Properties

Label 1295.2.a.h.1.4
Level $1295$
Weight $2$
Character 1295.1
Self dual yes
Analytic conductor $10.341$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1295,2,Mod(1,1295)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1295.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1295 = 5 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1295.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3406270618\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5 x^{11} - 7 x^{10} + 63 x^{9} - 11 x^{8} - 279 x^{7} + 171 x^{6} + 503 x^{5} - 367 x^{4} + \cdots - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.876141\) of defining polynomial
Character \(\chi\) \(=\) 1295.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.876141 q^{2} +0.718988 q^{3} -1.23238 q^{4} +1.00000 q^{5} -0.629935 q^{6} -1.00000 q^{7} +2.83202 q^{8} -2.48306 q^{9} -0.876141 q^{10} +0.114427 q^{11} -0.886064 q^{12} -5.71328 q^{13} +0.876141 q^{14} +0.718988 q^{15} -0.0164961 q^{16} +3.29191 q^{17} +2.17551 q^{18} -0.312598 q^{19} -1.23238 q^{20} -0.718988 q^{21} -0.100254 q^{22} +9.00051 q^{23} +2.03619 q^{24} +1.00000 q^{25} +5.00564 q^{26} -3.94225 q^{27} +1.23238 q^{28} +9.18065 q^{29} -0.629935 q^{30} +2.16041 q^{31} -5.64958 q^{32} +0.0822717 q^{33} -2.88418 q^{34} -1.00000 q^{35} +3.06006 q^{36} -1.00000 q^{37} +0.273880 q^{38} -4.10778 q^{39} +2.83202 q^{40} +6.64159 q^{41} +0.629935 q^{42} -0.971397 q^{43} -0.141017 q^{44} -2.48306 q^{45} -7.88572 q^{46} -0.611192 q^{47} -0.0118605 q^{48} +1.00000 q^{49} -0.876141 q^{50} +2.36685 q^{51} +7.04091 q^{52} +6.82366 q^{53} +3.45397 q^{54} +0.114427 q^{55} -2.83202 q^{56} -0.224754 q^{57} -8.04355 q^{58} -7.75992 q^{59} -0.886064 q^{60} -12.7740 q^{61} -1.89283 q^{62} +2.48306 q^{63} +4.98283 q^{64} -5.71328 q^{65} -0.0720816 q^{66} +0.659857 q^{67} -4.05688 q^{68} +6.47126 q^{69} +0.876141 q^{70} +15.1600 q^{71} -7.03206 q^{72} +10.1944 q^{73} +0.876141 q^{74} +0.718988 q^{75} +0.385238 q^{76} -0.114427 q^{77} +3.59899 q^{78} +11.3613 q^{79} -0.0164961 q^{80} +4.61473 q^{81} -5.81897 q^{82} +13.1089 q^{83} +0.886064 q^{84} +3.29191 q^{85} +0.851081 q^{86} +6.60078 q^{87} +0.324059 q^{88} -9.92316 q^{89} +2.17551 q^{90} +5.71328 q^{91} -11.0920 q^{92} +1.55331 q^{93} +0.535490 q^{94} -0.312598 q^{95} -4.06199 q^{96} +5.10646 q^{97} -0.876141 q^{98} -0.284129 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 5 q^{2} + 4 q^{3} + 15 q^{4} + 12 q^{5} + 6 q^{6} - 12 q^{7} + 21 q^{8} + 18 q^{9} + 5 q^{10} - 4 q^{11} + 8 q^{12} + 6 q^{13} - 5 q^{14} + 4 q^{15} + 21 q^{16} + 20 q^{17} + 14 q^{18} - 4 q^{19}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.876141 −0.619526 −0.309763 0.950814i \(-0.600250\pi\)
−0.309763 + 0.950814i \(0.600250\pi\)
\(3\) 0.718988 0.415108 0.207554 0.978224i \(-0.433450\pi\)
0.207554 + 0.978224i \(0.433450\pi\)
\(4\) −1.23238 −0.616188
\(5\) 1.00000 0.447214
\(6\) −0.629935 −0.257170
\(7\) −1.00000 −0.377964
\(8\) 2.83202 1.00127
\(9\) −2.48306 −0.827685
\(10\) −0.876141 −0.277060
\(11\) 0.114427 0.0345010 0.0172505 0.999851i \(-0.494509\pi\)
0.0172505 + 0.999851i \(0.494509\pi\)
\(12\) −0.886064 −0.255785
\(13\) −5.71328 −1.58458 −0.792289 0.610146i \(-0.791111\pi\)
−0.792289 + 0.610146i \(0.791111\pi\)
\(14\) 0.876141 0.234159
\(15\) 0.718988 0.185642
\(16\) −0.0164961 −0.00412403
\(17\) 3.29191 0.798406 0.399203 0.916862i \(-0.369287\pi\)
0.399203 + 0.916862i \(0.369287\pi\)
\(18\) 2.17551 0.512772
\(19\) −0.312598 −0.0717149 −0.0358574 0.999357i \(-0.511416\pi\)
−0.0358574 + 0.999357i \(0.511416\pi\)
\(20\) −1.23238 −0.275568
\(21\) −0.718988 −0.156896
\(22\) −0.100254 −0.0213743
\(23\) 9.00051 1.87674 0.938368 0.345638i \(-0.112337\pi\)
0.938368 + 0.345638i \(0.112337\pi\)
\(24\) 2.03619 0.415635
\(25\) 1.00000 0.200000
\(26\) 5.00564 0.981686
\(27\) −3.94225 −0.758687
\(28\) 1.23238 0.232897
\(29\) 9.18065 1.70480 0.852402 0.522887i \(-0.175145\pi\)
0.852402 + 0.522887i \(0.175145\pi\)
\(30\) −0.629935 −0.115010
\(31\) 2.16041 0.388022 0.194011 0.980999i \(-0.437850\pi\)
0.194011 + 0.980999i \(0.437850\pi\)
\(32\) −5.64958 −0.998715
\(33\) 0.0822717 0.0143217
\(34\) −2.88418 −0.494633
\(35\) −1.00000 −0.169031
\(36\) 3.06006 0.510010
\(37\) −1.00000 −0.164399
\(38\) 0.273880 0.0444292
\(39\) −4.10778 −0.657771
\(40\) 2.83202 0.447781
\(41\) 6.64159 1.03724 0.518621 0.855004i \(-0.326446\pi\)
0.518621 + 0.855004i \(0.326446\pi\)
\(42\) 0.629935 0.0972012
\(43\) −0.971397 −0.148137 −0.0740683 0.997253i \(-0.523598\pi\)
−0.0740683 + 0.997253i \(0.523598\pi\)
\(44\) −0.141017 −0.0212591
\(45\) −2.48306 −0.370152
\(46\) −7.88572 −1.16269
\(47\) −0.611192 −0.0891515 −0.0445757 0.999006i \(-0.514194\pi\)
−0.0445757 + 0.999006i \(0.514194\pi\)
\(48\) −0.0118605 −0.00171192
\(49\) 1.00000 0.142857
\(50\) −0.876141 −0.123905
\(51\) 2.36685 0.331425
\(52\) 7.04091 0.976398
\(53\) 6.82366 0.937301 0.468651 0.883384i \(-0.344740\pi\)
0.468651 + 0.883384i \(0.344740\pi\)
\(54\) 3.45397 0.470026
\(55\) 0.114427 0.0154293
\(56\) −2.83202 −0.378444
\(57\) −0.224754 −0.0297694
\(58\) −8.04355 −1.05617
\(59\) −7.75992 −1.01026 −0.505128 0.863045i \(-0.668555\pi\)
−0.505128 + 0.863045i \(0.668555\pi\)
\(60\) −0.886064 −0.114390
\(61\) −12.7740 −1.63554 −0.817771 0.575544i \(-0.804790\pi\)
−0.817771 + 0.575544i \(0.804790\pi\)
\(62\) −1.89283 −0.240390
\(63\) 2.48306 0.312836
\(64\) 4.98283 0.622853
\(65\) −5.71328 −0.708645
\(66\) −0.0720816 −0.00887263
\(67\) 0.659857 0.0806144 0.0403072 0.999187i \(-0.487166\pi\)
0.0403072 + 0.999187i \(0.487166\pi\)
\(68\) −4.05688 −0.491969
\(69\) 6.47126 0.779048
\(70\) 0.876141 0.104719
\(71\) 15.1600 1.79917 0.899583 0.436750i \(-0.143870\pi\)
0.899583 + 0.436750i \(0.143870\pi\)
\(72\) −7.03206 −0.828736
\(73\) 10.1944 1.19316 0.596579 0.802554i \(-0.296526\pi\)
0.596579 + 0.802554i \(0.296526\pi\)
\(74\) 0.876141 0.101849
\(75\) 0.718988 0.0830216
\(76\) 0.385238 0.0441899
\(77\) −0.114427 −0.0130402
\(78\) 3.59899 0.407506
\(79\) 11.3613 1.27825 0.639125 0.769102i \(-0.279296\pi\)
0.639125 + 0.769102i \(0.279296\pi\)
\(80\) −0.0164961 −0.00184432
\(81\) 4.61473 0.512748
\(82\) −5.81897 −0.642598
\(83\) 13.1089 1.43889 0.719443 0.694552i \(-0.244397\pi\)
0.719443 + 0.694552i \(0.244397\pi\)
\(84\) 0.886064 0.0966775
\(85\) 3.29191 0.357058
\(86\) 0.851081 0.0917744
\(87\) 6.60078 0.707678
\(88\) 0.324059 0.0345448
\(89\) −9.92316 −1.05185 −0.525926 0.850530i \(-0.676281\pi\)
−0.525926 + 0.850530i \(0.676281\pi\)
\(90\) 2.17551 0.229319
\(91\) 5.71328 0.598914
\(92\) −11.0920 −1.15642
\(93\) 1.55331 0.161071
\(94\) 0.535490 0.0552316
\(95\) −0.312598 −0.0320719
\(96\) −4.06199 −0.414575
\(97\) 5.10646 0.518482 0.259241 0.965813i \(-0.416528\pi\)
0.259241 + 0.965813i \(0.416528\pi\)
\(98\) −0.876141 −0.0885036
\(99\) −0.284129 −0.0285560
\(100\) −1.23238 −0.123238
\(101\) 17.4258 1.73393 0.866964 0.498370i \(-0.166068\pi\)
0.866964 + 0.498370i \(0.166068\pi\)
\(102\) −2.07369 −0.205326
\(103\) 15.4685 1.52416 0.762080 0.647483i \(-0.224178\pi\)
0.762080 + 0.647483i \(0.224178\pi\)
\(104\) −16.1801 −1.58659
\(105\) −0.718988 −0.0701661
\(106\) −5.97849 −0.580682
\(107\) −14.2478 −1.37739 −0.688695 0.725051i \(-0.741816\pi\)
−0.688695 + 0.725051i \(0.741816\pi\)
\(108\) 4.85834 0.467494
\(109\) −11.9739 −1.14689 −0.573445 0.819244i \(-0.694393\pi\)
−0.573445 + 0.819244i \(0.694393\pi\)
\(110\) −0.100254 −0.00955886
\(111\) −0.718988 −0.0682434
\(112\) 0.0164961 0.00155874
\(113\) 9.80238 0.922130 0.461065 0.887366i \(-0.347467\pi\)
0.461065 + 0.887366i \(0.347467\pi\)
\(114\) 0.196917 0.0184429
\(115\) 9.00051 0.839302
\(116\) −11.3140 −1.05048
\(117\) 14.1864 1.31153
\(118\) 6.79879 0.625879
\(119\) −3.29191 −0.301769
\(120\) 2.03619 0.185878
\(121\) −10.9869 −0.998810
\(122\) 11.1918 1.01326
\(123\) 4.77523 0.430568
\(124\) −2.66244 −0.239095
\(125\) 1.00000 0.0894427
\(126\) −2.17551 −0.193810
\(127\) −8.49956 −0.754214 −0.377107 0.926170i \(-0.623081\pi\)
−0.377107 + 0.926170i \(0.623081\pi\)
\(128\) 6.93351 0.612841
\(129\) −0.698423 −0.0614927
\(130\) 5.00564 0.439023
\(131\) 6.06293 0.529721 0.264860 0.964287i \(-0.414674\pi\)
0.264860 + 0.964287i \(0.414674\pi\)
\(132\) −0.101390 −0.00882484
\(133\) 0.312598 0.0271057
\(134\) −0.578128 −0.0499427
\(135\) −3.94225 −0.339295
\(136\) 9.32276 0.799420
\(137\) 11.6680 0.996868 0.498434 0.866928i \(-0.333909\pi\)
0.498434 + 0.866928i \(0.333909\pi\)
\(138\) −5.66974 −0.482640
\(139\) −7.16747 −0.607937 −0.303968 0.952682i \(-0.598312\pi\)
−0.303968 + 0.952682i \(0.598312\pi\)
\(140\) 1.23238 0.104155
\(141\) −0.439440 −0.0370075
\(142\) −13.2823 −1.11463
\(143\) −0.653753 −0.0546696
\(144\) 0.0409608 0.00341340
\(145\) 9.18065 0.762412
\(146\) −8.93169 −0.739192
\(147\) 0.718988 0.0593012
\(148\) 1.23238 0.101301
\(149\) −16.0189 −1.31232 −0.656159 0.754622i \(-0.727820\pi\)
−0.656159 + 0.754622i \(0.727820\pi\)
\(150\) −0.629935 −0.0514340
\(151\) 18.1940 1.48061 0.740303 0.672273i \(-0.234682\pi\)
0.740303 + 0.672273i \(0.234682\pi\)
\(152\) −0.885283 −0.0718060
\(153\) −8.17401 −0.660829
\(154\) 0.100254 0.00807871
\(155\) 2.16041 0.173529
\(156\) 5.06233 0.405311
\(157\) −13.2990 −1.06138 −0.530689 0.847567i \(-0.678067\pi\)
−0.530689 + 0.847567i \(0.678067\pi\)
\(158\) −9.95414 −0.791909
\(159\) 4.90613 0.389081
\(160\) −5.64958 −0.446639
\(161\) −9.00051 −0.709340
\(162\) −4.04316 −0.317661
\(163\) 4.21116 0.329844 0.164922 0.986307i \(-0.447263\pi\)
0.164922 + 0.986307i \(0.447263\pi\)
\(164\) −8.18494 −0.639136
\(165\) 0.0822717 0.00640484
\(166\) −11.4852 −0.891427
\(167\) 23.3506 1.80692 0.903461 0.428670i \(-0.141018\pi\)
0.903461 + 0.428670i \(0.141018\pi\)
\(168\) −2.03619 −0.157095
\(169\) 19.6415 1.51089
\(170\) −2.88418 −0.221207
\(171\) 0.776198 0.0593574
\(172\) 1.19713 0.0912800
\(173\) −19.6976 −1.49758 −0.748791 0.662806i \(-0.769365\pi\)
−0.748791 + 0.662806i \(0.769365\pi\)
\(174\) −5.78322 −0.438425
\(175\) −1.00000 −0.0755929
\(176\) −0.00188760 −0.000142283 0
\(177\) −5.57929 −0.419365
\(178\) 8.69409 0.651650
\(179\) −1.22265 −0.0913848 −0.0456924 0.998956i \(-0.514549\pi\)
−0.0456924 + 0.998956i \(0.514549\pi\)
\(180\) 3.06006 0.228083
\(181\) 2.81754 0.209426 0.104713 0.994502i \(-0.466608\pi\)
0.104713 + 0.994502i \(0.466608\pi\)
\(182\) −5.00564 −0.371043
\(183\) −9.18435 −0.678927
\(184\) 25.4896 1.87912
\(185\) −1.00000 −0.0735215
\(186\) −1.36092 −0.0997876
\(187\) 0.376684 0.0275458
\(188\) 0.753218 0.0549341
\(189\) 3.94225 0.286757
\(190\) 0.273880 0.0198693
\(191\) −20.6219 −1.49215 −0.746074 0.665863i \(-0.768064\pi\)
−0.746074 + 0.665863i \(0.768064\pi\)
\(192\) 3.58259 0.258551
\(193\) 5.96948 0.429693 0.214846 0.976648i \(-0.431075\pi\)
0.214846 + 0.976648i \(0.431075\pi\)
\(194\) −4.47398 −0.321213
\(195\) −4.10778 −0.294164
\(196\) −1.23238 −0.0880269
\(197\) 19.5027 1.38951 0.694756 0.719245i \(-0.255512\pi\)
0.694756 + 0.719245i \(0.255512\pi\)
\(198\) 0.248937 0.0176912
\(199\) −5.87440 −0.416425 −0.208213 0.978084i \(-0.566765\pi\)
−0.208213 + 0.978084i \(0.566765\pi\)
\(200\) 2.83202 0.200254
\(201\) 0.474430 0.0334637
\(202\) −15.2674 −1.07421
\(203\) −9.18065 −0.644355
\(204\) −2.91685 −0.204220
\(205\) 6.64159 0.463869
\(206\) −13.5526 −0.944256
\(207\) −22.3488 −1.55335
\(208\) 0.0942468 0.00653484
\(209\) −0.0357696 −0.00247424
\(210\) 0.629935 0.0434697
\(211\) 0.0805448 0.00554493 0.00277247 0.999996i \(-0.499117\pi\)
0.00277247 + 0.999996i \(0.499117\pi\)
\(212\) −8.40931 −0.577554
\(213\) 10.8999 0.746849
\(214\) 12.4831 0.853328
\(215\) −0.971397 −0.0662487
\(216\) −11.1645 −0.759650
\(217\) −2.16041 −0.146659
\(218\) 10.4908 0.710527
\(219\) 7.32962 0.495290
\(220\) −0.141017 −0.00950737
\(221\) −18.8076 −1.26514
\(222\) 0.629935 0.0422785
\(223\) 5.44656 0.364729 0.182364 0.983231i \(-0.441625\pi\)
0.182364 + 0.983231i \(0.441625\pi\)
\(224\) 5.64958 0.377479
\(225\) −2.48306 −0.165537
\(226\) −8.58827 −0.571283
\(227\) −6.41573 −0.425827 −0.212913 0.977071i \(-0.568295\pi\)
−0.212913 + 0.977071i \(0.568295\pi\)
\(228\) 0.276982 0.0183436
\(229\) −8.32658 −0.550236 −0.275118 0.961410i \(-0.588717\pi\)
−0.275118 + 0.961410i \(0.588717\pi\)
\(230\) −7.88572 −0.519969
\(231\) −0.0822717 −0.00541308
\(232\) 25.9998 1.70697
\(233\) 17.5713 1.15114 0.575568 0.817754i \(-0.304781\pi\)
0.575568 + 0.817754i \(0.304781\pi\)
\(234\) −12.4293 −0.812527
\(235\) −0.611192 −0.0398697
\(236\) 9.56314 0.622507
\(237\) 8.16867 0.530612
\(238\) 2.88418 0.186954
\(239\) −23.0891 −1.49351 −0.746754 0.665100i \(-0.768389\pi\)
−0.746754 + 0.665100i \(0.768389\pi\)
\(240\) −0.0118605 −0.000765593 0
\(241\) −0.970127 −0.0624914 −0.0312457 0.999512i \(-0.509947\pi\)
−0.0312457 + 0.999512i \(0.509947\pi\)
\(242\) 9.62608 0.618788
\(243\) 15.1447 0.971533
\(244\) 15.7424 1.00780
\(245\) 1.00000 0.0638877
\(246\) −4.18377 −0.266748
\(247\) 1.78596 0.113638
\(248\) 6.11834 0.388515
\(249\) 9.42513 0.597293
\(250\) −0.876141 −0.0554120
\(251\) 2.18434 0.137874 0.0689371 0.997621i \(-0.478039\pi\)
0.0689371 + 0.997621i \(0.478039\pi\)
\(252\) −3.06006 −0.192766
\(253\) 1.02990 0.0647493
\(254\) 7.44682 0.467255
\(255\) 2.36685 0.148218
\(256\) −16.0404 −1.00252
\(257\) 15.3430 0.957073 0.478536 0.878068i \(-0.341167\pi\)
0.478536 + 0.878068i \(0.341167\pi\)
\(258\) 0.611917 0.0380963
\(259\) 1.00000 0.0621370
\(260\) 7.04091 0.436658
\(261\) −22.7961 −1.41104
\(262\) −5.31198 −0.328175
\(263\) −16.8229 −1.03734 −0.518672 0.854973i \(-0.673574\pi\)
−0.518672 + 0.854973i \(0.673574\pi\)
\(264\) 0.232995 0.0143398
\(265\) 6.82366 0.419174
\(266\) −0.273880 −0.0167927
\(267\) −7.13464 −0.436633
\(268\) −0.813192 −0.0496736
\(269\) 11.5361 0.703370 0.351685 0.936118i \(-0.385609\pi\)
0.351685 + 0.936118i \(0.385609\pi\)
\(270\) 3.45397 0.210202
\(271\) −8.15653 −0.495474 −0.247737 0.968827i \(-0.579687\pi\)
−0.247737 + 0.968827i \(0.579687\pi\)
\(272\) −0.0543038 −0.00329265
\(273\) 4.10778 0.248614
\(274\) −10.2229 −0.617585
\(275\) 0.114427 0.00690021
\(276\) −7.97503 −0.480040
\(277\) 17.8545 1.07277 0.536387 0.843972i \(-0.319789\pi\)
0.536387 + 0.843972i \(0.319789\pi\)
\(278\) 6.27972 0.376632
\(279\) −5.36443 −0.321160
\(280\) −2.83202 −0.169245
\(281\) −14.9418 −0.891351 −0.445675 0.895195i \(-0.647036\pi\)
−0.445675 + 0.895195i \(0.647036\pi\)
\(282\) 0.385011 0.0229271
\(283\) −21.7390 −1.29225 −0.646124 0.763232i \(-0.723611\pi\)
−0.646124 + 0.763232i \(0.723611\pi\)
\(284\) −18.6829 −1.10862
\(285\) −0.224754 −0.0133133
\(286\) 0.572780 0.0338692
\(287\) −6.64159 −0.392041
\(288\) 14.0282 0.826622
\(289\) −6.16330 −0.362547
\(290\) −8.04355 −0.472333
\(291\) 3.67148 0.215226
\(292\) −12.5633 −0.735210
\(293\) −13.5247 −0.790120 −0.395060 0.918655i \(-0.629276\pi\)
−0.395060 + 0.918655i \(0.629276\pi\)
\(294\) −0.629935 −0.0367386
\(295\) −7.75992 −0.451800
\(296\) −2.83202 −0.164608
\(297\) −0.451100 −0.0261755
\(298\) 14.0348 0.813015
\(299\) −51.4224 −2.97383
\(300\) −0.886064 −0.0511569
\(301\) 0.971397 0.0559904
\(302\) −15.9405 −0.917273
\(303\) 12.5289 0.719768
\(304\) 0.00515665 0.000295754 0
\(305\) −12.7740 −0.731436
\(306\) 7.16158 0.409401
\(307\) −16.5649 −0.945410 −0.472705 0.881221i \(-0.656722\pi\)
−0.472705 + 0.881221i \(0.656722\pi\)
\(308\) 0.141017 0.00803519
\(309\) 11.1217 0.632691
\(310\) −1.89283 −0.107505
\(311\) −25.0292 −1.41927 −0.709637 0.704567i \(-0.751141\pi\)
−0.709637 + 0.704567i \(0.751141\pi\)
\(312\) −11.6333 −0.658606
\(313\) 19.5353 1.10420 0.552101 0.833777i \(-0.313826\pi\)
0.552101 + 0.833777i \(0.313826\pi\)
\(314\) 11.6518 0.657551
\(315\) 2.48306 0.139904
\(316\) −14.0015 −0.787643
\(317\) 18.3922 1.03301 0.516503 0.856285i \(-0.327233\pi\)
0.516503 + 0.856285i \(0.327233\pi\)
\(318\) −4.29846 −0.241046
\(319\) 1.05051 0.0588175
\(320\) 4.98283 0.278548
\(321\) −10.2440 −0.571766
\(322\) 7.88572 0.439454
\(323\) −1.02905 −0.0572576
\(324\) −5.68709 −0.315949
\(325\) −5.71328 −0.316916
\(326\) −3.68957 −0.204347
\(327\) −8.60908 −0.476083
\(328\) 18.8091 1.03856
\(329\) 0.611192 0.0336961
\(330\) −0.0720816 −0.00396796
\(331\) −18.7753 −1.03198 −0.515992 0.856593i \(-0.672577\pi\)
−0.515992 + 0.856593i \(0.672577\pi\)
\(332\) −16.1551 −0.886624
\(333\) 2.48306 0.136071
\(334\) −20.4584 −1.11943
\(335\) 0.659857 0.0360518
\(336\) 0.0118605 0.000647044 0
\(337\) 34.3589 1.87165 0.935824 0.352468i \(-0.114658\pi\)
0.935824 + 0.352468i \(0.114658\pi\)
\(338\) −17.2087 −0.936032
\(339\) 7.04779 0.382784
\(340\) −4.05688 −0.220015
\(341\) 0.247210 0.0133872
\(342\) −0.680059 −0.0367734
\(343\) −1.00000 −0.0539949
\(344\) −2.75101 −0.148325
\(345\) 6.47126 0.348401
\(346\) 17.2579 0.927790
\(347\) 9.88104 0.530442 0.265221 0.964188i \(-0.414555\pi\)
0.265221 + 0.964188i \(0.414555\pi\)
\(348\) −8.13465 −0.436063
\(349\) 5.57413 0.298376 0.149188 0.988809i \(-0.452334\pi\)
0.149188 + 0.988809i \(0.452334\pi\)
\(350\) 0.876141 0.0468317
\(351\) 22.5232 1.20220
\(352\) −0.646465 −0.0344567
\(353\) 35.3560 1.88181 0.940904 0.338672i \(-0.109978\pi\)
0.940904 + 0.338672i \(0.109978\pi\)
\(354\) 4.88825 0.259807
\(355\) 15.1600 0.804612
\(356\) 12.2291 0.648139
\(357\) −2.36685 −0.125267
\(358\) 1.07121 0.0566152
\(359\) −16.9427 −0.894201 −0.447101 0.894484i \(-0.647543\pi\)
−0.447101 + 0.894484i \(0.647543\pi\)
\(360\) −7.03206 −0.370622
\(361\) −18.9023 −0.994857
\(362\) −2.46856 −0.129745
\(363\) −7.89946 −0.414614
\(364\) −7.04091 −0.369044
\(365\) 10.1944 0.533597
\(366\) 8.04679 0.420612
\(367\) 7.53502 0.393325 0.196662 0.980471i \(-0.436990\pi\)
0.196662 + 0.980471i \(0.436990\pi\)
\(368\) −0.148473 −0.00773971
\(369\) −16.4914 −0.858510
\(370\) 0.876141 0.0455484
\(371\) −6.82366 −0.354267
\(372\) −1.91427 −0.0992501
\(373\) −22.7257 −1.17669 −0.588347 0.808609i \(-0.700221\pi\)
−0.588347 + 0.808609i \(0.700221\pi\)
\(374\) −0.330028 −0.0170654
\(375\) 0.718988 0.0371284
\(376\) −1.73091 −0.0892647
\(377\) −52.4516 −2.70139
\(378\) −3.45397 −0.177653
\(379\) 22.4081 1.15102 0.575512 0.817793i \(-0.304803\pi\)
0.575512 + 0.817793i \(0.304803\pi\)
\(380\) 0.385238 0.0197623
\(381\) −6.11109 −0.313080
\(382\) 18.0677 0.924424
\(383\) −24.0313 −1.22794 −0.613971 0.789329i \(-0.710429\pi\)
−0.613971 + 0.789329i \(0.710429\pi\)
\(384\) 4.98511 0.254395
\(385\) −0.114427 −0.00583174
\(386\) −5.23011 −0.266206
\(387\) 2.41203 0.122611
\(388\) −6.29308 −0.319483
\(389\) −17.1547 −0.869776 −0.434888 0.900485i \(-0.643212\pi\)
−0.434888 + 0.900485i \(0.643212\pi\)
\(390\) 3.59899 0.182242
\(391\) 29.6289 1.49840
\(392\) 2.83202 0.143039
\(393\) 4.35918 0.219891
\(394\) −17.0872 −0.860839
\(395\) 11.3613 0.571651
\(396\) 0.350153 0.0175959
\(397\) −23.6825 −1.18859 −0.594294 0.804248i \(-0.702568\pi\)
−0.594294 + 0.804248i \(0.702568\pi\)
\(398\) 5.14681 0.257986
\(399\) 0.224754 0.0112518
\(400\) −0.0164961 −0.000824806 0
\(401\) −30.8739 −1.54177 −0.770885 0.636974i \(-0.780186\pi\)
−0.770885 + 0.636974i \(0.780186\pi\)
\(402\) −0.415667 −0.0207316
\(403\) −12.3430 −0.614851
\(404\) −21.4751 −1.06843
\(405\) 4.61473 0.229308
\(406\) 8.04355 0.399195
\(407\) −0.114427 −0.00567193
\(408\) 6.70296 0.331846
\(409\) 19.4230 0.960403 0.480202 0.877158i \(-0.340563\pi\)
0.480202 + 0.877158i \(0.340563\pi\)
\(410\) −5.81897 −0.287378
\(411\) 8.38919 0.413808
\(412\) −19.0631 −0.939170
\(413\) 7.75992 0.381841
\(414\) 19.5807 0.962338
\(415\) 13.1089 0.643489
\(416\) 32.2776 1.58254
\(417\) −5.15333 −0.252360
\(418\) 0.0313393 0.00153285
\(419\) −26.8830 −1.31332 −0.656659 0.754187i \(-0.728031\pi\)
−0.656659 + 0.754187i \(0.728031\pi\)
\(420\) 0.886064 0.0432355
\(421\) 22.0634 1.07530 0.537652 0.843167i \(-0.319311\pi\)
0.537652 + 0.843167i \(0.319311\pi\)
\(422\) −0.0705687 −0.00343523
\(423\) 1.51762 0.0737894
\(424\) 19.3247 0.938491
\(425\) 3.29191 0.159681
\(426\) −9.54985 −0.462692
\(427\) 12.7740 0.618177
\(428\) 17.5587 0.848731
\(429\) −0.470041 −0.0226938
\(430\) 0.851081 0.0410428
\(431\) 19.0831 0.919200 0.459600 0.888126i \(-0.347993\pi\)
0.459600 + 0.888126i \(0.347993\pi\)
\(432\) 0.0650319 0.00312885
\(433\) −5.29735 −0.254574 −0.127287 0.991866i \(-0.540627\pi\)
−0.127287 + 0.991866i \(0.540627\pi\)
\(434\) 1.89283 0.0908587
\(435\) 6.60078 0.316483
\(436\) 14.7563 0.706699
\(437\) −2.81354 −0.134590
\(438\) −6.42178 −0.306845
\(439\) −29.4245 −1.40435 −0.702177 0.712002i \(-0.747789\pi\)
−0.702177 + 0.712002i \(0.747789\pi\)
\(440\) 0.324059 0.0154489
\(441\) −2.48306 −0.118241
\(442\) 16.4781 0.783785
\(443\) 22.0475 1.04751 0.523754 0.851869i \(-0.324531\pi\)
0.523754 + 0.851869i \(0.324531\pi\)
\(444\) 0.886064 0.0420507
\(445\) −9.92316 −0.470403
\(446\) −4.77196 −0.225959
\(447\) −11.5174 −0.544754
\(448\) −4.98283 −0.235416
\(449\) 31.8846 1.50473 0.752363 0.658748i \(-0.228914\pi\)
0.752363 + 0.658748i \(0.228914\pi\)
\(450\) 2.17551 0.102554
\(451\) 0.759977 0.0357859
\(452\) −12.0802 −0.568206
\(453\) 13.0813 0.614612
\(454\) 5.62108 0.263811
\(455\) 5.71328 0.267842
\(456\) −0.636508 −0.0298072
\(457\) 0.803601 0.0375909 0.0187954 0.999823i \(-0.494017\pi\)
0.0187954 + 0.999823i \(0.494017\pi\)
\(458\) 7.29526 0.340885
\(459\) −12.9776 −0.605741
\(460\) −11.0920 −0.517168
\(461\) 0.311372 0.0145021 0.00725103 0.999974i \(-0.497692\pi\)
0.00725103 + 0.999974i \(0.497692\pi\)
\(462\) 0.0720816 0.00335354
\(463\) 3.53814 0.164431 0.0822156 0.996615i \(-0.473800\pi\)
0.0822156 + 0.996615i \(0.473800\pi\)
\(464\) −0.151445 −0.00703066
\(465\) 1.55331 0.0720332
\(466\) −15.3950 −0.713159
\(467\) −16.1538 −0.747510 −0.373755 0.927528i \(-0.621930\pi\)
−0.373755 + 0.927528i \(0.621930\pi\)
\(468\) −17.4830 −0.808150
\(469\) −0.659857 −0.0304694
\(470\) 0.535490 0.0247003
\(471\) −9.56185 −0.440587
\(472\) −21.9762 −1.01154
\(473\) −0.111154 −0.00511087
\(474\) −7.15691 −0.328728
\(475\) −0.312598 −0.0143430
\(476\) 4.05688 0.185947
\(477\) −16.9435 −0.775790
\(478\) 20.2293 0.925266
\(479\) −15.8324 −0.723400 −0.361700 0.932294i \(-0.617804\pi\)
−0.361700 + 0.932294i \(0.617804\pi\)
\(480\) −4.06199 −0.185403
\(481\) 5.71328 0.260503
\(482\) 0.849969 0.0387150
\(483\) −6.47126 −0.294453
\(484\) 13.5400 0.615455
\(485\) 5.10646 0.231872
\(486\) −13.2689 −0.601889
\(487\) −31.7753 −1.43988 −0.719938 0.694038i \(-0.755830\pi\)
−0.719938 + 0.694038i \(0.755830\pi\)
\(488\) −36.1762 −1.63762
\(489\) 3.02778 0.136921
\(490\) −0.876141 −0.0395800
\(491\) −24.0367 −1.08476 −0.542380 0.840133i \(-0.682477\pi\)
−0.542380 + 0.840133i \(0.682477\pi\)
\(492\) −5.88487 −0.265311
\(493\) 30.2219 1.36113
\(494\) −1.56475 −0.0704015
\(495\) −0.284129 −0.0127706
\(496\) −0.0356384 −0.00160021
\(497\) −15.1600 −0.680021
\(498\) −8.25774 −0.370038
\(499\) 20.4281 0.914486 0.457243 0.889342i \(-0.348837\pi\)
0.457243 + 0.889342i \(0.348837\pi\)
\(500\) −1.23238 −0.0551135
\(501\) 16.7888 0.750068
\(502\) −1.91379 −0.0854165
\(503\) 18.4272 0.821629 0.410814 0.911719i \(-0.365244\pi\)
0.410814 + 0.911719i \(0.365244\pi\)
\(504\) 7.03206 0.313233
\(505\) 17.4258 0.775436
\(506\) −0.902339 −0.0401139
\(507\) 14.1220 0.627181
\(508\) 10.4747 0.464738
\(509\) 40.8471 1.81052 0.905258 0.424862i \(-0.139677\pi\)
0.905258 + 0.424862i \(0.139677\pi\)
\(510\) −2.07369 −0.0918247
\(511\) −10.1944 −0.450972
\(512\) 0.186631 0.00824799
\(513\) 1.23234 0.0544092
\(514\) −13.4427 −0.592931
\(515\) 15.4685 0.681625
\(516\) 0.860720 0.0378911
\(517\) −0.0699368 −0.00307582
\(518\) −0.876141 −0.0384954
\(519\) −14.1624 −0.621658
\(520\) −16.1801 −0.709544
\(521\) −39.1440 −1.71493 −0.857465 0.514543i \(-0.827962\pi\)
−0.857465 + 0.514543i \(0.827962\pi\)
\(522\) 19.9726 0.874176
\(523\) −14.5951 −0.638200 −0.319100 0.947721i \(-0.603381\pi\)
−0.319100 + 0.947721i \(0.603381\pi\)
\(524\) −7.47181 −0.326408
\(525\) −0.718988 −0.0313792
\(526\) 14.7392 0.642662
\(527\) 7.11190 0.309799
\(528\) −0.00135716 −5.90629e−5 0
\(529\) 58.0092 2.52214
\(530\) −5.97849 −0.259689
\(531\) 19.2683 0.836174
\(532\) −0.385238 −0.0167022
\(533\) −37.9452 −1.64359
\(534\) 6.25095 0.270505
\(535\) −14.2478 −0.615988
\(536\) 1.86873 0.0807167
\(537\) −0.879068 −0.0379346
\(538\) −10.1073 −0.435756
\(539\) 0.114427 0.00492872
\(540\) 4.85834 0.209070
\(541\) 22.4283 0.964269 0.482134 0.876097i \(-0.339862\pi\)
0.482134 + 0.876097i \(0.339862\pi\)
\(542\) 7.14627 0.306959
\(543\) 2.02578 0.0869344
\(544\) −18.5979 −0.797380
\(545\) −11.9739 −0.512904
\(546\) −3.59899 −0.154023
\(547\) 23.6670 1.01193 0.505963 0.862555i \(-0.331137\pi\)
0.505963 + 0.862555i \(0.331137\pi\)
\(548\) −14.3794 −0.614259
\(549\) 31.7185 1.35371
\(550\) −0.100254 −0.00427485
\(551\) −2.86985 −0.122260
\(552\) 18.3267 0.780038
\(553\) −11.3613 −0.483133
\(554\) −15.6431 −0.664611
\(555\) −0.718988 −0.0305194
\(556\) 8.83302 0.374604
\(557\) 22.7481 0.963866 0.481933 0.876208i \(-0.339935\pi\)
0.481933 + 0.876208i \(0.339935\pi\)
\(558\) 4.70000 0.198967
\(559\) 5.54986 0.234734
\(560\) 0.0164961 0.000697088 0
\(561\) 0.270831 0.0114345
\(562\) 13.0911 0.552215
\(563\) −23.2077 −0.978087 −0.489044 0.872259i \(-0.662654\pi\)
−0.489044 + 0.872259i \(0.662654\pi\)
\(564\) 0.541555 0.0228036
\(565\) 9.80238 0.412389
\(566\) 19.0464 0.800581
\(567\) −4.61473 −0.193801
\(568\) 42.9335 1.80145
\(569\) 16.2779 0.682406 0.341203 0.939990i \(-0.389166\pi\)
0.341203 + 0.939990i \(0.389166\pi\)
\(570\) 0.196917 0.00824793
\(571\) 31.5538 1.32048 0.660242 0.751053i \(-0.270454\pi\)
0.660242 + 0.751053i \(0.270454\pi\)
\(572\) 0.805670 0.0336867
\(573\) −14.8269 −0.619403
\(574\) 5.81897 0.242879
\(575\) 9.00051 0.375347
\(576\) −12.3726 −0.515527
\(577\) 21.3388 0.888347 0.444174 0.895941i \(-0.353497\pi\)
0.444174 + 0.895941i \(0.353497\pi\)
\(578\) 5.39993 0.224607
\(579\) 4.29199 0.178369
\(580\) −11.3140 −0.469789
\(581\) −13.1089 −0.543848
\(582\) −3.21674 −0.133338
\(583\) 0.780810 0.0323379
\(584\) 28.8706 1.19467
\(585\) 14.1864 0.586535
\(586\) 11.8495 0.489499
\(587\) 3.57151 0.147412 0.0737059 0.997280i \(-0.476517\pi\)
0.0737059 + 0.997280i \(0.476517\pi\)
\(588\) −0.886064 −0.0365407
\(589\) −0.675341 −0.0278270
\(590\) 6.79879 0.279902
\(591\) 14.0222 0.576798
\(592\) 0.0164961 0.000677986 0
\(593\) 26.3711 1.08293 0.541467 0.840722i \(-0.317869\pi\)
0.541467 + 0.840722i \(0.317869\pi\)
\(594\) 0.395227 0.0162164
\(595\) −3.29191 −0.134955
\(596\) 19.7413 0.808635
\(597\) −4.22363 −0.172861
\(598\) 45.0533 1.84237
\(599\) 26.1845 1.06987 0.534934 0.844894i \(-0.320336\pi\)
0.534934 + 0.844894i \(0.320336\pi\)
\(600\) 2.03619 0.0831270
\(601\) −16.1387 −0.658309 −0.329155 0.944276i \(-0.606764\pi\)
−0.329155 + 0.944276i \(0.606764\pi\)
\(602\) −0.851081 −0.0346875
\(603\) −1.63846 −0.0667233
\(604\) −22.4218 −0.912332
\(605\) −10.9869 −0.446681
\(606\) −10.9771 −0.445914
\(607\) −30.1568 −1.22403 −0.612014 0.790847i \(-0.709640\pi\)
−0.612014 + 0.790847i \(0.709640\pi\)
\(608\) 1.76605 0.0716227
\(609\) −6.60078 −0.267477
\(610\) 11.1918 0.453143
\(611\) 3.49191 0.141267
\(612\) 10.0735 0.407195
\(613\) −38.4084 −1.55130 −0.775651 0.631163i \(-0.782578\pi\)
−0.775651 + 0.631163i \(0.782578\pi\)
\(614\) 14.5132 0.585705
\(615\) 4.77523 0.192556
\(616\) −0.324059 −0.0130567
\(617\) −23.1570 −0.932264 −0.466132 0.884715i \(-0.654353\pi\)
−0.466132 + 0.884715i \(0.654353\pi\)
\(618\) −9.74418 −0.391969
\(619\) 24.4919 0.984411 0.492205 0.870479i \(-0.336191\pi\)
0.492205 + 0.870479i \(0.336191\pi\)
\(620\) −2.66244 −0.106926
\(621\) −35.4823 −1.42386
\(622\) 21.9291 0.879277
\(623\) 9.92316 0.397563
\(624\) 0.0677624 0.00271267
\(625\) 1.00000 0.0400000
\(626\) −17.1157 −0.684081
\(627\) −0.0257180 −0.00102708
\(628\) 16.3894 0.654009
\(629\) −3.29191 −0.131257
\(630\) −2.17551 −0.0866743
\(631\) −9.15512 −0.364459 −0.182230 0.983256i \(-0.558331\pi\)
−0.182230 + 0.983256i \(0.558331\pi\)
\(632\) 32.1755 1.27987
\(633\) 0.0579108 0.00230175
\(634\) −16.1141 −0.639974
\(635\) −8.49956 −0.337295
\(636\) −6.04620 −0.239747
\(637\) −5.71328 −0.226368
\(638\) −0.920399 −0.0364389
\(639\) −37.6432 −1.48914
\(640\) 6.93351 0.274071
\(641\) 15.0890 0.595979 0.297989 0.954569i \(-0.403684\pi\)
0.297989 + 0.954569i \(0.403684\pi\)
\(642\) 8.97522 0.354223
\(643\) −16.2653 −0.641441 −0.320720 0.947174i \(-0.603925\pi\)
−0.320720 + 0.947174i \(0.603925\pi\)
\(644\) 11.0920 0.437087
\(645\) −0.698423 −0.0275004
\(646\) 0.901589 0.0354726
\(647\) 33.2026 1.30533 0.652663 0.757648i \(-0.273652\pi\)
0.652663 + 0.757648i \(0.273652\pi\)
\(648\) 13.0690 0.513399
\(649\) −0.887944 −0.0348549
\(650\) 5.00564 0.196337
\(651\) −1.55331 −0.0608791
\(652\) −5.18974 −0.203246
\(653\) 16.0514 0.628140 0.314070 0.949400i \(-0.398307\pi\)
0.314070 + 0.949400i \(0.398307\pi\)
\(654\) 7.54277 0.294946
\(655\) 6.06293 0.236898
\(656\) −0.109560 −0.00427761
\(657\) −25.3131 −0.987560
\(658\) −0.535490 −0.0208756
\(659\) −17.9712 −0.700060 −0.350030 0.936738i \(-0.613829\pi\)
−0.350030 + 0.936738i \(0.613829\pi\)
\(660\) −0.101390 −0.00394659
\(661\) −2.12294 −0.0825727 −0.0412863 0.999147i \(-0.513146\pi\)
−0.0412863 + 0.999147i \(0.513146\pi\)
\(662\) 16.4498 0.639341
\(663\) −13.5225 −0.525169
\(664\) 37.1246 1.44071
\(665\) 0.312598 0.0121220
\(666\) −2.17551 −0.0842992
\(667\) 82.6305 3.19947
\(668\) −28.7767 −1.11340
\(669\) 3.91601 0.151402
\(670\) −0.578128 −0.0223350
\(671\) −1.46169 −0.0564279
\(672\) 4.06199 0.156694
\(673\) 38.6333 1.48920 0.744601 0.667509i \(-0.232640\pi\)
0.744601 + 0.667509i \(0.232640\pi\)
\(674\) −30.1032 −1.15953
\(675\) −3.94225 −0.151737
\(676\) −24.2057 −0.930990
\(677\) 35.6725 1.37101 0.685503 0.728070i \(-0.259583\pi\)
0.685503 + 0.728070i \(0.259583\pi\)
\(678\) −6.17486 −0.237144
\(679\) −5.10646 −0.195968
\(680\) 9.32276 0.357512
\(681\) −4.61283 −0.176764
\(682\) −0.216591 −0.00829369
\(683\) 6.22776 0.238299 0.119149 0.992876i \(-0.461983\pi\)
0.119149 + 0.992876i \(0.461983\pi\)
\(684\) −0.956568 −0.0365753
\(685\) 11.6680 0.445813
\(686\) 0.876141 0.0334512
\(687\) −5.98672 −0.228408
\(688\) 0.0160243 0.000610920 0
\(689\) −38.9854 −1.48523
\(690\) −5.66974 −0.215843
\(691\) −15.9806 −0.607932 −0.303966 0.952683i \(-0.598311\pi\)
−0.303966 + 0.952683i \(0.598311\pi\)
\(692\) 24.2749 0.922792
\(693\) 0.284129 0.0107932
\(694\) −8.65719 −0.328622
\(695\) −7.16747 −0.271878
\(696\) 18.6935 0.708577
\(697\) 21.8635 0.828141
\(698\) −4.88373 −0.184852
\(699\) 12.6336 0.477846
\(700\) 1.23238 0.0465794
\(701\) 22.0812 0.833996 0.416998 0.908907i \(-0.363082\pi\)
0.416998 + 0.908907i \(0.363082\pi\)
\(702\) −19.7335 −0.744793
\(703\) 0.312598 0.0117899
\(704\) 0.570170 0.0214891
\(705\) −0.439440 −0.0165503
\(706\) −30.9768 −1.16583
\(707\) −17.4258 −0.655363
\(708\) 6.87579 0.258408
\(709\) 7.57960 0.284658 0.142329 0.989819i \(-0.454541\pi\)
0.142329 + 0.989819i \(0.454541\pi\)
\(710\) −13.2823 −0.498477
\(711\) −28.2108 −1.05799
\(712\) −28.1026 −1.05319
\(713\) 19.4448 0.728215
\(714\) 2.07369 0.0776060
\(715\) −0.653753 −0.0244490
\(716\) 1.50676 0.0563102
\(717\) −16.6008 −0.619967
\(718\) 14.8442 0.553981
\(719\) 35.4884 1.32349 0.661747 0.749727i \(-0.269815\pi\)
0.661747 + 0.749727i \(0.269815\pi\)
\(720\) 0.0409608 0.00152652
\(721\) −15.4685 −0.576079
\(722\) 16.5611 0.616339
\(723\) −0.697510 −0.0259407
\(724\) −3.47227 −0.129046
\(725\) 9.18065 0.340961
\(726\) 6.92104 0.256864
\(727\) 45.6137 1.69172 0.845858 0.533408i \(-0.179089\pi\)
0.845858 + 0.533408i \(0.179089\pi\)
\(728\) 16.1801 0.599675
\(729\) −2.95534 −0.109457
\(730\) −8.93169 −0.330577
\(731\) −3.19775 −0.118273
\(732\) 11.3186 0.418346
\(733\) −48.7585 −1.80094 −0.900469 0.434921i \(-0.856776\pi\)
−0.900469 + 0.434921i \(0.856776\pi\)
\(734\) −6.60174 −0.243675
\(735\) 0.718988 0.0265203
\(736\) −50.8491 −1.87432
\(737\) 0.0755055 0.00278128
\(738\) 14.4488 0.531869
\(739\) 29.7412 1.09405 0.547023 0.837118i \(-0.315761\pi\)
0.547023 + 0.837118i \(0.315761\pi\)
\(740\) 1.23238 0.0453031
\(741\) 1.28408 0.0471720
\(742\) 5.97849 0.219477
\(743\) −17.4951 −0.641835 −0.320917 0.947107i \(-0.603991\pi\)
−0.320917 + 0.947107i \(0.603991\pi\)
\(744\) 4.39901 0.161276
\(745\) −16.0189 −0.586887
\(746\) 19.9110 0.728992
\(747\) −32.5501 −1.19094
\(748\) −0.464216 −0.0169734
\(749\) 14.2478 0.520604
\(750\) −0.629935 −0.0230020
\(751\) −7.80252 −0.284718 −0.142359 0.989815i \(-0.545469\pi\)
−0.142359 + 0.989815i \(0.545469\pi\)
\(752\) 0.0100823 0.000367663 0
\(753\) 1.57051 0.0572327
\(754\) 45.9550 1.67358
\(755\) 18.1940 0.662147
\(756\) −4.85834 −0.176696
\(757\) 18.2138 0.661993 0.330996 0.943632i \(-0.392615\pi\)
0.330996 + 0.943632i \(0.392615\pi\)
\(758\) −19.6326 −0.713089
\(759\) 0.740487 0.0268780
\(760\) −0.885283 −0.0321126
\(761\) 40.3367 1.46220 0.731102 0.682268i \(-0.239006\pi\)
0.731102 + 0.682268i \(0.239006\pi\)
\(762\) 5.35417 0.193961
\(763\) 11.9739 0.433483
\(764\) 25.4140 0.919444
\(765\) −8.17401 −0.295532
\(766\) 21.0548 0.760741
\(767\) 44.3346 1.60083
\(768\) −11.5329 −0.416156
\(769\) 20.4279 0.736648 0.368324 0.929697i \(-0.379932\pi\)
0.368324 + 0.929697i \(0.379932\pi\)
\(770\) 0.100254 0.00361291
\(771\) 11.0315 0.397289
\(772\) −7.35665 −0.264771
\(773\) −18.8969 −0.679676 −0.339838 0.940484i \(-0.610372\pi\)
−0.339838 + 0.940484i \(0.610372\pi\)
\(774\) −2.11328 −0.0759603
\(775\) 2.16041 0.0776044
\(776\) 14.4616 0.519141
\(777\) 0.718988 0.0257936
\(778\) 15.0299 0.538849
\(779\) −2.07615 −0.0743857
\(780\) 5.06233 0.181260
\(781\) 1.73472 0.0620731
\(782\) −25.9591 −0.928296
\(783\) −36.1925 −1.29341
\(784\) −0.0164961 −0.000589147 0
\(785\) −13.2990 −0.474663
\(786\) −3.81925 −0.136228
\(787\) −3.39723 −0.121098 −0.0605490 0.998165i \(-0.519285\pi\)
−0.0605490 + 0.998165i \(0.519285\pi\)
\(788\) −24.0347 −0.856201
\(789\) −12.0955 −0.430610
\(790\) −9.95414 −0.354153
\(791\) −9.80238 −0.348532
\(792\) −0.804657 −0.0285923
\(793\) 72.9813 2.59164
\(794\) 20.7492 0.736361
\(795\) 4.90613 0.174002
\(796\) 7.23947 0.256596
\(797\) 29.7760 1.05472 0.527360 0.849642i \(-0.323182\pi\)
0.527360 + 0.849642i \(0.323182\pi\)
\(798\) −0.196917 −0.00697077
\(799\) −2.01199 −0.0711791
\(800\) −5.64958 −0.199743
\(801\) 24.6398 0.870603
\(802\) 27.0499 0.955166
\(803\) 1.16651 0.0411652
\(804\) −0.584676 −0.0206199
\(805\) −9.00051 −0.317226
\(806\) 10.8143 0.380916
\(807\) 8.29434 0.291975
\(808\) 49.3501 1.73613
\(809\) 17.0974 0.601111 0.300556 0.953764i \(-0.402828\pi\)
0.300556 + 0.953764i \(0.402828\pi\)
\(810\) −4.04316 −0.142062
\(811\) −24.0341 −0.843951 −0.421975 0.906607i \(-0.638663\pi\)
−0.421975 + 0.906607i \(0.638663\pi\)
\(812\) 11.3140 0.397044
\(813\) −5.86445 −0.205675
\(814\) 0.100254 0.00351391
\(815\) 4.21116 0.147511
\(816\) −0.0390438 −0.00136681
\(817\) 0.303657 0.0106236
\(818\) −17.0173 −0.594994
\(819\) −14.1864 −0.495712
\(820\) −8.18494 −0.285830
\(821\) 26.8560 0.937282 0.468641 0.883389i \(-0.344744\pi\)
0.468641 + 0.883389i \(0.344744\pi\)
\(822\) −7.35012 −0.256365
\(823\) −29.2431 −1.01935 −0.509675 0.860367i \(-0.670234\pi\)
−0.509675 + 0.860367i \(0.670234\pi\)
\(824\) 43.8072 1.52610
\(825\) 0.0822717 0.00286433
\(826\) −6.79879 −0.236560
\(827\) −1.40966 −0.0490185 −0.0245093 0.999700i \(-0.507802\pi\)
−0.0245093 + 0.999700i \(0.507802\pi\)
\(828\) 27.5421 0.957154
\(829\) −19.8577 −0.689685 −0.344843 0.938661i \(-0.612068\pi\)
−0.344843 + 0.938661i \(0.612068\pi\)
\(830\) −11.4852 −0.398658
\(831\) 12.8372 0.445317
\(832\) −28.4683 −0.986959
\(833\) 3.29191 0.114058
\(834\) 4.51504 0.156343
\(835\) 23.3506 0.808080
\(836\) 0.0440817 0.00152460
\(837\) −8.51690 −0.294387
\(838\) 23.5533 0.813635
\(839\) −22.8133 −0.787604 −0.393802 0.919195i \(-0.628840\pi\)
−0.393802 + 0.919195i \(0.628840\pi\)
\(840\) −2.03619 −0.0702552
\(841\) 55.2843 1.90636
\(842\) −19.3307 −0.666178
\(843\) −10.7430 −0.370007
\(844\) −0.0992615 −0.00341672
\(845\) 19.6415 0.675689
\(846\) −1.32965 −0.0457144
\(847\) 10.9869 0.377515
\(848\) −0.112564 −0.00386546
\(849\) −15.6301 −0.536423
\(850\) −2.88418 −0.0989266
\(851\) −9.00051 −0.308534
\(852\) −13.4328 −0.460199
\(853\) −6.33523 −0.216914 −0.108457 0.994101i \(-0.534591\pi\)
−0.108457 + 0.994101i \(0.534591\pi\)
\(854\) −11.1918 −0.382976
\(855\) 0.776198 0.0265454
\(856\) −40.3501 −1.37914
\(857\) −50.4396 −1.72299 −0.861493 0.507770i \(-0.830470\pi\)
−0.861493 + 0.507770i \(0.830470\pi\)
\(858\) 0.411822 0.0140594
\(859\) 7.08800 0.241840 0.120920 0.992662i \(-0.461416\pi\)
0.120920 + 0.992662i \(0.461416\pi\)
\(860\) 1.19713 0.0408217
\(861\) −4.77523 −0.162739
\(862\) −16.7195 −0.569468
\(863\) −17.6572 −0.601058 −0.300529 0.953773i \(-0.597163\pi\)
−0.300529 + 0.953773i \(0.597163\pi\)
\(864\) 22.2721 0.757712
\(865\) −19.6976 −0.669739
\(866\) 4.64122 0.157715
\(867\) −4.43134 −0.150496
\(868\) 2.66244 0.0903692
\(869\) 1.30004 0.0441010
\(870\) −5.78322 −0.196069
\(871\) −3.76995 −0.127740
\(872\) −33.9102 −1.14835
\(873\) −12.6796 −0.429140
\(874\) 2.46506 0.0833819
\(875\) −1.00000 −0.0338062
\(876\) −9.03285 −0.305192
\(877\) 10.9493 0.369732 0.184866 0.982764i \(-0.440815\pi\)
0.184866 + 0.982764i \(0.440815\pi\)
\(878\) 25.7800 0.870033
\(879\) −9.72408 −0.327985
\(880\) −0.00188760 −6.36310e−5 0
\(881\) −6.77764 −0.228345 −0.114172 0.993461i \(-0.536422\pi\)
−0.114172 + 0.993461i \(0.536422\pi\)
\(882\) 2.17551 0.0732532
\(883\) 6.79285 0.228598 0.114299 0.993446i \(-0.463538\pi\)
0.114299 + 0.993446i \(0.463538\pi\)
\(884\) 23.1781 0.779562
\(885\) −5.57929 −0.187546
\(886\) −19.3167 −0.648958
\(887\) −30.1072 −1.01090 −0.505451 0.862856i \(-0.668674\pi\)
−0.505451 + 0.862856i \(0.668674\pi\)
\(888\) −2.03619 −0.0683300
\(889\) 8.49956 0.285066
\(890\) 8.69409 0.291427
\(891\) 0.528050 0.0176903
\(892\) −6.71221 −0.224741
\(893\) 0.191057 0.00639349
\(894\) 10.0909 0.337489
\(895\) −1.22265 −0.0408685
\(896\) −6.93351 −0.231632
\(897\) −36.9721 −1.23446
\(898\) −27.9354 −0.932217
\(899\) 19.8340 0.661501
\(900\) 3.06006 0.102002
\(901\) 22.4629 0.748347
\(902\) −0.665847 −0.0221703
\(903\) 0.698423 0.0232421
\(904\) 27.7605 0.923301
\(905\) 2.81754 0.0936581
\(906\) −11.4610 −0.380768
\(907\) 21.2242 0.704736 0.352368 0.935861i \(-0.385376\pi\)
0.352368 + 0.935861i \(0.385376\pi\)
\(908\) 7.90659 0.262389
\(909\) −43.2691 −1.43515
\(910\) −5.00564 −0.165935
\(911\) −23.6039 −0.782031 −0.391016 0.920384i \(-0.627876\pi\)
−0.391016 + 0.920384i \(0.627876\pi\)
\(912\) 0.00370757 0.000122770 0
\(913\) 1.50001 0.0496430
\(914\) −0.704068 −0.0232885
\(915\) −9.18435 −0.303625
\(916\) 10.2615 0.339049
\(917\) −6.06293 −0.200216
\(918\) 11.3702 0.375272
\(919\) −5.34575 −0.176340 −0.0881700 0.996105i \(-0.528102\pi\)
−0.0881700 + 0.996105i \(0.528102\pi\)
\(920\) 25.4896 0.840368
\(921\) −11.9100 −0.392447
\(922\) −0.272806 −0.00898440
\(923\) −86.6135 −2.85092
\(924\) 0.101390 0.00333547
\(925\) −1.00000 −0.0328798
\(926\) −3.09991 −0.101869
\(927\) −38.4092 −1.26153
\(928\) −51.8669 −1.70261
\(929\) −49.8629 −1.63595 −0.817975 0.575254i \(-0.804903\pi\)
−0.817975 + 0.575254i \(0.804903\pi\)
\(930\) −1.36092 −0.0446264
\(931\) −0.312598 −0.0102450
\(932\) −21.6545 −0.709317
\(933\) −17.9957 −0.589152
\(934\) 14.1530 0.463101
\(935\) 0.376684 0.0123189
\(936\) 40.1761 1.31320
\(937\) −25.2218 −0.823962 −0.411981 0.911193i \(-0.635163\pi\)
−0.411981 + 0.911193i \(0.635163\pi\)
\(938\) 0.578128 0.0188766
\(939\) 14.0457 0.458363
\(940\) 0.753218 0.0245673
\(941\) −11.4341 −0.372740 −0.186370 0.982480i \(-0.559672\pi\)
−0.186370 + 0.982480i \(0.559672\pi\)
\(942\) 8.37753 0.272955
\(943\) 59.7777 1.94663
\(944\) 0.128009 0.00416632
\(945\) 3.94225 0.128242
\(946\) 0.0973866 0.00316631
\(947\) 43.4845 1.41306 0.706529 0.707684i \(-0.250260\pi\)
0.706529 + 0.707684i \(0.250260\pi\)
\(948\) −10.0669 −0.326957
\(949\) −58.2431 −1.89065
\(950\) 0.273880 0.00888584
\(951\) 13.2237 0.428809
\(952\) −9.32276 −0.302152
\(953\) −18.4119 −0.596418 −0.298209 0.954501i \(-0.596389\pi\)
−0.298209 + 0.954501i \(0.596389\pi\)
\(954\) 14.8449 0.480622
\(955\) −20.6219 −0.667309
\(956\) 28.4544 0.920282
\(957\) 0.755307 0.0244156
\(958\) 13.8714 0.448165
\(959\) −11.6680 −0.376781
\(960\) 3.58259 0.115628
\(961\) −26.3326 −0.849439
\(962\) −5.00564 −0.161388
\(963\) 35.3782 1.14005
\(964\) 1.19556 0.0385065
\(965\) 5.96948 0.192164
\(966\) 5.66974 0.182421
\(967\) −52.2987 −1.68181 −0.840906 0.541182i \(-0.817977\pi\)
−0.840906 + 0.541182i \(0.817977\pi\)
\(968\) −31.1151 −1.00008
\(969\) −0.739872 −0.0237681
\(970\) −4.47398 −0.143651
\(971\) 42.2725 1.35659 0.678295 0.734790i \(-0.262719\pi\)
0.678295 + 0.734790i \(0.262719\pi\)
\(972\) −18.6640 −0.598647
\(973\) 7.16747 0.229779
\(974\) 27.8397 0.892040
\(975\) −4.10778 −0.131554
\(976\) 0.210721 0.00674502
\(977\) 61.4953 1.96741 0.983704 0.179795i \(-0.0575434\pi\)
0.983704 + 0.179795i \(0.0575434\pi\)
\(978\) −2.65276 −0.0848260
\(979\) −1.13548 −0.0362900
\(980\) −1.23238 −0.0393668
\(981\) 29.7318 0.949263
\(982\) 21.0595 0.672037
\(983\) −19.0773 −0.608471 −0.304235 0.952597i \(-0.598401\pi\)
−0.304235 + 0.952597i \(0.598401\pi\)
\(984\) 13.5235 0.431114
\(985\) 19.5027 0.621409
\(986\) −26.4787 −0.843253
\(987\) 0.439440 0.0139875
\(988\) −2.20097 −0.0700223
\(989\) −8.74307 −0.278013
\(990\) 0.248937 0.00791173
\(991\) −12.9195 −0.410403 −0.205201 0.978720i \(-0.565785\pi\)
−0.205201 + 0.978720i \(0.565785\pi\)
\(992\) −12.2054 −0.387523
\(993\) −13.4992 −0.428385
\(994\) 13.2823 0.421290
\(995\) −5.87440 −0.186231
\(996\) −11.6153 −0.368045
\(997\) 14.8034 0.468829 0.234415 0.972137i \(-0.424683\pi\)
0.234415 + 0.972137i \(0.424683\pi\)
\(998\) −17.8979 −0.566547
\(999\) 3.94225 0.124727
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1295.2.a.h.1.4 12
5.4 even 2 6475.2.a.r.1.9 12
7.6 odd 2 9065.2.a.m.1.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.a.h.1.4 12 1.1 even 1 trivial
6475.2.a.r.1.9 12 5.4 even 2
9065.2.a.m.1.4 12 7.6 odd 2