Properties

Label 2-1295-1.1-c1-0-19
Degree $2$
Conductor $1295$
Sign $1$
Analytic cond. $10.3406$
Root an. cond. $3.21568$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.876·2-s + 0.718·3-s − 1.23·4-s + 5-s − 0.629·6-s − 7-s + 2.83·8-s − 2.48·9-s − 0.876·10-s + 0.114·11-s − 0.886·12-s − 5.71·13-s + 0.876·14-s + 0.718·15-s − 0.0164·16-s + 3.29·17-s + 2.17·18-s − 0.312·19-s − 1.23·20-s − 0.718·21-s − 0.100·22-s + 9.00·23-s + 2.03·24-s + 25-s + 5.00·26-s − 3.94·27-s + 1.23·28-s + ⋯
L(s)  = 1  − 0.619·2-s + 0.415·3-s − 0.616·4-s + 0.447·5-s − 0.257·6-s − 0.377·7-s + 1.00·8-s − 0.827·9-s − 0.277·10-s + 0.0345·11-s − 0.255·12-s − 1.58·13-s + 0.234·14-s + 0.185·15-s − 0.00412·16-s + 0.798·17-s + 0.512·18-s − 0.0717·19-s − 0.275·20-s − 0.156·21-s − 0.0213·22-s + 1.87·23-s + 0.415·24-s + 0.200·25-s + 0.981·26-s − 0.758·27-s + 0.232·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1295\)    =    \(5 \cdot 7 \cdot 37\)
Sign: $1$
Analytic conductor: \(10.3406\)
Root analytic conductor: \(3.21568\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1295,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.036165910\)
\(L(\frac12)\) \(\approx\) \(1.036165910\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 + T \)
37 \( 1 + T \)
good2 \( 1 + 0.876T + 2T^{2} \)
3 \( 1 - 0.718T + 3T^{2} \)
11 \( 1 - 0.114T + 11T^{2} \)
13 \( 1 + 5.71T + 13T^{2} \)
17 \( 1 - 3.29T + 17T^{2} \)
19 \( 1 + 0.312T + 19T^{2} \)
23 \( 1 - 9.00T + 23T^{2} \)
29 \( 1 - 9.18T + 29T^{2} \)
31 \( 1 - 2.16T + 31T^{2} \)
41 \( 1 - 6.64T + 41T^{2} \)
43 \( 1 + 0.971T + 43T^{2} \)
47 \( 1 + 0.611T + 47T^{2} \)
53 \( 1 - 6.82T + 53T^{2} \)
59 \( 1 + 7.75T + 59T^{2} \)
61 \( 1 + 12.7T + 61T^{2} \)
67 \( 1 - 0.659T + 67T^{2} \)
71 \( 1 - 15.1T + 71T^{2} \)
73 \( 1 - 10.1T + 73T^{2} \)
79 \( 1 - 11.3T + 79T^{2} \)
83 \( 1 - 13.1T + 83T^{2} \)
89 \( 1 + 9.92T + 89T^{2} \)
97 \( 1 - 5.10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.436063934451231523245552114215, −9.067318014673511556938575878582, −8.144754952092126684817519319749, −7.46764113605273393920906134357, −6.48293448377171547420755557807, −5.28527279725748876567349042035, −4.71629270965591590662910469732, −3.28891754002365425844631562806, −2.44091000921260254928206960440, −0.806499269676483449242353947124, 0.806499269676483449242353947124, 2.44091000921260254928206960440, 3.28891754002365425844631562806, 4.71629270965591590662910469732, 5.28527279725748876567349042035, 6.48293448377171547420755557807, 7.46764113605273393920906134357, 8.144754952092126684817519319749, 9.067318014673511556938575878582, 9.436063934451231523245552114215

Graph of the $Z$-function along the critical line