Properties

Label 129.4.a.d.1.3
Level $129$
Weight $4$
Character 129.1
Self dual yes
Analytic conductor $7.611$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [129,4,Mod(1,129)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("129.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(129, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 129 = 3 \cdot 43 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 129.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-3,-15,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.61124639074\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 27x^{3} + 20x^{2} + 162x + 104 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.798544\) of defining polynomial
Character \(\chi\) \(=\) 129.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.79854 q^{2} -3.00000 q^{3} -4.76524 q^{4} +15.8745 q^{5} +5.39563 q^{6} -13.8629 q^{7} +22.9588 q^{8} +9.00000 q^{9} -28.5510 q^{10} -19.4212 q^{11} +14.2957 q^{12} +29.8244 q^{13} +24.9330 q^{14} -47.6235 q^{15} -3.17059 q^{16} -86.7593 q^{17} -16.1869 q^{18} -139.656 q^{19} -75.6458 q^{20} +41.5887 q^{21} +34.9299 q^{22} -182.120 q^{23} -68.8765 q^{24} +127.000 q^{25} -53.6405 q^{26} -27.0000 q^{27} +66.0600 q^{28} -21.4997 q^{29} +85.6530 q^{30} +52.7481 q^{31} -177.968 q^{32} +58.2636 q^{33} +156.041 q^{34} -220.067 q^{35} -42.8871 q^{36} -52.1158 q^{37} +251.177 q^{38} -89.4731 q^{39} +364.460 q^{40} -114.113 q^{41} -74.7991 q^{42} +43.0000 q^{43} +92.5467 q^{44} +142.871 q^{45} +327.551 q^{46} +395.042 q^{47} +9.51177 q^{48} -150.820 q^{49} -228.415 q^{50} +260.278 q^{51} -142.120 q^{52} -176.074 q^{53} +48.5607 q^{54} -308.302 q^{55} -318.276 q^{56} +418.967 q^{57} +38.6681 q^{58} -636.427 q^{59} +226.937 q^{60} +635.503 q^{61} -94.8698 q^{62} -124.766 q^{63} +345.449 q^{64} +473.447 q^{65} -104.790 q^{66} -709.583 q^{67} +413.429 q^{68} +546.360 q^{69} +395.799 q^{70} +377.804 q^{71} +206.630 q^{72} +539.211 q^{73} +93.7326 q^{74} -381.000 q^{75} +665.493 q^{76} +269.234 q^{77} +160.921 q^{78} -398.534 q^{79} -50.3316 q^{80} +81.0000 q^{81} +205.237 q^{82} +280.011 q^{83} -198.180 q^{84} -1377.26 q^{85} -77.3374 q^{86} +64.4990 q^{87} -445.889 q^{88} -926.460 q^{89} -256.959 q^{90} -413.452 q^{91} +867.845 q^{92} -158.244 q^{93} -710.500 q^{94} -2216.97 q^{95} +533.905 q^{96} -805.757 q^{97} +271.257 q^{98} -174.791 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{2} - 15 q^{3} + 19 q^{4} - 12 q^{5} + 9 q^{6} - 18 q^{7} - 15 q^{8} + 45 q^{9} - 32 q^{10} - 60 q^{11} - 57 q^{12} + 42 q^{13} - 246 q^{14} + 36 q^{15} - 93 q^{16} - 72 q^{17} - 27 q^{18} - 102 q^{19}+ \cdots - 540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.79854 −0.635881 −0.317941 0.948111i \(-0.602991\pi\)
−0.317941 + 0.948111i \(0.602991\pi\)
\(3\) −3.00000 −0.577350
\(4\) −4.76524 −0.595655
\(5\) 15.8745 1.41986 0.709929 0.704273i \(-0.248727\pi\)
0.709929 + 0.704273i \(0.248727\pi\)
\(6\) 5.39563 0.367126
\(7\) −13.8629 −0.748526 −0.374263 0.927323i \(-0.622104\pi\)
−0.374263 + 0.927323i \(0.622104\pi\)
\(8\) 22.9588 1.01465
\(9\) 9.00000 0.333333
\(10\) −28.5510 −0.902862
\(11\) −19.4212 −0.532338 −0.266169 0.963926i \(-0.585758\pi\)
−0.266169 + 0.963926i \(0.585758\pi\)
\(12\) 14.2957 0.343901
\(13\) 29.8244 0.636292 0.318146 0.948042i \(-0.396940\pi\)
0.318146 + 0.948042i \(0.396940\pi\)
\(14\) 24.9330 0.475974
\(15\) −47.6235 −0.819756
\(16\) −3.17059 −0.0495405
\(17\) −86.7593 −1.23778 −0.618889 0.785478i \(-0.712417\pi\)
−0.618889 + 0.785478i \(0.712417\pi\)
\(18\) −16.1869 −0.211960
\(19\) −139.656 −1.68627 −0.843137 0.537698i \(-0.819294\pi\)
−0.843137 + 0.537698i \(0.819294\pi\)
\(20\) −75.6458 −0.845746
\(21\) 41.5887 0.432161
\(22\) 34.9299 0.338504
\(23\) −182.120 −1.65107 −0.825536 0.564350i \(-0.809127\pi\)
−0.825536 + 0.564350i \(0.809127\pi\)
\(24\) −68.8765 −0.585807
\(25\) 127.000 1.01600
\(26\) −53.6405 −0.404606
\(27\) −27.0000 −0.192450
\(28\) 66.0600 0.445863
\(29\) −21.4997 −0.137669 −0.0688343 0.997628i \(-0.521928\pi\)
−0.0688343 + 0.997628i \(0.521928\pi\)
\(30\) 85.6530 0.521268
\(31\) 52.7481 0.305608 0.152804 0.988257i \(-0.451170\pi\)
0.152804 + 0.988257i \(0.451170\pi\)
\(32\) −177.968 −0.983145
\(33\) 58.2636 0.307345
\(34\) 156.041 0.787080
\(35\) −220.067 −1.06280
\(36\) −42.8871 −0.198552
\(37\) −52.1158 −0.231562 −0.115781 0.993275i \(-0.536937\pi\)
−0.115781 + 0.993275i \(0.536937\pi\)
\(38\) 251.177 1.07227
\(39\) −89.4731 −0.367363
\(40\) 364.460 1.44066
\(41\) −114.113 −0.434669 −0.217334 0.976097i \(-0.569736\pi\)
−0.217334 + 0.976097i \(0.569736\pi\)
\(42\) −74.7991 −0.274803
\(43\) 43.0000 0.152499
\(44\) 92.5467 0.317090
\(45\) 142.871 0.473286
\(46\) 327.551 1.04989
\(47\) 395.042 1.22602 0.613008 0.790077i \(-0.289959\pi\)
0.613008 + 0.790077i \(0.289959\pi\)
\(48\) 9.51177 0.0286022
\(49\) −150.820 −0.439709
\(50\) −228.415 −0.646055
\(51\) 260.278 0.714632
\(52\) −142.120 −0.379010
\(53\) −176.074 −0.456333 −0.228167 0.973622i \(-0.573273\pi\)
−0.228167 + 0.973622i \(0.573273\pi\)
\(54\) 48.5607 0.122375
\(55\) −308.302 −0.755845
\(56\) −318.276 −0.759489
\(57\) 418.967 0.973571
\(58\) 38.6681 0.0875409
\(59\) −636.427 −1.40433 −0.702167 0.712012i \(-0.747784\pi\)
−0.702167 + 0.712012i \(0.747784\pi\)
\(60\) 226.937 0.488292
\(61\) 635.503 1.33390 0.666950 0.745103i \(-0.267600\pi\)
0.666950 + 0.745103i \(0.267600\pi\)
\(62\) −94.8698 −0.194330
\(63\) −124.766 −0.249509
\(64\) 345.449 0.674704
\(65\) 473.447 0.903445
\(66\) −104.790 −0.195435
\(67\) −709.583 −1.29387 −0.646935 0.762545i \(-0.723950\pi\)
−0.646935 + 0.762545i \(0.723950\pi\)
\(68\) 413.429 0.737289
\(69\) 546.360 0.953247
\(70\) 395.799 0.675815
\(71\) 377.804 0.631508 0.315754 0.948841i \(-0.397743\pi\)
0.315754 + 0.948841i \(0.397743\pi\)
\(72\) 206.630 0.338216
\(73\) 539.211 0.864519 0.432259 0.901749i \(-0.357717\pi\)
0.432259 + 0.901749i \(0.357717\pi\)
\(74\) 93.7326 0.147246
\(75\) −381.000 −0.586588
\(76\) 665.493 1.00444
\(77\) 269.234 0.398468
\(78\) 160.921 0.233600
\(79\) −398.534 −0.567577 −0.283788 0.958887i \(-0.591591\pi\)
−0.283788 + 0.958887i \(0.591591\pi\)
\(80\) −50.3316 −0.0703405
\(81\) 81.0000 0.111111
\(82\) 205.237 0.276398
\(83\) 280.011 0.370303 0.185152 0.982710i \(-0.440722\pi\)
0.185152 + 0.982710i \(0.440722\pi\)
\(84\) −198.180 −0.257419
\(85\) −1377.26 −1.75747
\(86\) −77.3374 −0.0969710
\(87\) 64.4990 0.0794830
\(88\) −445.889 −0.540135
\(89\) −926.460 −1.10342 −0.551711 0.834035i \(-0.686025\pi\)
−0.551711 + 0.834035i \(0.686025\pi\)
\(90\) −256.959 −0.300954
\(91\) −413.452 −0.476281
\(92\) 867.845 0.983469
\(93\) −158.244 −0.176443
\(94\) −710.500 −0.779601
\(95\) −2216.97 −2.39427
\(96\) 533.905 0.567619
\(97\) −805.757 −0.843425 −0.421713 0.906730i \(-0.638571\pi\)
−0.421713 + 0.906730i \(0.638571\pi\)
\(98\) 271.257 0.279603
\(99\) −174.791 −0.177446
\(100\) −605.185 −0.605185
\(101\) −1916.83 −1.88843 −0.944215 0.329330i \(-0.893177\pi\)
−0.944215 + 0.329330i \(0.893177\pi\)
\(102\) −468.122 −0.454421
\(103\) 862.225 0.824830 0.412415 0.910996i \(-0.364685\pi\)
0.412415 + 0.910996i \(0.364685\pi\)
\(104\) 684.733 0.645612
\(105\) 660.200 0.613608
\(106\) 316.677 0.290174
\(107\) −281.764 −0.254572 −0.127286 0.991866i \(-0.540627\pi\)
−0.127286 + 0.991866i \(0.540627\pi\)
\(108\) 128.661 0.114634
\(109\) 1500.26 1.31834 0.659169 0.751995i \(-0.270908\pi\)
0.659169 + 0.751995i \(0.270908\pi\)
\(110\) 554.495 0.480627
\(111\) 156.347 0.133692
\(112\) 43.9536 0.0370823
\(113\) 864.470 0.719668 0.359834 0.933016i \(-0.382833\pi\)
0.359834 + 0.933016i \(0.382833\pi\)
\(114\) −753.531 −0.619076
\(115\) −2891.06 −2.34429
\(116\) 102.451 0.0820029
\(117\) 268.419 0.212097
\(118\) 1144.64 0.892990
\(119\) 1202.74 0.926509
\(120\) −1093.38 −0.831763
\(121\) −953.817 −0.716617
\(122\) −1142.98 −0.848202
\(123\) 342.338 0.250956
\(124\) −251.357 −0.182037
\(125\) 31.7479 0.0227170
\(126\) 224.397 0.158658
\(127\) 2115.68 1.47823 0.739117 0.673577i \(-0.235243\pi\)
0.739117 + 0.673577i \(0.235243\pi\)
\(128\) 802.442 0.554113
\(129\) −129.000 −0.0880451
\(130\) −851.516 −0.574484
\(131\) −2746.65 −1.83188 −0.915938 0.401319i \(-0.868552\pi\)
−0.915938 + 0.401319i \(0.868552\pi\)
\(132\) −277.640 −0.183072
\(133\) 1936.03 1.26222
\(134\) 1276.22 0.822748
\(135\) −428.612 −0.273252
\(136\) −1991.89 −1.25591
\(137\) 549.998 0.342989 0.171494 0.985185i \(-0.445140\pi\)
0.171494 + 0.985185i \(0.445140\pi\)
\(138\) −982.653 −0.606152
\(139\) 2882.76 1.75908 0.879542 0.475821i \(-0.157849\pi\)
0.879542 + 0.475821i \(0.157849\pi\)
\(140\) 1048.67 0.633062
\(141\) −1185.12 −0.707840
\(142\) −679.497 −0.401564
\(143\) −579.226 −0.338722
\(144\) −28.5353 −0.0165135
\(145\) −341.297 −0.195470
\(146\) −969.795 −0.549731
\(147\) 452.461 0.253866
\(148\) 248.344 0.137931
\(149\) 1607.75 0.883972 0.441986 0.897022i \(-0.354274\pi\)
0.441986 + 0.897022i \(0.354274\pi\)
\(150\) 685.245 0.373000
\(151\) 1000.01 0.538938 0.269469 0.963009i \(-0.413152\pi\)
0.269469 + 0.963009i \(0.413152\pi\)
\(152\) −3206.33 −1.71097
\(153\) −780.834 −0.412593
\(154\) −484.229 −0.253379
\(155\) 837.350 0.433920
\(156\) 426.361 0.218822
\(157\) −1452.58 −0.738396 −0.369198 0.929351i \(-0.620368\pi\)
−0.369198 + 0.929351i \(0.620368\pi\)
\(158\) 716.781 0.360911
\(159\) 528.223 0.263464
\(160\) −2825.16 −1.39593
\(161\) 2524.71 1.23587
\(162\) −145.682 −0.0706535
\(163\) 2940.80 1.41314 0.706568 0.707645i \(-0.250243\pi\)
0.706568 + 0.707645i \(0.250243\pi\)
\(164\) 543.775 0.258913
\(165\) 924.906 0.436387
\(166\) −503.612 −0.235469
\(167\) 2979.84 1.38076 0.690379 0.723448i \(-0.257444\pi\)
0.690379 + 0.723448i \(0.257444\pi\)
\(168\) 954.828 0.438491
\(169\) −1307.51 −0.595133
\(170\) 2477.07 1.11754
\(171\) −1256.90 −0.562092
\(172\) −204.905 −0.0908365
\(173\) 3026.47 1.33005 0.665023 0.746823i \(-0.268422\pi\)
0.665023 + 0.746823i \(0.268422\pi\)
\(174\) −116.004 −0.0505417
\(175\) −1760.59 −0.760502
\(176\) 61.5767 0.0263723
\(177\) 1909.28 0.810793
\(178\) 1666.28 0.701646
\(179\) −3156.81 −1.31816 −0.659081 0.752072i \(-0.729055\pi\)
−0.659081 + 0.752072i \(0.729055\pi\)
\(180\) −680.812 −0.281915
\(181\) −449.095 −0.184425 −0.0922126 0.995739i \(-0.529394\pi\)
−0.0922126 + 0.995739i \(0.529394\pi\)
\(182\) 743.612 0.302858
\(183\) −1906.51 −0.770127
\(184\) −4181.27 −1.67526
\(185\) −827.313 −0.328785
\(186\) 284.609 0.112197
\(187\) 1684.97 0.658916
\(188\) −1882.47 −0.730282
\(189\) 374.298 0.144054
\(190\) 3987.31 1.52247
\(191\) 3042.71 1.15268 0.576342 0.817209i \(-0.304480\pi\)
0.576342 + 0.817209i \(0.304480\pi\)
\(192\) −1036.35 −0.389541
\(193\) 2992.68 1.11615 0.558077 0.829789i \(-0.311539\pi\)
0.558077 + 0.829789i \(0.311539\pi\)
\(194\) 1449.19 0.536318
\(195\) −1420.34 −0.521604
\(196\) 718.695 0.261915
\(197\) −742.880 −0.268670 −0.134335 0.990936i \(-0.542890\pi\)
−0.134335 + 0.990936i \(0.542890\pi\)
\(198\) 314.369 0.112835
\(199\) −2837.30 −1.01071 −0.505353 0.862912i \(-0.668638\pi\)
−0.505353 + 0.862912i \(0.668638\pi\)
\(200\) 2915.77 1.03088
\(201\) 2128.75 0.747016
\(202\) 3447.50 1.20082
\(203\) 298.047 0.103048
\(204\) −1240.29 −0.425674
\(205\) −1811.48 −0.617168
\(206\) −1550.75 −0.524494
\(207\) −1639.08 −0.550357
\(208\) −94.5609 −0.0315222
\(209\) 2712.28 0.897668
\(210\) −1187.40 −0.390182
\(211\) −1142.10 −0.372631 −0.186315 0.982490i \(-0.559655\pi\)
−0.186315 + 0.982490i \(0.559655\pi\)
\(212\) 839.036 0.271817
\(213\) −1133.41 −0.364601
\(214\) 506.765 0.161877
\(215\) 682.604 0.216526
\(216\) −619.889 −0.195269
\(217\) −731.241 −0.228755
\(218\) −2698.28 −0.838306
\(219\) −1617.63 −0.499130
\(220\) 1469.13 0.450222
\(221\) −2587.54 −0.787588
\(222\) −281.198 −0.0850124
\(223\) −560.071 −0.168185 −0.0840923 0.996458i \(-0.526799\pi\)
−0.0840923 + 0.996458i \(0.526799\pi\)
\(224\) 2467.16 0.735910
\(225\) 1143.00 0.338666
\(226\) −1554.79 −0.457623
\(227\) −3639.04 −1.06402 −0.532008 0.846739i \(-0.678562\pi\)
−0.532008 + 0.846739i \(0.678562\pi\)
\(228\) −1996.48 −0.579912
\(229\) 3825.22 1.10383 0.551917 0.833899i \(-0.313897\pi\)
0.551917 + 0.833899i \(0.313897\pi\)
\(230\) 5199.71 1.49069
\(231\) −807.702 −0.230056
\(232\) −493.608 −0.139685
\(233\) −1493.65 −0.419966 −0.209983 0.977705i \(-0.567341\pi\)
−0.209983 + 0.977705i \(0.567341\pi\)
\(234\) −482.764 −0.134869
\(235\) 6271.09 1.74077
\(236\) 3032.73 0.836499
\(237\) 1195.60 0.327690
\(238\) −2163.17 −0.589150
\(239\) −3975.45 −1.07594 −0.537972 0.842963i \(-0.680809\pi\)
−0.537972 + 0.842963i \(0.680809\pi\)
\(240\) 150.995 0.0406111
\(241\) −6797.14 −1.81677 −0.908386 0.418133i \(-0.862685\pi\)
−0.908386 + 0.418133i \(0.862685\pi\)
\(242\) 1715.48 0.455683
\(243\) −243.000 −0.0641500
\(244\) −3028.32 −0.794543
\(245\) −2394.20 −0.624325
\(246\) −615.711 −0.159578
\(247\) −4165.15 −1.07296
\(248\) 1211.04 0.310084
\(249\) −840.032 −0.213795
\(250\) −57.1000 −0.0144453
\(251\) 2598.82 0.653531 0.326765 0.945105i \(-0.394041\pi\)
0.326765 + 0.945105i \(0.394041\pi\)
\(252\) 594.540 0.148621
\(253\) 3536.99 0.878928
\(254\) −3805.14 −0.939982
\(255\) 4131.78 1.01468
\(256\) −4206.82 −1.02705
\(257\) −2589.69 −0.628563 −0.314282 0.949330i \(-0.601764\pi\)
−0.314282 + 0.949330i \(0.601764\pi\)
\(258\) 232.012 0.0559862
\(259\) 722.476 0.173330
\(260\) −2256.09 −0.538141
\(261\) −193.497 −0.0458895
\(262\) 4939.97 1.16486
\(263\) 2868.27 0.672490 0.336245 0.941775i \(-0.390843\pi\)
0.336245 + 0.941775i \(0.390843\pi\)
\(264\) 1337.67 0.311847
\(265\) −2795.09 −0.647929
\(266\) −3482.04 −0.802622
\(267\) 2779.38 0.637061
\(268\) 3381.33 0.770700
\(269\) 3284.38 0.744432 0.372216 0.928146i \(-0.378598\pi\)
0.372216 + 0.928146i \(0.378598\pi\)
\(270\) 770.877 0.173756
\(271\) 4402.44 0.986823 0.493411 0.869796i \(-0.335750\pi\)
0.493411 + 0.869796i \(0.335750\pi\)
\(272\) 275.078 0.0613201
\(273\) 1240.36 0.274981
\(274\) −989.195 −0.218100
\(275\) −2466.49 −0.540855
\(276\) −2603.54 −0.567806
\(277\) 4129.43 0.895717 0.447858 0.894104i \(-0.352187\pi\)
0.447858 + 0.894104i \(0.352187\pi\)
\(278\) −5184.78 −1.11857
\(279\) 474.733 0.101869
\(280\) −5052.47 −1.07837
\(281\) −1035.87 −0.219909 −0.109955 0.993937i \(-0.535071\pi\)
−0.109955 + 0.993937i \(0.535071\pi\)
\(282\) 2131.50 0.450103
\(283\) −727.753 −0.152864 −0.0764319 0.997075i \(-0.524353\pi\)
−0.0764319 + 0.997075i \(0.524353\pi\)
\(284\) −1800.33 −0.376161
\(285\) 6650.90 1.38233
\(286\) 1041.76 0.215387
\(287\) 1581.93 0.325361
\(288\) −1601.71 −0.327715
\(289\) 2614.18 0.532095
\(290\) 613.837 0.124296
\(291\) 2417.27 0.486952
\(292\) −2569.47 −0.514955
\(293\) −6566.10 −1.30920 −0.654600 0.755976i \(-0.727163\pi\)
−0.654600 + 0.755976i \(0.727163\pi\)
\(294\) −813.771 −0.161429
\(295\) −10103.0 −1.99396
\(296\) −1196.52 −0.234954
\(297\) 524.373 0.102448
\(298\) −2891.61 −0.562102
\(299\) −5431.62 −1.05056
\(300\) 1815.55 0.349404
\(301\) −596.104 −0.114149
\(302\) −1798.56 −0.342701
\(303\) 5750.48 1.09029
\(304\) 442.791 0.0835389
\(305\) 10088.3 1.89395
\(306\) 1404.36 0.262360
\(307\) −9731.07 −1.80906 −0.904531 0.426409i \(-0.859778\pi\)
−0.904531 + 0.426409i \(0.859778\pi\)
\(308\) −1282.96 −0.237350
\(309\) −2586.67 −0.476216
\(310\) −1506.01 −0.275922
\(311\) −6608.94 −1.20501 −0.602506 0.798115i \(-0.705831\pi\)
−0.602506 + 0.798115i \(0.705831\pi\)
\(312\) −2054.20 −0.372744
\(313\) 602.437 0.108791 0.0543957 0.998519i \(-0.482677\pi\)
0.0543957 + 0.998519i \(0.482677\pi\)
\(314\) 2612.52 0.469532
\(315\) −1980.60 −0.354267
\(316\) 1899.11 0.338080
\(317\) −4530.62 −0.802728 −0.401364 0.915919i \(-0.631464\pi\)
−0.401364 + 0.915919i \(0.631464\pi\)
\(318\) −950.032 −0.167532
\(319\) 417.550 0.0732862
\(320\) 5483.83 0.957985
\(321\) 845.293 0.146977
\(322\) −4540.80 −0.785866
\(323\) 12116.4 2.08723
\(324\) −385.984 −0.0661839
\(325\) 3787.69 0.646472
\(326\) −5289.16 −0.898587
\(327\) −4500.78 −0.761142
\(328\) −2619.90 −0.441035
\(329\) −5476.42 −0.917704
\(330\) −1663.48 −0.277490
\(331\) −8363.35 −1.38879 −0.694397 0.719592i \(-0.744329\pi\)
−0.694397 + 0.719592i \(0.744329\pi\)
\(332\) −1334.32 −0.220573
\(333\) −469.042 −0.0771873
\(334\) −5359.37 −0.877999
\(335\) −11264.3 −1.83711
\(336\) −131.861 −0.0214095
\(337\) 6673.33 1.07869 0.539347 0.842084i \(-0.318671\pi\)
0.539347 + 0.842084i \(0.318671\pi\)
\(338\) 2351.61 0.378434
\(339\) −2593.41 −0.415500
\(340\) 6562.98 1.04685
\(341\) −1024.43 −0.162687
\(342\) 2260.59 0.357424
\(343\) 6845.78 1.07766
\(344\) 987.230 0.154732
\(345\) 8673.19 1.35348
\(346\) −5443.23 −0.845751
\(347\) −4057.98 −0.627792 −0.313896 0.949457i \(-0.601634\pi\)
−0.313896 + 0.949457i \(0.601634\pi\)
\(348\) −307.353 −0.0473444
\(349\) 8984.32 1.37799 0.688997 0.724764i \(-0.258051\pi\)
0.688997 + 0.724764i \(0.258051\pi\)
\(350\) 3166.49 0.483589
\(351\) −805.258 −0.122454
\(352\) 3456.36 0.523365
\(353\) 961.720 0.145006 0.0725031 0.997368i \(-0.476901\pi\)
0.0725031 + 0.997368i \(0.476901\pi\)
\(354\) −3433.93 −0.515568
\(355\) 5997.45 0.896652
\(356\) 4414.80 0.657259
\(357\) −3608.21 −0.534920
\(358\) 5677.66 0.838195
\(359\) −652.646 −0.0959480 −0.0479740 0.998849i \(-0.515276\pi\)
−0.0479740 + 0.998849i \(0.515276\pi\)
\(360\) 3280.14 0.480219
\(361\) 12644.7 1.84352
\(362\) 807.717 0.117273
\(363\) 2861.45 0.413739
\(364\) 1970.20 0.283699
\(365\) 8559.71 1.22749
\(366\) 3428.94 0.489709
\(367\) 9202.96 1.30897 0.654483 0.756077i \(-0.272886\pi\)
0.654483 + 0.756077i \(0.272886\pi\)
\(368\) 577.428 0.0817949
\(369\) −1027.01 −0.144890
\(370\) 1487.96 0.209068
\(371\) 2440.90 0.341577
\(372\) 754.072 0.105099
\(373\) 7807.24 1.08376 0.541881 0.840455i \(-0.317712\pi\)
0.541881 + 0.840455i \(0.317712\pi\)
\(374\) −3030.50 −0.418993
\(375\) −95.2437 −0.0131156
\(376\) 9069.70 1.24397
\(377\) −641.214 −0.0875974
\(378\) −673.192 −0.0916012
\(379\) −10505.3 −1.42380 −0.711900 0.702281i \(-0.752165\pi\)
−0.711900 + 0.702281i \(0.752165\pi\)
\(380\) 10564.4 1.42616
\(381\) −6347.03 −0.853459
\(382\) −5472.44 −0.732970
\(383\) −2477.18 −0.330491 −0.165246 0.986252i \(-0.552842\pi\)
−0.165246 + 0.986252i \(0.552842\pi\)
\(384\) −2407.33 −0.319918
\(385\) 4273.96 0.565769
\(386\) −5382.47 −0.709742
\(387\) 387.000 0.0508329
\(388\) 3839.62 0.502390
\(389\) −3558.54 −0.463817 −0.231909 0.972738i \(-0.574497\pi\)
−0.231909 + 0.972738i \(0.574497\pi\)
\(390\) 2554.55 0.331678
\(391\) 15800.6 2.04366
\(392\) −3462.66 −0.446150
\(393\) 8239.95 1.05763
\(394\) 1336.10 0.170842
\(395\) −6326.53 −0.805879
\(396\) 832.920 0.105697
\(397\) 1649.11 0.208479 0.104240 0.994552i \(-0.466759\pi\)
0.104240 + 0.994552i \(0.466759\pi\)
\(398\) 5103.00 0.642690
\(399\) −5808.10 −0.728743
\(400\) −402.665 −0.0503331
\(401\) −12735.1 −1.58593 −0.792967 0.609264i \(-0.791465\pi\)
−0.792967 + 0.609264i \(0.791465\pi\)
\(402\) −3828.65 −0.475014
\(403\) 1573.18 0.194456
\(404\) 9134.14 1.12485
\(405\) 1285.83 0.157762
\(406\) −536.052 −0.0655266
\(407\) 1012.15 0.123269
\(408\) 5975.68 0.725099
\(409\) −13949.9 −1.68650 −0.843252 0.537519i \(-0.819362\pi\)
−0.843252 + 0.537519i \(0.819362\pi\)
\(410\) 3258.03 0.392446
\(411\) −1649.99 −0.198025
\(412\) −4108.71 −0.491314
\(413\) 8822.72 1.05118
\(414\) 2947.96 0.349962
\(415\) 4445.03 0.525778
\(416\) −5307.80 −0.625567
\(417\) −8648.29 −1.01561
\(418\) −4878.16 −0.570810
\(419\) −15462.2 −1.80281 −0.901404 0.432979i \(-0.857462\pi\)
−0.901404 + 0.432979i \(0.857462\pi\)
\(420\) −3146.01 −0.365499
\(421\) 3424.97 0.396492 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(422\) 2054.11 0.236949
\(423\) 3555.37 0.408672
\(424\) −4042.46 −0.463017
\(425\) −11018.4 −1.25758
\(426\) 2038.49 0.231843
\(427\) −8809.91 −0.998458
\(428\) 1342.67 0.151637
\(429\) 1737.68 0.195561
\(430\) −1227.69 −0.137685
\(431\) −2700.98 −0.301860 −0.150930 0.988544i \(-0.548227\pi\)
−0.150930 + 0.988544i \(0.548227\pi\)
\(432\) 85.6060 0.00953407
\(433\) 13315.1 1.47778 0.738892 0.673823i \(-0.235349\pi\)
0.738892 + 0.673823i \(0.235349\pi\)
\(434\) 1315.17 0.145461
\(435\) 1023.89 0.112855
\(436\) −7149.09 −0.785274
\(437\) 25434.1 2.78416
\(438\) 2909.38 0.317388
\(439\) −2137.64 −0.232401 −0.116201 0.993226i \(-0.537072\pi\)
−0.116201 + 0.993226i \(0.537072\pi\)
\(440\) −7078.26 −0.766916
\(441\) −1357.38 −0.146570
\(442\) 4653.81 0.500813
\(443\) 12413.5 1.33134 0.665669 0.746247i \(-0.268146\pi\)
0.665669 + 0.746247i \(0.268146\pi\)
\(444\) −745.033 −0.0796345
\(445\) −14707.1 −1.56670
\(446\) 1007.31 0.106945
\(447\) −4823.25 −0.510362
\(448\) −4788.92 −0.505034
\(449\) −9692.45 −1.01874 −0.509371 0.860547i \(-0.670122\pi\)
−0.509371 + 0.860547i \(0.670122\pi\)
\(450\) −2055.73 −0.215352
\(451\) 2216.21 0.231391
\(452\) −4119.40 −0.428674
\(453\) −3000.03 −0.311156
\(454\) 6544.97 0.676588
\(455\) −6563.35 −0.676252
\(456\) 9619.00 0.987831
\(457\) −12760.5 −1.30615 −0.653077 0.757292i \(-0.726522\pi\)
−0.653077 + 0.757292i \(0.726522\pi\)
\(458\) −6879.83 −0.701907
\(459\) 2342.50 0.238211
\(460\) 13776.6 1.39639
\(461\) −5418.09 −0.547387 −0.273694 0.961817i \(-0.588245\pi\)
−0.273694 + 0.961817i \(0.588245\pi\)
\(462\) 1452.69 0.146288
\(463\) −12664.5 −1.27121 −0.635606 0.772013i \(-0.719250\pi\)
−0.635606 + 0.772013i \(0.719250\pi\)
\(464\) 68.1666 0.00682017
\(465\) −2512.05 −0.250524
\(466\) 2686.39 0.267049
\(467\) 8797.04 0.871688 0.435844 0.900022i \(-0.356450\pi\)
0.435844 + 0.900022i \(0.356450\pi\)
\(468\) −1279.08 −0.126337
\(469\) 9836.86 0.968495
\(470\) −11278.8 −1.10692
\(471\) 4357.73 0.426313
\(472\) −14611.6 −1.42490
\(473\) −835.112 −0.0811807
\(474\) −2150.34 −0.208372
\(475\) −17736.3 −1.71325
\(476\) −5731.32 −0.551879
\(477\) −1584.67 −0.152111
\(478\) 7150.03 0.684173
\(479\) 13666.2 1.30360 0.651800 0.758391i \(-0.274014\pi\)
0.651800 + 0.758391i \(0.274014\pi\)
\(480\) 8475.48 0.805939
\(481\) −1554.32 −0.147341
\(482\) 12225.0 1.15525
\(483\) −7574.13 −0.713530
\(484\) 4545.16 0.426856
\(485\) −12791.0 −1.19754
\(486\) 437.046 0.0407918
\(487\) 2132.79 0.198451 0.0992257 0.995065i \(-0.468363\pi\)
0.0992257 + 0.995065i \(0.468363\pi\)
\(488\) 14590.4 1.35344
\(489\) −8822.39 −0.815874
\(490\) 4306.07 0.396997
\(491\) 8153.74 0.749436 0.374718 0.927139i \(-0.377739\pi\)
0.374718 + 0.927139i \(0.377739\pi\)
\(492\) −1631.32 −0.149483
\(493\) 1865.30 0.170403
\(494\) 7491.20 0.682277
\(495\) −2774.72 −0.251948
\(496\) −167.243 −0.0151400
\(497\) −5237.45 −0.472700
\(498\) 1510.83 0.135948
\(499\) −20090.5 −1.80235 −0.901176 0.433452i \(-0.857295\pi\)
−0.901176 + 0.433452i \(0.857295\pi\)
\(500\) −151.286 −0.0135315
\(501\) −8939.51 −0.797181
\(502\) −4674.10 −0.415568
\(503\) −11273.2 −0.999295 −0.499647 0.866229i \(-0.666537\pi\)
−0.499647 + 0.866229i \(0.666537\pi\)
\(504\) −2864.48 −0.253163
\(505\) −30428.7 −2.68130
\(506\) −6361.43 −0.558894
\(507\) 3922.52 0.343600
\(508\) −10081.7 −0.880518
\(509\) −4063.75 −0.353876 −0.176938 0.984222i \(-0.556619\pi\)
−0.176938 + 0.984222i \(0.556619\pi\)
\(510\) −7431.20 −0.645214
\(511\) −7475.02 −0.647114
\(512\) 1146.61 0.0989716
\(513\) 3770.70 0.324524
\(514\) 4657.68 0.399692
\(515\) 13687.4 1.17114
\(516\) 614.716 0.0524445
\(517\) −7672.19 −0.652654
\(518\) −1299.40 −0.110217
\(519\) −9079.40 −0.767902
\(520\) 10869.8 0.916678
\(521\) 3516.11 0.295669 0.147834 0.989012i \(-0.452770\pi\)
0.147834 + 0.989012i \(0.452770\pi\)
\(522\) 348.013 0.0291803
\(523\) 12440.1 1.04009 0.520046 0.854138i \(-0.325915\pi\)
0.520046 + 0.854138i \(0.325915\pi\)
\(524\) 13088.4 1.09117
\(525\) 5281.76 0.439076
\(526\) −5158.70 −0.427624
\(527\) −4576.39 −0.378275
\(528\) −184.730 −0.0152260
\(529\) 21000.7 1.72604
\(530\) 5027.09 0.412006
\(531\) −5727.84 −0.468112
\(532\) −9225.65 −0.751847
\(533\) −3403.34 −0.276576
\(534\) −4998.84 −0.405095
\(535\) −4472.87 −0.361456
\(536\) −16291.2 −1.31282
\(537\) 9470.43 0.761042
\(538\) −5907.10 −0.473370
\(539\) 2929.11 0.234074
\(540\) 2042.44 0.162764
\(541\) 15406.7 1.22438 0.612188 0.790712i \(-0.290290\pi\)
0.612188 + 0.790712i \(0.290290\pi\)
\(542\) −7917.98 −0.627502
\(543\) 1347.28 0.106478
\(544\) 15440.4 1.21692
\(545\) 23815.9 1.87185
\(546\) −2230.84 −0.174855
\(547\) 168.517 0.0131723 0.00658617 0.999978i \(-0.497904\pi\)
0.00658617 + 0.999978i \(0.497904\pi\)
\(548\) −2620.87 −0.204303
\(549\) 5719.53 0.444633
\(550\) 4436.10 0.343920
\(551\) 3002.55 0.232147
\(552\) 12543.8 0.967209
\(553\) 5524.83 0.424846
\(554\) −7426.97 −0.569570
\(555\) 2481.94 0.189824
\(556\) −13737.1 −1.04781
\(557\) 13682.0 1.04080 0.520401 0.853922i \(-0.325783\pi\)
0.520401 + 0.853922i \(0.325783\pi\)
\(558\) −853.828 −0.0647768
\(559\) 1282.45 0.0970336
\(560\) 697.741 0.0526517
\(561\) −5054.91 −0.380425
\(562\) 1863.05 0.139836
\(563\) 10203.3 0.763794 0.381897 0.924205i \(-0.375271\pi\)
0.381897 + 0.924205i \(0.375271\pi\)
\(564\) 5647.40 0.421629
\(565\) 13723.0 1.02183
\(566\) 1308.90 0.0972032
\(567\) −1122.89 −0.0831695
\(568\) 8673.94 0.640758
\(569\) 11342.0 0.835642 0.417821 0.908529i \(-0.362794\pi\)
0.417821 + 0.908529i \(0.362794\pi\)
\(570\) −11961.9 −0.879000
\(571\) −18747.7 −1.37402 −0.687012 0.726646i \(-0.741078\pi\)
−0.687012 + 0.726646i \(0.741078\pi\)
\(572\) 2760.15 0.201762
\(573\) −9128.12 −0.665502
\(574\) −2845.18 −0.206891
\(575\) −23129.2 −1.67749
\(576\) 3109.04 0.224901
\(577\) −25011.9 −1.80461 −0.902304 0.431101i \(-0.858125\pi\)
−0.902304 + 0.431101i \(0.858125\pi\)
\(578\) −4701.72 −0.338349
\(579\) −8978.04 −0.644412
\(580\) 1626.36 0.116433
\(581\) −3881.76 −0.277181
\(582\) −4347.57 −0.309644
\(583\) 3419.57 0.242923
\(584\) 12379.7 0.877181
\(585\) 4261.03 0.301148
\(586\) 11809.4 0.832496
\(587\) 24860.2 1.74802 0.874011 0.485906i \(-0.161510\pi\)
0.874011 + 0.485906i \(0.161510\pi\)
\(588\) −2156.08 −0.151217
\(589\) −7366.58 −0.515339
\(590\) 18170.6 1.26792
\(591\) 2228.64 0.155117
\(592\) 165.238 0.0114717
\(593\) −12475.8 −0.863946 −0.431973 0.901886i \(-0.642182\pi\)
−0.431973 + 0.901886i \(0.642182\pi\)
\(594\) −943.107 −0.0651451
\(595\) 19092.8 1.31551
\(596\) −7661.30 −0.526542
\(597\) 8511.89 0.583532
\(598\) 9769.00 0.668034
\(599\) 7451.41 0.508275 0.254137 0.967168i \(-0.418208\pi\)
0.254137 + 0.967168i \(0.418208\pi\)
\(600\) −8747.32 −0.595179
\(601\) −15678.6 −1.06413 −0.532067 0.846702i \(-0.678585\pi\)
−0.532067 + 0.846702i \(0.678585\pi\)
\(602\) 1072.12 0.0725853
\(603\) −6386.24 −0.431290
\(604\) −4765.29 −0.321021
\(605\) −15141.4 −1.01749
\(606\) −10342.5 −0.693292
\(607\) −4861.24 −0.325060 −0.162530 0.986704i \(-0.551965\pi\)
−0.162530 + 0.986704i \(0.551965\pi\)
\(608\) 24854.3 1.65785
\(609\) −894.142 −0.0594950
\(610\) −18144.3 −1.20433
\(611\) 11781.9 0.780104
\(612\) 3720.86 0.245763
\(613\) 6442.10 0.424460 0.212230 0.977220i \(-0.431927\pi\)
0.212230 + 0.977220i \(0.431927\pi\)
\(614\) 17501.8 1.15035
\(615\) 5434.45 0.356322
\(616\) 6181.30 0.404305
\(617\) −15406.4 −1.00525 −0.502625 0.864504i \(-0.667632\pi\)
−0.502625 + 0.864504i \(0.667632\pi\)
\(618\) 4652.25 0.302817
\(619\) 20117.9 1.30631 0.653157 0.757223i \(-0.273444\pi\)
0.653157 + 0.757223i \(0.273444\pi\)
\(620\) −3990.17 −0.258466
\(621\) 4917.24 0.317749
\(622\) 11886.5 0.766244
\(623\) 12843.4 0.825940
\(624\) 283.683 0.0181994
\(625\) −15371.0 −0.983745
\(626\) −1083.51 −0.0691785
\(627\) −8136.85 −0.518269
\(628\) 6921.87 0.439829
\(629\) 4521.53 0.286622
\(630\) 3562.19 0.225272
\(631\) −27335.4 −1.72457 −0.862286 0.506422i \(-0.830968\pi\)
−0.862286 + 0.506422i \(0.830968\pi\)
\(632\) −9149.87 −0.575890
\(633\) 3426.29 0.215139
\(634\) 8148.51 0.510440
\(635\) 33585.3 2.09888
\(636\) −2517.11 −0.156934
\(637\) −4498.12 −0.279784
\(638\) −750.981 −0.0466013
\(639\) 3400.23 0.210503
\(640\) 12738.4 0.786763
\(641\) 23746.8 1.46325 0.731624 0.681708i \(-0.238763\pi\)
0.731624 + 0.681708i \(0.238763\pi\)
\(642\) −1520.30 −0.0934600
\(643\) −10330.7 −0.633596 −0.316798 0.948493i \(-0.602608\pi\)
−0.316798 + 0.948493i \(0.602608\pi\)
\(644\) −12030.8 −0.736152
\(645\) −2047.81 −0.125012
\(646\) −21792.0 −1.32723
\(647\) −23240.7 −1.41219 −0.706094 0.708118i \(-0.749545\pi\)
−0.706094 + 0.708118i \(0.749545\pi\)
\(648\) 1859.67 0.112739
\(649\) 12360.2 0.747580
\(650\) −6812.34 −0.411080
\(651\) 2193.72 0.132072
\(652\) −14013.6 −0.841741
\(653\) −8881.27 −0.532237 −0.266119 0.963940i \(-0.585741\pi\)
−0.266119 + 0.963940i \(0.585741\pi\)
\(654\) 8094.85 0.483996
\(655\) −43601.7 −2.60101
\(656\) 361.805 0.0215337
\(657\) 4852.90 0.288173
\(658\) 9849.58 0.583551
\(659\) 20220.2 1.19525 0.597623 0.801777i \(-0.296112\pi\)
0.597623 + 0.801777i \(0.296112\pi\)
\(660\) −4407.40 −0.259936
\(661\) 21173.9 1.24595 0.622973 0.782244i \(-0.285925\pi\)
0.622973 + 0.782244i \(0.285925\pi\)
\(662\) 15041.9 0.883109
\(663\) 7762.63 0.454714
\(664\) 6428.72 0.375727
\(665\) 30733.6 1.79217
\(666\) 843.594 0.0490820
\(667\) 3915.52 0.227301
\(668\) −14199.6 −0.822456
\(669\) 1680.21 0.0971014
\(670\) 20259.3 1.16819
\(671\) −12342.2 −0.710085
\(672\) −7401.47 −0.424878
\(673\) −5831.33 −0.333999 −0.167000 0.985957i \(-0.553408\pi\)
−0.167000 + 0.985957i \(0.553408\pi\)
\(674\) −12002.3 −0.685921
\(675\) −3429.00 −0.195529
\(676\) 6230.58 0.354494
\(677\) −17236.1 −0.978486 −0.489243 0.872147i \(-0.662727\pi\)
−0.489243 + 0.872147i \(0.662727\pi\)
\(678\) 4664.36 0.264209
\(679\) 11170.1 0.631325
\(680\) −31620.3 −1.78321
\(681\) 10917.1 0.614310
\(682\) 1842.49 0.103449
\(683\) 7667.39 0.429553 0.214776 0.976663i \(-0.431098\pi\)
0.214776 + 0.976663i \(0.431098\pi\)
\(684\) 5989.44 0.334813
\(685\) 8730.94 0.486996
\(686\) −12312.4 −0.685264
\(687\) −11475.7 −0.637298
\(688\) −136.335 −0.00755485
\(689\) −5251.30 −0.290361
\(690\) −15599.1 −0.860650
\(691\) 30169.5 1.66093 0.830465 0.557071i \(-0.188075\pi\)
0.830465 + 0.557071i \(0.188075\pi\)
\(692\) −14421.8 −0.792248
\(693\) 2423.11 0.132823
\(694\) 7298.45 0.399201
\(695\) 45762.4 2.49765
\(696\) 1480.82 0.0806472
\(697\) 9900.35 0.538024
\(698\) −16158.7 −0.876240
\(699\) 4480.94 0.242467
\(700\) 8389.61 0.452996
\(701\) −20355.0 −1.09671 −0.548357 0.836244i \(-0.684746\pi\)
−0.548357 + 0.836244i \(0.684746\pi\)
\(702\) 1448.29 0.0778665
\(703\) 7278.27 0.390477
\(704\) −6709.03 −0.359171
\(705\) −18813.3 −1.00503
\(706\) −1729.70 −0.0922068
\(707\) 26572.8 1.41354
\(708\) −9098.18 −0.482953
\(709\) −9215.45 −0.488143 −0.244072 0.969757i \(-0.578483\pi\)
−0.244072 + 0.969757i \(0.578483\pi\)
\(710\) −10786.7 −0.570164
\(711\) −3586.80 −0.189192
\(712\) −21270.5 −1.11958
\(713\) −9606.48 −0.504580
\(714\) 6489.52 0.340146
\(715\) −9194.92 −0.480938
\(716\) 15043.0 0.785170
\(717\) 11926.4 0.621197
\(718\) 1173.81 0.0610115
\(719\) 8522.47 0.442051 0.221025 0.975268i \(-0.429060\pi\)
0.221025 + 0.975268i \(0.429060\pi\)
\(720\) −452.984 −0.0234468
\(721\) −11952.9 −0.617407
\(722\) −22742.1 −1.17226
\(723\) 20391.4 1.04891
\(724\) 2140.04 0.109854
\(725\) −2730.46 −0.139871
\(726\) −5146.44 −0.263089
\(727\) −8716.00 −0.444647 −0.222324 0.974973i \(-0.571364\pi\)
−0.222324 + 0.974973i \(0.571364\pi\)
\(728\) −9492.38 −0.483257
\(729\) 729.000 0.0370370
\(730\) −15395.0 −0.780541
\(731\) −3730.65 −0.188759
\(732\) 9084.97 0.458730
\(733\) 11410.4 0.574968 0.287484 0.957785i \(-0.407181\pi\)
0.287484 + 0.957785i \(0.407181\pi\)
\(734\) −16551.9 −0.832347
\(735\) 7182.59 0.360454
\(736\) 32411.6 1.62324
\(737\) 13781.0 0.688776
\(738\) 1847.13 0.0921326
\(739\) −19087.3 −0.950121 −0.475061 0.879953i \(-0.657574\pi\)
−0.475061 + 0.879953i \(0.657574\pi\)
\(740\) 3942.34 0.195842
\(741\) 12495.4 0.619476
\(742\) −4390.06 −0.217202
\(743\) −28348.4 −1.39974 −0.699868 0.714272i \(-0.746758\pi\)
−0.699868 + 0.714272i \(0.746758\pi\)
\(744\) −3633.11 −0.179027
\(745\) 25522.2 1.25512
\(746\) −14041.7 −0.689145
\(747\) 2520.10 0.123434
\(748\) −8029.29 −0.392487
\(749\) 3906.07 0.190553
\(750\) 171.300 0.00833999
\(751\) 5307.71 0.257898 0.128949 0.991651i \(-0.458840\pi\)
0.128949 + 0.991651i \(0.458840\pi\)
\(752\) −1252.52 −0.0607374
\(753\) −7796.47 −0.377316
\(754\) 1153.25 0.0557015
\(755\) 15874.7 0.765216
\(756\) −1783.62 −0.0858064
\(757\) 17117.3 0.821846 0.410923 0.911670i \(-0.365206\pi\)
0.410923 + 0.911670i \(0.365206\pi\)
\(758\) 18894.2 0.905368
\(759\) −10611.0 −0.507449
\(760\) −50899.0 −2.42934
\(761\) −11428.0 −0.544370 −0.272185 0.962245i \(-0.587746\pi\)
−0.272185 + 0.962245i \(0.587746\pi\)
\(762\) 11415.4 0.542699
\(763\) −20797.9 −0.986809
\(764\) −14499.2 −0.686602
\(765\) −12395.4 −0.585824
\(766\) 4455.33 0.210153
\(767\) −18981.0 −0.893567
\(768\) 12620.4 0.592970
\(769\) 4584.57 0.214986 0.107493 0.994206i \(-0.465718\pi\)
0.107493 + 0.994206i \(0.465718\pi\)
\(770\) −7686.90 −0.359762
\(771\) 7769.08 0.362901
\(772\) −14260.8 −0.664843
\(773\) −29603.2 −1.37743 −0.688716 0.725031i \(-0.741825\pi\)
−0.688716 + 0.725031i \(0.741825\pi\)
\(774\) −696.037 −0.0323237
\(775\) 6699.01 0.310497
\(776\) −18499.3 −0.855779
\(777\) −2167.43 −0.100072
\(778\) 6400.18 0.294933
\(779\) 15936.5 0.732971
\(780\) 6768.27 0.310696
\(781\) −7337.41 −0.336176
\(782\) −28418.1 −1.29953
\(783\) 580.491 0.0264943
\(784\) 478.190 0.0217834
\(785\) −23058.9 −1.04842
\(786\) −14819.9 −0.672530
\(787\) 29561.6 1.33895 0.669477 0.742833i \(-0.266518\pi\)
0.669477 + 0.742833i \(0.266518\pi\)
\(788\) 3540.00 0.160035
\(789\) −8604.80 −0.388262
\(790\) 11378.5 0.512443
\(791\) −11984.0 −0.538690
\(792\) −4013.00 −0.180045
\(793\) 18953.5 0.848749
\(794\) −2965.99 −0.132568
\(795\) 8385.27 0.374082
\(796\) 13520.4 0.602032
\(797\) −3060.54 −0.136022 −0.0680112 0.997685i \(-0.521665\pi\)
−0.0680112 + 0.997685i \(0.521665\pi\)
\(798\) 10446.1 0.463394
\(799\) −34273.5 −1.51754
\(800\) −22602.0 −0.998875
\(801\) −8338.14 −0.367807
\(802\) 22904.6 1.00847
\(803\) −10472.1 −0.460216
\(804\) −10144.0 −0.444964
\(805\) 40078.5 1.75476
\(806\) −2829.43 −0.123651
\(807\) −9853.14 −0.429798
\(808\) −44008.1 −1.91609
\(809\) −25313.6 −1.10010 −0.550049 0.835132i \(-0.685391\pi\)
−0.550049 + 0.835132i \(0.685391\pi\)
\(810\) −2312.63 −0.100318
\(811\) 11217.5 0.485696 0.242848 0.970064i \(-0.421918\pi\)
0.242848 + 0.970064i \(0.421918\pi\)
\(812\) −1420.27 −0.0613813
\(813\) −13207.3 −0.569742
\(814\) −1820.40 −0.0783845
\(815\) 46683.7 2.00645
\(816\) −825.235 −0.0354032
\(817\) −6005.20 −0.257155
\(818\) 25089.6 1.07242
\(819\) −3721.07 −0.158760
\(820\) 8632.15 0.367619
\(821\) −4267.25 −0.181398 −0.0906992 0.995878i \(-0.528910\pi\)
−0.0906992 + 0.995878i \(0.528910\pi\)
\(822\) 2967.59 0.125920
\(823\) −3901.96 −0.165266 −0.0826330 0.996580i \(-0.526333\pi\)
−0.0826330 + 0.996580i \(0.526333\pi\)
\(824\) 19795.7 0.836912
\(825\) 7399.48 0.312263
\(826\) −15868.0 −0.668426
\(827\) 22918.9 0.963687 0.481844 0.876257i \(-0.339967\pi\)
0.481844 + 0.876257i \(0.339967\pi\)
\(828\) 7810.61 0.327823
\(829\) 6746.93 0.282666 0.141333 0.989962i \(-0.454861\pi\)
0.141333 + 0.989962i \(0.454861\pi\)
\(830\) −7994.59 −0.334333
\(831\) −12388.3 −0.517142
\(832\) 10302.8 0.429309
\(833\) 13085.1 0.544263
\(834\) 15554.3 0.645806
\(835\) 47303.4 1.96048
\(836\) −12924.7 −0.534700
\(837\) −1424.20 −0.0588142
\(838\) 27809.4 1.14637
\(839\) 32066.9 1.31952 0.659758 0.751478i \(-0.270659\pi\)
0.659758 + 0.751478i \(0.270659\pi\)
\(840\) 15157.4 0.622596
\(841\) −23926.8 −0.981047
\(842\) −6159.96 −0.252122
\(843\) 3107.60 0.126965
\(844\) 5442.36 0.221959
\(845\) −20756.0 −0.845004
\(846\) −6394.50 −0.259867
\(847\) 13222.7 0.536406
\(848\) 558.259 0.0226070
\(849\) 2183.26 0.0882559
\(850\) 19817.1 0.799673
\(851\) 9491.33 0.382325
\(852\) 5400.98 0.217177
\(853\) −3613.74 −0.145055 −0.0725276 0.997366i \(-0.523107\pi\)
−0.0725276 + 0.997366i \(0.523107\pi\)
\(854\) 15845.0 0.634901
\(855\) −19952.7 −0.798091
\(856\) −6468.98 −0.258301
\(857\) −44182.4 −1.76108 −0.880538 0.473975i \(-0.842819\pi\)
−0.880538 + 0.473975i \(0.842819\pi\)
\(858\) −3125.29 −0.124354
\(859\) −150.821 −0.00599061 −0.00299530 0.999996i \(-0.500953\pi\)
−0.00299530 + 0.999996i \(0.500953\pi\)
\(860\) −3252.77 −0.128975
\(861\) −4745.80 −0.187847
\(862\) 4857.84 0.191947
\(863\) −32760.7 −1.29222 −0.646111 0.763243i \(-0.723606\pi\)
−0.646111 + 0.763243i \(0.723606\pi\)
\(864\) 4805.14 0.189206
\(865\) 48043.6 1.88848
\(866\) −23947.7 −0.939696
\(867\) −7842.55 −0.307205
\(868\) 3484.54 0.136259
\(869\) 7740.01 0.302142
\(870\) −1841.51 −0.0717621
\(871\) −21162.9 −0.823279
\(872\) 34444.2 1.33765
\(873\) −7251.81 −0.281142
\(874\) −45744.4 −1.77040
\(875\) −440.118 −0.0170042
\(876\) 7708.41 0.297309
\(877\) −39537.4 −1.52233 −0.761165 0.648558i \(-0.775372\pi\)
−0.761165 + 0.648558i \(0.775372\pi\)
\(878\) 3844.64 0.147780
\(879\) 19698.3 0.755867
\(880\) 977.500 0.0374449
\(881\) 25803.5 0.986769 0.493384 0.869811i \(-0.335760\pi\)
0.493384 + 0.869811i \(0.335760\pi\)
\(882\) 2441.31 0.0932010
\(883\) −8861.95 −0.337744 −0.168872 0.985638i \(-0.554013\pi\)
−0.168872 + 0.985638i \(0.554013\pi\)
\(884\) 12330.3 0.469131
\(885\) 30308.9 1.15121
\(886\) −22326.2 −0.846573
\(887\) −17420.1 −0.659423 −0.329712 0.944082i \(-0.606951\pi\)
−0.329712 + 0.944082i \(0.606951\pi\)
\(888\) 3589.56 0.135651
\(889\) −29329.4 −1.10650
\(890\) 26451.4 0.996238
\(891\) −1573.12 −0.0591486
\(892\) 2668.87 0.100180
\(893\) −55169.8 −2.06740
\(894\) 8674.82 0.324529
\(895\) −50112.8 −1.87161
\(896\) −11124.2 −0.414768
\(897\) 16294.8 0.606543
\(898\) 17432.3 0.647799
\(899\) −1134.07 −0.0420726
\(900\) −5446.66 −0.201728
\(901\) 15276.1 0.564839
\(902\) −3985.95 −0.147137
\(903\) 1788.31 0.0659040
\(904\) 19847.2 0.730209
\(905\) −7129.16 −0.261858
\(906\) 5395.69 0.197858
\(907\) 6120.82 0.224078 0.112039 0.993704i \(-0.464262\pi\)
0.112039 + 0.993704i \(0.464262\pi\)
\(908\) 17340.9 0.633786
\(909\) −17251.4 −0.629477
\(910\) 11804.5 0.430016
\(911\) −11586.9 −0.421394 −0.210697 0.977551i \(-0.567573\pi\)
−0.210697 + 0.977551i \(0.567573\pi\)
\(912\) −1328.37 −0.0482312
\(913\) −5438.15 −0.197126
\(914\) 22950.4 0.830559
\(915\) −30264.9 −1.09347
\(916\) −18228.1 −0.657504
\(917\) 38076.5 1.37121
\(918\) −4213.09 −0.151474
\(919\) −35347.8 −1.26879 −0.634394 0.773010i \(-0.718750\pi\)
−0.634394 + 0.773010i \(0.718750\pi\)
\(920\) −66375.5 −2.37863
\(921\) 29193.2 1.04446
\(922\) 9744.68 0.348074
\(923\) 11267.8 0.401823
\(924\) 3848.89 0.137034
\(925\) −6618.71 −0.235267
\(926\) 22777.7 0.808340
\(927\) 7760.02 0.274943
\(928\) 3826.26 0.135348
\(929\) −11502.8 −0.406236 −0.203118 0.979154i \(-0.565108\pi\)
−0.203118 + 0.979154i \(0.565108\pi\)
\(930\) 4518.03 0.159303
\(931\) 21062.9 0.741471
\(932\) 7117.58 0.250155
\(933\) 19826.8 0.695713
\(934\) −15821.9 −0.554290
\(935\) 26748.1 0.935568
\(936\) 6162.60 0.215204
\(937\) −6562.11 −0.228788 −0.114394 0.993435i \(-0.536493\pi\)
−0.114394 + 0.993435i \(0.536493\pi\)
\(938\) −17692.0 −0.615848
\(939\) −1807.31 −0.0628108
\(940\) −29883.2 −1.03690
\(941\) 10971.1 0.380072 0.190036 0.981777i \(-0.439140\pi\)
0.190036 + 0.981777i \(0.439140\pi\)
\(942\) −7837.57 −0.271085
\(943\) 20782.2 0.717669
\(944\) 2017.85 0.0695714
\(945\) 5941.80 0.204536
\(946\) 1501.99 0.0516213
\(947\) −5475.36 −0.187883 −0.0939416 0.995578i \(-0.529947\pi\)
−0.0939416 + 0.995578i \(0.529947\pi\)
\(948\) −5697.33 −0.195190
\(949\) 16081.6 0.550086
\(950\) 31899.5 1.08943
\(951\) 13591.8 0.463455
\(952\) 27613.4 0.940080
\(953\) 5188.24 0.176352 0.0881761 0.996105i \(-0.471896\pi\)
0.0881761 + 0.996105i \(0.471896\pi\)
\(954\) 2850.10 0.0967246
\(955\) 48301.5 1.63665
\(956\) 18944.0 0.640892
\(957\) −1252.65 −0.0423118
\(958\) −24579.2 −0.828935
\(959\) −7624.56 −0.256736
\(960\) −16451.5 −0.553093
\(961\) −27008.6 −0.906604
\(962\) 2795.52 0.0936914
\(963\) −2535.88 −0.0848573
\(964\) 32390.0 1.08217
\(965\) 47507.3 1.58478
\(966\) 13622.4 0.453720
\(967\) −20369.6 −0.677398 −0.338699 0.940895i \(-0.609987\pi\)
−0.338699 + 0.940895i \(0.609987\pi\)
\(968\) −21898.5 −0.727113
\(969\) −36349.3 −1.20507
\(970\) 23005.2 0.761496
\(971\) 36713.8 1.21339 0.606695 0.794935i \(-0.292495\pi\)
0.606695 + 0.794935i \(0.292495\pi\)
\(972\) 1157.95 0.0382113
\(973\) −39963.4 −1.31672
\(974\) −3835.91 −0.126192
\(975\) −11363.1 −0.373241
\(976\) −2014.92 −0.0660820
\(977\) 21533.7 0.705142 0.352571 0.935785i \(-0.385308\pi\)
0.352571 + 0.935785i \(0.385308\pi\)
\(978\) 15867.5 0.518799
\(979\) 17993.0 0.587393
\(980\) 11408.9 0.371882
\(981\) 13502.3 0.439446
\(982\) −14664.9 −0.476553
\(983\) 6781.79 0.220046 0.110023 0.993929i \(-0.464907\pi\)
0.110023 + 0.993929i \(0.464907\pi\)
\(984\) 7859.69 0.254632
\(985\) −11792.9 −0.381474
\(986\) −3354.82 −0.108356
\(987\) 16429.3 0.529837
\(988\) 19847.9 0.639116
\(989\) −7831.16 −0.251786
\(990\) 4990.45 0.160209
\(991\) −28393.7 −0.910147 −0.455074 0.890454i \(-0.650387\pi\)
−0.455074 + 0.890454i \(0.650387\pi\)
\(992\) −9387.49 −0.300457
\(993\) 25090.0 0.801821
\(994\) 9419.79 0.300581
\(995\) −45040.7 −1.43506
\(996\) 4002.95 0.127348
\(997\) −50484.8 −1.60368 −0.801841 0.597538i \(-0.796146\pi\)
−0.801841 + 0.597538i \(0.796146\pi\)
\(998\) 36133.6 1.14608
\(999\) 1407.13 0.0445641
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 129.4.a.d.1.3 5
3.2 odd 2 387.4.a.f.1.3 5
4.3 odd 2 2064.4.a.r.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
129.4.a.d.1.3 5 1.1 even 1 trivial
387.4.a.f.1.3 5 3.2 odd 2
2064.4.a.r.1.5 5 4.3 odd 2