Properties

Label 129.4.a.d
Level $129$
Weight $4$
Character orbit 129.a
Self dual yes
Analytic conductor $7.611$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [129,4,Mod(1,129)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("129.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(129, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 129 = 3 \cdot 43 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 129.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-3,-15,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.61124639074\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 27x^{3} + 20x^{2} + 162x + 104 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} - 3 q^{3} + (\beta_{4} + \beta_{2} - \beta_1 + 4) q^{4} + ( - 2 \beta_{4} - \beta_{2} - 2) q^{5} + ( - 3 \beta_1 + 3) q^{6} + (\beta_{4} - \beta_{3} - \beta_{2} + \cdots - 2) q^{7}+ \cdots + (9 \beta_{4} + 18 \beta_{2} + \cdots - 99) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{2} - 15 q^{3} + 19 q^{4} - 12 q^{5} + 9 q^{6} - 18 q^{7} - 15 q^{8} + 45 q^{9} - 32 q^{10} - 60 q^{11} - 57 q^{12} + 42 q^{13} - 246 q^{14} + 36 q^{15} - 93 q^{16} - 72 q^{17} - 27 q^{18} - 102 q^{19}+ \cdots - 540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 27x^{3} + 20x^{2} + 162x + 104 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - 4\nu^{3} - 17\nu^{2} + 54\nu + 44 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 23\nu^{2} + 26\nu + 82 ) / 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{4} + 4\nu^{3} + 23\nu^{2} - 60\nu - 110 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{2} + \beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{4} + 3\beta_{3} + 17\beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 29\beta_{4} + 12\beta_{3} + 23\beta_{2} + 31\beta _1 + 199 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.93121
−1.86717
−0.798544
3.44175
5.15519
−4.93121 −3.00000 16.3169 −10.2967 14.7936 7.71379 −41.0122 9.00000 50.7754
1.2 −2.86717 −3.00000 0.220685 −3.69072 8.60152 29.3827 22.3046 9.00000 10.5819
1.3 −1.79854 −3.00000 −4.76524 15.8745 5.39563 −13.8629 22.9588 9.00000 −28.5510
1.4 2.44175 −3.00000 −2.03788 4.14545 −7.32524 −13.2388 −24.5099 9.00000 10.1221
1.5 4.15519 −3.00000 9.26557 −18.0325 −12.4656 −27.9948 5.25868 9.00000 −74.9284
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(43\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 129.4.a.d 5
3.b odd 2 1 387.4.a.f 5
4.b odd 2 1 2064.4.a.r 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
129.4.a.d 5 1.a even 1 1 trivial
387.4.a.f 5 3.b odd 2 1
2064.4.a.r 5 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} + 3T_{2}^{4} - 25T_{2}^{3} - 63T_{2}^{2} + 118T_{2} + 258 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(129))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + 3 T^{4} + \cdots + 258 \) Copy content Toggle raw display
$3$ \( (T + 3)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + 12 T^{4} + \cdots + 45096 \) Copy content Toggle raw display
$7$ \( T^{5} + 18 T^{4} + \cdots + 1164496 \) Copy content Toggle raw display
$11$ \( T^{5} + 60 T^{4} + \cdots - 2126064 \) Copy content Toggle raw display
$13$ \( T^{5} - 42 T^{4} + \cdots - 522764846 \) Copy content Toggle raw display
$17$ \( T^{5} + 72 T^{4} + \cdots - 39886104 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 5134231024 \) Copy content Toggle raw display
$23$ \( T^{5} + 414 T^{4} + \cdots + 702472416 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 6514826112 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 19376796672 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 24575768064 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 20700418368 \) Copy content Toggle raw display
$43$ \( (T - 43)^{5} \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 292016295936 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 52460054016 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 43217175118848 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 1322936822272 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 74608174759952 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 25283107955328 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 3409901483904 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 804463538176 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 12720053735496 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 215973388228032 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 28\!\cdots\!74 \) Copy content Toggle raw display
show more
show less