Defining parameters
Level: | \( N \) | \(=\) | \( 1288 = 2^{3} \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1288.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 16 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1288))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 200 | 32 | 168 |
Cusp forms | 185 | 32 | 153 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(22\) | \(3\) | \(19\) | \(21\) | \(3\) | \(18\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(24\) | \(5\) | \(19\) | \(22\) | \(5\) | \(17\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(28\) | \(6\) | \(22\) | \(26\) | \(6\) | \(20\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(26\) | \(2\) | \(24\) | \(24\) | \(2\) | \(22\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(26\) | \(3\) | \(23\) | \(24\) | \(3\) | \(21\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(24\) | \(5\) | \(19\) | \(22\) | \(5\) | \(17\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(24\) | \(4\) | \(20\) | \(22\) | \(4\) | \(18\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(26\) | \(4\) | \(22\) | \(24\) | \(4\) | \(20\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(96\) | \(14\) | \(82\) | \(89\) | \(14\) | \(75\) | \(7\) | \(0\) | \(7\) | |||||
Minus space | \(-\) | \(104\) | \(18\) | \(86\) | \(96\) | \(18\) | \(78\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1288))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1288))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1288)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(644))\)\(^{\oplus 2}\)