Properties

Label 1288.2.a.p
Level $1288$
Weight $2$
Character orbit 1288.a
Self dual yes
Analytic conductor $10.285$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1288,2,Mod(1,1288)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1288, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1288.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1288 = 2^{3} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1288.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-3,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.2847317803\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.3385684.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 12x^{3} + 22x^{2} + 20x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 1) q^{3} + \beta_1 q^{5} + q^{7} + ( - \beta_{4} + 3) q^{9} + ( - \beta_{3} - \beta_{2}) q^{11} + (\beta_{3} + \beta_1 + 1) q^{13} + (\beta_{3} + \beta_{2} - 2 \beta_1) q^{15} + (\beta_1 + 2) q^{17}+ \cdots + ( - 7 \beta_{3} - \beta_{2} + 4 \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{3} + 2 q^{5} + 5 q^{7} + 14 q^{9} - 2 q^{11} + 9 q^{13} - 2 q^{15} + 12 q^{17} - 12 q^{19} - 3 q^{21} - 5 q^{23} + 3 q^{25} + 3 q^{27} + q^{29} - 3 q^{31} - 16 q^{33} + 2 q^{35} + 2 q^{37} + 21 q^{39}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 12x^{3} + 22x^{2} + 20x - 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - 8\nu^{2} + 2\nu - 4 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 12\nu^{2} + 2\nu + 20 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 4\nu^{3} - 8\nu^{2} - 34\nu ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - \beta_{2} + 9\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{3} + 12\beta_{2} - 2\beta _1 + 52 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.66293
−3.17666
3.04812
−1.09901
0.564619
0 −3.37084 0 2.66293 0 1.00000 0 8.36257 0
1.2 0 −2.40396 0 −3.17666 0 1.00000 0 2.77901 0
1.3 0 −0.768257 0 3.04812 0 1.00000 0 −2.40978 0
1.4 0 0.191721 0 −1.09901 0 1.00000 0 −2.96324 0
1.5 0 3.35133 0 0.564619 0 1.00000 0 8.23144 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1288.2.a.p 5
4.b odd 2 1 2576.2.a.be 5
7.b odd 2 1 9016.2.a.bg 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1288.2.a.p 5 1.a even 1 1 trivial
2576.2.a.be 5 4.b odd 2 1
9016.2.a.bg 5 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1288))\):

\( T_{3}^{5} + 3T_{3}^{4} - 10T_{3}^{3} - 34T_{3}^{2} - 14T_{3} + 4 \) Copy content Toggle raw display
\( T_{5}^{5} - 2T_{5}^{4} - 12T_{5}^{3} + 22T_{5}^{2} + 20T_{5} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + 3 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( T^{5} - 2 T^{4} + \cdots - 16 \) Copy content Toggle raw display
$7$ \( (T - 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 2 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$13$ \( T^{5} - 9 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$17$ \( T^{5} - 12 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$19$ \( T^{5} + 12 T^{4} + \cdots + 2560 \) Copy content Toggle raw display
$23$ \( (T + 1)^{5} \) Copy content Toggle raw display
$29$ \( T^{5} - T^{4} + \cdots - 200 \) Copy content Toggle raw display
$31$ \( T^{5} + 3 T^{4} + \cdots + 3592 \) Copy content Toggle raw display
$37$ \( T^{5} - 2 T^{4} + \cdots - 12448 \) Copy content Toggle raw display
$41$ \( T^{5} - 19 T^{4} + \cdots + 5584 \) Copy content Toggle raw display
$43$ \( T^{5} - 136 T^{3} + \cdots + 2048 \) Copy content Toggle raw display
$47$ \( T^{5} - 17 T^{4} + \cdots - 5240 \) Copy content Toggle raw display
$53$ \( (T - 6)^{5} \) Copy content Toggle raw display
$59$ \( T^{5} + 14 T^{4} + \cdots + 80128 \) Copy content Toggle raw display
$61$ \( T^{5} - 2 T^{4} + \cdots - 5200 \) Copy content Toggle raw display
$67$ \( T^{5} + 2 T^{4} + \cdots + 14368 \) Copy content Toggle raw display
$71$ \( T^{5} - 43 T^{4} + \cdots + 102400 \) Copy content Toggle raw display
$73$ \( T^{5} - 17 T^{4} + \cdots + 464 \) Copy content Toggle raw display
$79$ \( T^{5} + 18 T^{4} + \cdots + 16960 \) Copy content Toggle raw display
$83$ \( T^{5} - 2 T^{4} + \cdots - 128 \) Copy content Toggle raw display
$89$ \( T^{5} - 16 T^{4} + \cdots - 5200 \) Copy content Toggle raw display
$97$ \( T^{5} - 18 T^{4} + \cdots + 80704 \) Copy content Toggle raw display
show more
show less