.325981i \(-0.105695\pi\)
−0.754996 + 0.655729i \(0.772361\pi\)
\(972\) 6.86552 0.220212
\(973\) −47.0182 + 12.9347i −1.50733 + 0.414669i
\(974\) −26.4949 −0.848951
\(975\) 0.825521 + 1.42985i 0.0264378 + 0.0457917i
\(976\) −1.31471 + 2.27714i −0.0420828 + 0.0728895i
\(977\) 10.6480 18.4428i 0.340659 0.590038i −0.643896 0.765113i \(-0.722683\pi\)
0.984555 + 0.175074i \(0.0560166\pi\)
\(978\) 13.4427 + 23.2835i 0.429851 + 0.744524i
\(979\) 18.2668 0.583808
\(980\) −9.76712 + 5.81388i −0.311999 + 0.185718i
\(981\) −4.09476 −0.130736
\(982\) 2.67745 + 4.63748i 0.0854408 + 0.147988i
\(983\) −15.4808 + 26.8136i −0.493762 + 0.855221i −0.999974 0.00718808i \(-0.997712\pi\)
0.506212 + 0.862409i \(0.331045\pi\)
\(984\) −11.1125 + 19.2474i −0.354254 + 0.613586i
\(985\) −2.78469 4.82323i −0.0887277 0.153681i
\(986\) −28.1226 −0.895606
\(987\) 39.8092 10.9515i 1.26714 0.348592i
\(988\) 10.5178 0.334615
\(989\) 15.9478 + 27.6225i 0.507112 + 0.878343i
\(990\) −0.153372 + 0.265648i −0.00487448 + 0.00844284i
\(991\) −29.7406 + 51.5123i −0.944743 + 1.63634i −0.188478 + 0.982077i \(0.560355\pi\)
−0.756265 + 0.654265i \(0.772978\pi\)
\(992\) 2.36792 + 4.10136i 0.0751816 + 0.130218i
\(993\) −37.9013 −1.20276
\(994\) 6.33884 + 6.25496i 0.201056 + 0.198395i
\(995\) 5.98824 0.189840
\(996\) −13.5649 23.4951i −0.429820 0.744470i
\(997\) 17.5287 30.3606i 0.555140 0.961530i −0.442753 0.896644i \(-0.645998\pi\)
0.997893 0.0648864i \(-0.0206685\pi\)
\(998\) 4.44446 7.69804i 0.140687 0.243677i
\(999\) 2.39161 + 4.14238i 0.0756671 + 0.131059i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1295.2.j.a.186.11 38
7.2 even 3 inner 1295.2.j.a.926.11 yes 38
7.3 odd 6 9065.2.a.s.1.9 19
7.4 even 3 9065.2.a.r.1.9 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.j.a.186.11 38 1.1 even 1 trivial
1295.2.j.a.926.11 yes 38 7.2 even 3 inner
9065.2.a.r.1.9 19 7.4 even 3
9065.2.a.s.1.9 19 7.3 odd 6