Properties

Label 1280.2.c.i.769.1
Level $1280$
Weight $2$
Character 1280.769
Analytic conductor $10.221$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1280,2,Mod(769,1280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1280.769"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,4,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 769.1
Root \(0.517638i\) of defining polynomial
Character \(\chi\) \(=\) 1280.769
Dual form 1280.2.c.i.769.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{3} +(-1.73205 - 1.41421i) q^{5} +2.44949i q^{7} +1.00000 q^{9} +3.46410 q^{11} +(-2.00000 + 2.44949i) q^{15} +4.89898i q^{17} +3.46410 q^{19} +3.46410 q^{21} -2.44949i q^{23} +(1.00000 + 4.89898i) q^{25} -5.65685i q^{27} +4.00000 q^{31} -4.89898i q^{33} +(3.46410 - 4.24264i) q^{35} +8.48528i q^{37} -4.24264i q^{43} +(-1.73205 - 1.41421i) q^{45} -7.34847i q^{47} +1.00000 q^{49} +6.92820 q^{51} -5.65685i q^{53} +(-6.00000 - 4.89898i) q^{55} -4.89898i q^{57} +10.3923 q^{59} +3.46410 q^{61} +2.44949i q^{63} -4.24264i q^{67} -3.46410 q^{69} +12.0000 q^{71} -4.89898i q^{73} +(6.92820 - 1.41421i) q^{75} +8.48528i q^{77} -4.00000 q^{79} -5.00000 q^{81} -9.89949i q^{83} +(6.92820 - 8.48528i) q^{85} -6.00000 q^{89} -5.65685i q^{93} +(-6.00000 - 4.89898i) q^{95} -4.89898i q^{97} +3.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{9} - 8 q^{15} + 4 q^{25} + 16 q^{31} + 4 q^{49} - 24 q^{55} + 48 q^{71} - 16 q^{79} - 20 q^{81} - 24 q^{89} - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421i 0.816497i −0.912871 0.408248i \(-0.866140\pi\)
0.912871 0.408248i \(-0.133860\pi\)
\(4\) 0 0
\(5\) −1.73205 1.41421i −0.774597 0.632456i
\(6\) 0 0
\(7\) 2.44949i 0.925820i 0.886405 + 0.462910i \(0.153195\pi\)
−0.886405 + 0.462910i \(0.846805\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.46410 1.04447 0.522233 0.852803i \(-0.325099\pi\)
0.522233 + 0.852803i \(0.325099\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) −2.00000 + 2.44949i −0.516398 + 0.632456i
\(16\) 0 0
\(17\) 4.89898i 1.18818i 0.804400 + 0.594089i \(0.202487\pi\)
−0.804400 + 0.594089i \(0.797513\pi\)
\(18\) 0 0
\(19\) 3.46410 0.794719 0.397360 0.917663i \(-0.369927\pi\)
0.397360 + 0.917663i \(0.369927\pi\)
\(20\) 0 0
\(21\) 3.46410 0.755929
\(22\) 0 0
\(23\) 2.44949i 0.510754i −0.966842 0.255377i \(-0.917800\pi\)
0.966842 0.255377i \(-0.0821996\pi\)
\(24\) 0 0
\(25\) 1.00000 + 4.89898i 0.200000 + 0.979796i
\(26\) 0 0
\(27\) 5.65685i 1.08866i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 4.89898i 0.852803i
\(34\) 0 0
\(35\) 3.46410 4.24264i 0.585540 0.717137i
\(36\) 0 0
\(37\) 8.48528i 1.39497i 0.716599 + 0.697486i \(0.245698\pi\)
−0.716599 + 0.697486i \(0.754302\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 4.24264i 0.646997i −0.946229 0.323498i \(-0.895141\pi\)
0.946229 0.323498i \(-0.104859\pi\)
\(44\) 0 0
\(45\) −1.73205 1.41421i −0.258199 0.210819i
\(46\) 0 0
\(47\) 7.34847i 1.07188i −0.844255 0.535942i \(-0.819956\pi\)
0.844255 0.535942i \(-0.180044\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 6.92820 0.970143
\(52\) 0 0
\(53\) 5.65685i 0.777029i −0.921443 0.388514i \(-0.872988\pi\)
0.921443 0.388514i \(-0.127012\pi\)
\(54\) 0 0
\(55\) −6.00000 4.89898i −0.809040 0.660578i
\(56\) 0 0
\(57\) 4.89898i 0.648886i
\(58\) 0 0
\(59\) 10.3923 1.35296 0.676481 0.736460i \(-0.263504\pi\)
0.676481 + 0.736460i \(0.263504\pi\)
\(60\) 0 0
\(61\) 3.46410 0.443533 0.221766 0.975100i \(-0.428818\pi\)
0.221766 + 0.975100i \(0.428818\pi\)
\(62\) 0 0
\(63\) 2.44949i 0.308607i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.24264i 0.518321i −0.965834 0.259161i \(-0.916554\pi\)
0.965834 0.259161i \(-0.0834459\pi\)
\(68\) 0 0
\(69\) −3.46410 −0.417029
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 4.89898i 0.573382i −0.958023 0.286691i \(-0.907445\pi\)
0.958023 0.286691i \(-0.0925553\pi\)
\(74\) 0 0
\(75\) 6.92820 1.41421i 0.800000 0.163299i
\(76\) 0 0
\(77\) 8.48528i 0.966988i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) 9.89949i 1.08661i −0.839535 0.543305i \(-0.817173\pi\)
0.839535 0.543305i \(-0.182827\pi\)
\(84\) 0 0
\(85\) 6.92820 8.48528i 0.751469 0.920358i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.65685i 0.586588i
\(94\) 0 0
\(95\) −6.00000 4.89898i −0.615587 0.502625i
\(96\) 0 0
\(97\) 4.89898i 0.497416i −0.968579 0.248708i \(-0.919994\pi\)
0.968579 0.248708i \(-0.0800060\pi\)
\(98\) 0 0
\(99\) 3.46410 0.348155
\(100\) 0 0
\(101\) −13.8564 −1.37876 −0.689382 0.724398i \(-0.742118\pi\)
−0.689382 + 0.724398i \(0.742118\pi\)
\(102\) 0 0
\(103\) 7.34847i 0.724066i 0.932165 + 0.362033i \(0.117917\pi\)
−0.932165 + 0.362033i \(0.882083\pi\)
\(104\) 0 0
\(105\) −6.00000 4.89898i −0.585540 0.478091i
\(106\) 0 0
\(107\) 1.41421i 0.136717i −0.997661 0.0683586i \(-0.978224\pi\)
0.997661 0.0683586i \(-0.0217762\pi\)
\(108\) 0 0
\(109\) −3.46410 −0.331801 −0.165900 0.986143i \(-0.553053\pi\)
−0.165900 + 0.986143i \(0.553053\pi\)
\(110\) 0 0
\(111\) 12.0000 1.13899
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) −3.46410 + 4.24264i −0.323029 + 0.395628i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.19615 9.89949i 0.464758 0.885438i
\(126\) 0 0
\(127\) 17.1464i 1.52150i 0.649045 + 0.760750i \(0.275169\pi\)
−0.649045 + 0.760750i \(0.724831\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) 3.46410 0.302660 0.151330 0.988483i \(-0.451644\pi\)
0.151330 + 0.988483i \(0.451644\pi\)
\(132\) 0 0
\(133\) 8.48528i 0.735767i
\(134\) 0 0
\(135\) −8.00000 + 9.79796i −0.688530 + 0.843274i
\(136\) 0 0
\(137\) 9.79796i 0.837096i 0.908195 + 0.418548i \(0.137461\pi\)
−0.908195 + 0.418548i \(0.862539\pi\)
\(138\) 0 0
\(139\) −10.3923 −0.881464 −0.440732 0.897639i \(-0.645281\pi\)
−0.440732 + 0.897639i \(0.645281\pi\)
\(140\) 0 0
\(141\) −10.3923 −0.875190
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.41421i 0.116642i
\(148\) 0 0
\(149\) 17.3205 1.41895 0.709476 0.704730i \(-0.248932\pi\)
0.709476 + 0.704730i \(0.248932\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 4.89898i 0.396059i
\(154\) 0 0
\(155\) −6.92820 5.65685i −0.556487 0.454369i
\(156\) 0 0
\(157\) 8.48528i 0.677199i 0.940931 + 0.338600i \(0.109953\pi\)
−0.940931 + 0.338600i \(0.890047\pi\)
\(158\) 0 0
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 21.2132i 1.66155i 0.556611 + 0.830773i \(0.312101\pi\)
−0.556611 + 0.830773i \(0.687899\pi\)
\(164\) 0 0
\(165\) −6.92820 + 8.48528i −0.539360 + 0.660578i
\(166\) 0 0
\(167\) 12.2474i 0.947736i −0.880596 0.473868i \(-0.842857\pi\)
0.880596 0.473868i \(-0.157143\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 3.46410 0.264906
\(172\) 0 0
\(173\) 2.82843i 0.215041i 0.994203 + 0.107521i \(0.0342912\pi\)
−0.994203 + 0.107521i \(0.965709\pi\)
\(174\) 0 0
\(175\) −12.0000 + 2.44949i −0.907115 + 0.185164i
\(176\) 0 0
\(177\) 14.6969i 1.10469i
\(178\) 0 0
\(179\) −3.46410 −0.258919 −0.129460 0.991585i \(-0.541324\pi\)
−0.129460 + 0.991585i \(0.541324\pi\)
\(180\) 0 0
\(181\) 13.8564 1.02994 0.514969 0.857209i \(-0.327803\pi\)
0.514969 + 0.857209i \(0.327803\pi\)
\(182\) 0 0
\(183\) 4.89898i 0.362143i
\(184\) 0 0
\(185\) 12.0000 14.6969i 0.882258 1.08054i
\(186\) 0 0
\(187\) 16.9706i 1.24101i
\(188\) 0 0
\(189\) 13.8564 1.00791
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) 24.4949i 1.76318i 0.472015 + 0.881591i \(0.343527\pi\)
−0.472015 + 0.881591i \(0.656473\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.65685i 0.403034i 0.979485 + 0.201517i \(0.0645872\pi\)
−0.979485 + 0.201517i \(0.935413\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) −6.00000 −0.423207
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.44949i 0.170251i
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −24.2487 −1.66935 −0.834675 0.550743i \(-0.814345\pi\)
−0.834675 + 0.550743i \(0.814345\pi\)
\(212\) 0 0
\(213\) 16.9706i 1.16280i
\(214\) 0 0
\(215\) −6.00000 + 7.34847i −0.409197 + 0.501161i
\(216\) 0 0
\(217\) 9.79796i 0.665129i
\(218\) 0 0
\(219\) −6.92820 −0.468165
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 22.0454i 1.47627i −0.674653 0.738135i \(-0.735707\pi\)
0.674653 0.738135i \(-0.264293\pi\)
\(224\) 0 0
\(225\) 1.00000 + 4.89898i 0.0666667 + 0.326599i
\(226\) 0 0
\(227\) 1.41421i 0.0938647i −0.998898 0.0469323i \(-0.985055\pi\)
0.998898 0.0469323i \(-0.0149445\pi\)
\(228\) 0 0
\(229\) −27.7128 −1.83131 −0.915657 0.401960i \(-0.868329\pi\)
−0.915657 + 0.401960i \(0.868329\pi\)
\(230\) 0 0
\(231\) 12.0000 0.789542
\(232\) 0 0
\(233\) 14.6969i 0.962828i 0.876493 + 0.481414i \(0.159877\pi\)
−0.876493 + 0.481414i \(0.840123\pi\)
\(234\) 0 0
\(235\) −10.3923 + 12.7279i −0.677919 + 0.830278i
\(236\) 0 0
\(237\) 5.65685i 0.367452i
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) 4.00000 0.257663 0.128831 0.991667i \(-0.458877\pi\)
0.128831 + 0.991667i \(0.458877\pi\)
\(242\) 0 0
\(243\) 9.89949i 0.635053i
\(244\) 0 0
\(245\) −1.73205 1.41421i −0.110657 0.0903508i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −14.0000 −0.887214
\(250\) 0 0
\(251\) −10.3923 −0.655956 −0.327978 0.944685i \(-0.606367\pi\)
−0.327978 + 0.944685i \(0.606367\pi\)
\(252\) 0 0
\(253\) 8.48528i 0.533465i
\(254\) 0 0
\(255\) −12.0000 9.79796i −0.751469 0.613572i
\(256\) 0 0
\(257\) 9.79796i 0.611180i 0.952163 + 0.305590i \(0.0988537\pi\)
−0.952163 + 0.305590i \(0.901146\pi\)
\(258\) 0 0
\(259\) −20.7846 −1.29149
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.34847i 0.453126i −0.973997 0.226563i \(-0.927251\pi\)
0.973997 0.226563i \(-0.0727489\pi\)
\(264\) 0 0
\(265\) −8.00000 + 9.79796i −0.491436 + 0.601884i
\(266\) 0 0
\(267\) 8.48528i 0.519291i
\(268\) 0 0
\(269\) −10.3923 −0.633630 −0.316815 0.948487i \(-0.602613\pi\)
−0.316815 + 0.948487i \(0.602613\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.46410 + 16.9706i 0.208893 + 1.02336i
\(276\) 0 0
\(277\) 25.4558i 1.52949i −0.644331 0.764747i \(-0.722864\pi\)
0.644331 0.764747i \(-0.277136\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) 12.0000 0.715860 0.357930 0.933748i \(-0.383483\pi\)
0.357930 + 0.933748i \(0.383483\pi\)
\(282\) 0 0
\(283\) 21.2132i 1.26099i 0.776192 + 0.630497i \(0.217149\pi\)
−0.776192 + 0.630497i \(0.782851\pi\)
\(284\) 0 0
\(285\) −6.92820 + 8.48528i −0.410391 + 0.502625i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −7.00000 −0.411765
\(290\) 0 0
\(291\) −6.92820 −0.406138
\(292\) 0 0
\(293\) 19.7990i 1.15667i 0.815800 + 0.578335i \(0.196297\pi\)
−0.815800 + 0.578335i \(0.803703\pi\)
\(294\) 0 0
\(295\) −18.0000 14.6969i −1.04800 0.855689i
\(296\) 0 0
\(297\) 19.5959i 1.13707i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 10.3923 0.599002
\(302\) 0 0
\(303\) 19.5959i 1.12576i
\(304\) 0 0
\(305\) −6.00000 4.89898i −0.343559 0.280515i
\(306\) 0 0
\(307\) 29.6985i 1.69498i 0.530810 + 0.847491i \(0.321888\pi\)
−0.530810 + 0.847491i \(0.678112\pi\)
\(308\) 0 0
\(309\) 10.3923 0.591198
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 9.79796i 0.553813i −0.960897 0.276907i \(-0.910691\pi\)
0.960897 0.276907i \(-0.0893093\pi\)
\(314\) 0 0
\(315\) 3.46410 4.24264i 0.195180 0.239046i
\(316\) 0 0
\(317\) 28.2843i 1.58860i −0.607524 0.794301i \(-0.707837\pi\)
0.607524 0.794301i \(-0.292163\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −2.00000 −0.111629
\(322\) 0 0
\(323\) 16.9706i 0.944267i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4.89898i 0.270914i
\(328\) 0 0
\(329\) 18.0000 0.992372
\(330\) 0 0
\(331\) −31.1769 −1.71364 −0.856819 0.515617i \(-0.827563\pi\)
−0.856819 + 0.515617i \(0.827563\pi\)
\(332\) 0 0
\(333\) 8.48528i 0.464991i
\(334\) 0 0
\(335\) −6.00000 + 7.34847i −0.327815 + 0.401490i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 13.8564 0.750366
\(342\) 0 0
\(343\) 19.5959i 1.05808i
\(344\) 0 0
\(345\) 6.00000 + 4.89898i 0.323029 + 0.263752i
\(346\) 0 0
\(347\) 15.5563i 0.835109i −0.908652 0.417554i \(-0.862887\pi\)
0.908652 0.417554i \(-0.137113\pi\)
\(348\) 0 0
\(349\) −13.8564 −0.741716 −0.370858 0.928689i \(-0.620936\pi\)
−0.370858 + 0.928689i \(0.620936\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 29.3939i 1.56448i −0.622978 0.782239i \(-0.714078\pi\)
0.622978 0.782239i \(-0.285922\pi\)
\(354\) 0 0
\(355\) −20.7846 16.9706i −1.10313 0.900704i
\(356\) 0 0
\(357\) 16.9706i 0.898177i
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −7.00000 −0.368421
\(362\) 0 0
\(363\) 1.41421i 0.0742270i
\(364\) 0 0
\(365\) −6.92820 + 8.48528i −0.362639 + 0.444140i
\(366\) 0 0
\(367\) 12.2474i 0.639312i −0.947534 0.319656i \(-0.896433\pi\)
0.947534 0.319656i \(-0.103567\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.8564 0.719389
\(372\) 0 0
\(373\) 8.48528i 0.439351i 0.975573 + 0.219676i \(0.0704999\pi\)
−0.975573 + 0.219676i \(0.929500\pi\)
\(374\) 0 0
\(375\) −14.0000 7.34847i −0.722957 0.379473i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −24.2487 −1.24557 −0.622786 0.782392i \(-0.713999\pi\)
−0.622786 + 0.782392i \(0.713999\pi\)
\(380\) 0 0
\(381\) 24.2487 1.24230
\(382\) 0 0
\(383\) 26.9444i 1.37679i 0.725334 + 0.688397i \(0.241685\pi\)
−0.725334 + 0.688397i \(0.758315\pi\)
\(384\) 0 0
\(385\) 12.0000 14.6969i 0.611577 0.749025i
\(386\) 0 0
\(387\) 4.24264i 0.215666i
\(388\) 0 0
\(389\) 3.46410 0.175637 0.0878185 0.996136i \(-0.472010\pi\)
0.0878185 + 0.996136i \(0.472010\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 4.89898i 0.247121i
\(394\) 0 0
\(395\) 6.92820 + 5.65685i 0.348596 + 0.284627i
\(396\) 0 0
\(397\) 16.9706i 0.851728i −0.904787 0.425864i \(-0.859970\pi\)
0.904787 0.425864i \(-0.140030\pi\)
\(398\) 0 0
\(399\) 12.0000 0.600751
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 8.66025 + 7.07107i 0.430331 + 0.351364i
\(406\) 0 0
\(407\) 29.3939i 1.45700i
\(408\) 0 0
\(409\) −32.0000 −1.58230 −0.791149 0.611623i \(-0.790517\pi\)
−0.791149 + 0.611623i \(0.790517\pi\)
\(410\) 0 0
\(411\) 13.8564 0.683486
\(412\) 0 0
\(413\) 25.4558i 1.25260i
\(414\) 0 0
\(415\) −14.0000 + 17.1464i −0.687233 + 0.841685i
\(416\) 0 0
\(417\) 14.6969i 0.719712i
\(418\) 0 0
\(419\) 10.3923 0.507697 0.253849 0.967244i \(-0.418303\pi\)
0.253849 + 0.967244i \(0.418303\pi\)
\(420\) 0 0
\(421\) −24.2487 −1.18181 −0.590905 0.806741i \(-0.701229\pi\)
−0.590905 + 0.806741i \(0.701229\pi\)
\(422\) 0 0
\(423\) 7.34847i 0.357295i
\(424\) 0 0
\(425\) −24.0000 + 4.89898i −1.16417 + 0.237635i
\(426\) 0 0
\(427\) 8.48528i 0.410632i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 4.89898i 0.235430i −0.993047 0.117715i \(-0.962443\pi\)
0.993047 0.117715i \(-0.0375569\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.48528i 0.405906i
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 1.41421i 0.0671913i −0.999436 0.0335957i \(-0.989304\pi\)
0.999436 0.0335957i \(-0.0106958\pi\)
\(444\) 0 0
\(445\) 10.3923 + 8.48528i 0.492642 + 0.402241i
\(446\) 0 0
\(447\) 24.4949i 1.15857i
\(448\) 0 0
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 22.6274i 1.06313i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.5959i 0.916658i −0.888783 0.458329i \(-0.848448\pi\)
0.888783 0.458329i \(-0.151552\pi\)
\(458\) 0 0
\(459\) 27.7128 1.29352
\(460\) 0 0
\(461\) −13.8564 −0.645357 −0.322679 0.946509i \(-0.604583\pi\)
−0.322679 + 0.946509i \(0.604583\pi\)
\(462\) 0 0
\(463\) 17.1464i 0.796862i −0.917198 0.398431i \(-0.869555\pi\)
0.917198 0.398431i \(-0.130445\pi\)
\(464\) 0 0
\(465\) −8.00000 + 9.79796i −0.370991 + 0.454369i
\(466\) 0 0
\(467\) 7.07107i 0.327210i −0.986526 0.163605i \(-0.947688\pi\)
0.986526 0.163605i \(-0.0523123\pi\)
\(468\) 0 0
\(469\) 10.3923 0.479872
\(470\) 0 0
\(471\) 12.0000 0.552931
\(472\) 0 0
\(473\) 14.6969i 0.675766i
\(474\) 0 0
\(475\) 3.46410 + 16.9706i 0.158944 + 0.778663i
\(476\) 0 0
\(477\) 5.65685i 0.259010i
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 8.48528i 0.386094i
\(484\) 0 0
\(485\) −6.92820 + 8.48528i −0.314594 + 0.385297i
\(486\) 0 0
\(487\) 7.34847i 0.332991i −0.986042 0.166495i \(-0.946755\pi\)
0.986042 0.166495i \(-0.0532451\pi\)
\(488\) 0 0
\(489\) 30.0000 1.35665
\(490\) 0 0
\(491\) 24.2487 1.09433 0.547165 0.837025i \(-0.315707\pi\)
0.547165 + 0.837025i \(0.315707\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −6.00000 4.89898i −0.269680 0.220193i
\(496\) 0 0
\(497\) 29.3939i 1.31850i
\(498\) 0 0
\(499\) −17.3205 −0.775372 −0.387686 0.921791i \(-0.626726\pi\)
−0.387686 + 0.921791i \(0.626726\pi\)
\(500\) 0 0
\(501\) −17.3205 −0.773823
\(502\) 0 0
\(503\) 12.2474i 0.546087i −0.962002 0.273043i \(-0.911970\pi\)
0.962002 0.273043i \(-0.0880303\pi\)
\(504\) 0 0
\(505\) 24.0000 + 19.5959i 1.06799 + 0.872007i
\(506\) 0 0
\(507\) 18.3848i 0.816497i
\(508\) 0 0
\(509\) 27.7128 1.22835 0.614174 0.789170i \(-0.289489\pi\)
0.614174 + 0.789170i \(0.289489\pi\)
\(510\) 0 0
\(511\) 12.0000 0.530849
\(512\) 0 0
\(513\) 19.5959i 0.865181i
\(514\) 0 0
\(515\) 10.3923 12.7279i 0.457940 0.560859i
\(516\) 0 0
\(517\) 25.4558i 1.11955i
\(518\) 0 0
\(519\) 4.00000 0.175581
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 12.7279i 0.556553i −0.960501 0.278277i \(-0.910237\pi\)
0.960501 0.278277i \(-0.0897632\pi\)
\(524\) 0 0
\(525\) 3.46410 + 16.9706i 0.151186 + 0.740656i
\(526\) 0 0
\(527\) 19.5959i 0.853612i
\(528\) 0 0
\(529\) 17.0000 0.739130
\(530\) 0 0
\(531\) 10.3923 0.450988
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −2.00000 + 2.44949i −0.0864675 + 0.105901i
\(536\) 0 0
\(537\) 4.89898i 0.211407i
\(538\) 0 0
\(539\) 3.46410 0.149209
\(540\) 0 0
\(541\) −41.5692 −1.78720 −0.893600 0.448864i \(-0.851829\pi\)
−0.893600 + 0.448864i \(0.851829\pi\)
\(542\) 0 0
\(543\) 19.5959i 0.840941i
\(544\) 0 0
\(545\) 6.00000 + 4.89898i 0.257012 + 0.209849i
\(546\) 0 0
\(547\) 4.24264i 0.181402i 0.995878 + 0.0907011i \(0.0289108\pi\)
−0.995878 + 0.0907011i \(0.971089\pi\)
\(548\) 0 0
\(549\) 3.46410 0.147844
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 9.79796i 0.416652i
\(554\) 0 0
\(555\) −20.7846 16.9706i −0.882258 0.720360i
\(556\) 0 0
\(557\) 14.1421i 0.599222i −0.954062 0.299611i \(-0.903143\pi\)
0.954062 0.299611i \(-0.0968568\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 24.0000 1.01328
\(562\) 0 0
\(563\) 41.0122i 1.72846i −0.503099 0.864229i \(-0.667807\pi\)
0.503099 0.864229i \(-0.332193\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 12.2474i 0.514344i
\(568\) 0 0
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) 3.46410 0.144968 0.0724841 0.997370i \(-0.476907\pi\)
0.0724841 + 0.997370i \(0.476907\pi\)
\(572\) 0 0
\(573\) 33.9411i 1.41791i
\(574\) 0 0
\(575\) 12.0000 2.44949i 0.500435 0.102151i
\(576\) 0 0
\(577\) 29.3939i 1.22368i −0.790980 0.611842i \(-0.790429\pi\)
0.790980 0.611842i \(-0.209571\pi\)
\(578\) 0 0
\(579\) 34.6410 1.43963
\(580\) 0 0
\(581\) 24.2487 1.00601
\(582\) 0 0
\(583\) 19.5959i 0.811580i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.89949i 0.408596i −0.978909 0.204298i \(-0.934509\pi\)
0.978909 0.204298i \(-0.0654911\pi\)
\(588\) 0 0
\(589\) 13.8564 0.570943
\(590\) 0 0
\(591\) 8.00000 0.329076
\(592\) 0 0
\(593\) 9.79796i 0.402354i 0.979555 + 0.201177i \(0.0644766\pi\)
−0.979555 + 0.201177i \(0.935523\pi\)
\(594\) 0 0
\(595\) 20.7846 + 16.9706i 0.852086 + 0.695725i
\(596\) 0 0
\(597\) 5.65685i 0.231520i
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 28.0000 1.14214 0.571072 0.820900i \(-0.306528\pi\)
0.571072 + 0.820900i \(0.306528\pi\)
\(602\) 0 0
\(603\) 4.24264i 0.172774i
\(604\) 0 0
\(605\) −1.73205 1.41421i −0.0704179 0.0574960i
\(606\) 0 0
\(607\) 7.34847i 0.298265i −0.988817 0.149133i \(-0.952352\pi\)
0.988817 0.149133i \(-0.0476481\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 33.9411i 1.37087i 0.728134 + 0.685435i \(0.240388\pi\)
−0.728134 + 0.685435i \(0.759612\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 34.2929i 1.38058i 0.723534 + 0.690289i \(0.242517\pi\)
−0.723534 + 0.690289i \(0.757483\pi\)
\(618\) 0 0
\(619\) 10.3923 0.417702 0.208851 0.977947i \(-0.433028\pi\)
0.208851 + 0.977947i \(0.433028\pi\)
\(620\) 0 0
\(621\) −13.8564 −0.556038
\(622\) 0 0
\(623\) 14.6969i 0.588820i
\(624\) 0 0
\(625\) −23.0000 + 9.79796i −0.920000 + 0.391918i
\(626\) 0 0
\(627\) 16.9706i 0.677739i
\(628\) 0 0
\(629\) −41.5692 −1.65747
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 34.2929i 1.36302i
\(634\) 0 0
\(635\) 24.2487 29.6985i 0.962281 1.17855i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 0 0
\(643\) 29.6985i 1.17119i 0.810602 + 0.585597i \(0.199140\pi\)
−0.810602 + 0.585597i \(0.800860\pi\)
\(644\) 0 0
\(645\) 10.3923 + 8.48528i 0.409197 + 0.334108i
\(646\) 0 0
\(647\) 12.2474i 0.481497i 0.970588 + 0.240748i \(0.0773929\pi\)
−0.970588 + 0.240748i \(0.922607\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 13.8564 0.543075
\(652\) 0 0
\(653\) 11.3137i 0.442740i 0.975190 + 0.221370i \(0.0710528\pi\)
−0.975190 + 0.221370i \(0.928947\pi\)
\(654\) 0 0
\(655\) −6.00000 4.89898i −0.234439 0.191419i
\(656\) 0 0
\(657\) 4.89898i 0.191127i
\(658\) 0 0
\(659\) 24.2487 0.944596 0.472298 0.881439i \(-0.343425\pi\)
0.472298 + 0.881439i \(0.343425\pi\)
\(660\) 0 0
\(661\) 10.3923 0.404214 0.202107 0.979363i \(-0.435221\pi\)
0.202107 + 0.979363i \(0.435221\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.0000 14.6969i 0.465340 0.569923i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −31.1769 −1.20537
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) 34.2929i 1.32189i 0.750433 + 0.660946i \(0.229845\pi\)
−0.750433 + 0.660946i \(0.770155\pi\)
\(674\) 0 0
\(675\) 27.7128 5.65685i 1.06667 0.217732i
\(676\) 0 0
\(677\) 22.6274i 0.869642i −0.900517 0.434821i \(-0.856812\pi\)
0.900517 0.434821i \(-0.143188\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) 0 0
\(681\) −2.00000 −0.0766402
\(682\) 0 0
\(683\) 15.5563i 0.595247i −0.954683 0.297624i \(-0.903806\pi\)
0.954683 0.297624i \(-0.0961940\pi\)
\(684\) 0 0
\(685\) 13.8564 16.9706i 0.529426 0.648412i
\(686\) 0 0
\(687\) 39.1918i 1.49526i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 3.46410 0.131781 0.0658903 0.997827i \(-0.479011\pi\)
0.0658903 + 0.997827i \(0.479011\pi\)
\(692\) 0 0
\(693\) 8.48528i 0.322329i
\(694\) 0 0
\(695\) 18.0000 + 14.6969i 0.682779 + 0.557487i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 20.7846 0.786146
\(700\) 0 0
\(701\) 24.2487 0.915861 0.457931 0.888988i \(-0.348591\pi\)
0.457931 + 0.888988i \(0.348591\pi\)
\(702\) 0 0
\(703\) 29.3939i 1.10861i
\(704\) 0 0
\(705\) 18.0000 + 14.6969i 0.677919 + 0.553519i
\(706\) 0 0
\(707\) 33.9411i 1.27649i
\(708\) 0 0
\(709\) 41.5692 1.56116 0.780582 0.625053i \(-0.214923\pi\)
0.780582 + 0.625053i \(0.214923\pi\)
\(710\) 0 0
\(711\) −4.00000 −0.150012
\(712\) 0 0
\(713\) 9.79796i 0.366936i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 16.9706i 0.633777i
\(718\) 0 0
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) −18.0000 −0.670355
\(722\) 0 0
\(723\) 5.65685i 0.210381i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 46.5403i 1.72608i −0.505132 0.863042i \(-0.668556\pi\)
0.505132 0.863042i \(-0.331444\pi\)
\(728\) 0 0
\(729\) −29.0000 −1.07407
\(730\) 0 0
\(731\) 20.7846 0.768747
\(732\) 0 0
\(733\) 42.4264i 1.56706i 0.621357 + 0.783528i \(0.286582\pi\)
−0.621357 + 0.783528i \(0.713418\pi\)
\(734\) 0 0
\(735\) −2.00000 + 2.44949i −0.0737711 + 0.0903508i
\(736\) 0 0
\(737\) 14.6969i 0.541369i
\(738\) 0 0
\(739\) −3.46410 −0.127429 −0.0637145 0.997968i \(-0.520295\pi\)
−0.0637145 + 0.997968i \(0.520295\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 51.4393i 1.88712i 0.331195 + 0.943562i \(0.392548\pi\)
−0.331195 + 0.943562i \(0.607452\pi\)
\(744\) 0 0
\(745\) −30.0000 24.4949i −1.09911 0.897424i
\(746\) 0 0
\(747\) 9.89949i 0.362204i
\(748\) 0 0
\(749\) 3.46410 0.126576
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 14.6969i 0.535586i
\(754\) 0 0
\(755\) −27.7128 22.6274i −1.00857 0.823496i
\(756\) 0 0
\(757\) 25.4558i 0.925208i 0.886565 + 0.462604i \(0.153085\pi\)
−0.886565 + 0.462604i \(0.846915\pi\)
\(758\) 0 0
\(759\) −12.0000 −0.435572
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 8.48528i 0.307188i
\(764\) 0 0
\(765\) 6.92820 8.48528i 0.250490 0.306786i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 13.8564 0.499026
\(772\) 0 0
\(773\) 28.2843i 1.01731i −0.860969 0.508657i \(-0.830142\pi\)
0.860969 0.508657i \(-0.169858\pi\)
\(774\) 0 0
\(775\) 4.00000 + 19.5959i 0.143684 + 0.703906i
\(776\) 0 0
\(777\) 29.3939i 1.05450i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 41.5692 1.48746
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 12.0000 14.6969i 0.428298 0.524556i
\(786\) 0 0
\(787\) 21.2132i 0.756169i −0.925771 0.378085i \(-0.876583\pi\)
0.925771 0.378085i \(-0.123417\pi\)
\(788\) 0 0
\(789\) −10.3923 −0.369976
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 13.8564 + 11.3137i 0.491436 + 0.401256i
\(796\) 0 0
\(797\) 39.5980i 1.40263i 0.712850 + 0.701316i \(0.247404\pi\)
−0.712850 + 0.701316i \(0.752596\pi\)
\(798\) 0 0
\(799\) 36.0000 1.27359
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) 16.9706i 0.598878i
\(804\) 0 0
\(805\) −10.3923 8.48528i −0.366281 0.299067i
\(806\) 0 0
\(807\) 14.6969i 0.517357i
\(808\) 0 0
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) −10.3923 −0.364923 −0.182462 0.983213i \(-0.558407\pi\)
−0.182462 + 0.983213i \(0.558407\pi\)
\(812\) 0 0
\(813\) 28.2843i 0.991973i
\(814\) 0 0
\(815\) 30.0000 36.7423i 1.05085 1.28703i
\(816\) 0 0
\(817\) 14.6969i 0.514181i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −31.1769 −1.08808 −0.544041 0.839059i \(-0.683106\pi\)
−0.544041 + 0.839059i \(0.683106\pi\)
\(822\) 0 0
\(823\) 26.9444i 0.939222i 0.882873 + 0.469611i \(0.155606\pi\)
−0.882873 + 0.469611i \(0.844394\pi\)
\(824\) 0 0
\(825\) 24.0000 4.89898i 0.835573 0.170561i
\(826\) 0 0
\(827\) 35.3553i 1.22943i 0.788751 + 0.614713i \(0.210728\pi\)
−0.788751 + 0.614713i \(0.789272\pi\)
\(828\) 0 0
\(829\) −10.3923 −0.360940 −0.180470 0.983581i \(-0.557762\pi\)
−0.180470 + 0.983581i \(0.557762\pi\)
\(830\) 0 0
\(831\) −36.0000 −1.24883
\(832\) 0 0
\(833\) 4.89898i 0.169740i
\(834\) 0 0
\(835\) −17.3205 + 21.2132i −0.599401 + 0.734113i
\(836\) 0 0
\(837\) 22.6274i 0.782118i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 16.9706i 0.584497i
\(844\) 0 0
\(845\) −22.5167 18.3848i −0.774597 0.632456i
\(846\) 0 0
\(847\) 2.44949i 0.0841655i
\(848\) 0 0
\(849\) 30.0000 1.02960
\(850\) 0 0
\(851\) 20.7846 0.712487
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) −6.00000 4.89898i −0.205196 0.167542i
\(856\) 0 0
\(857\) 39.1918i 1.33877i −0.742917 0.669384i \(-0.766558\pi\)
0.742917 0.669384i \(-0.233442\pi\)
\(858\) 0 0
\(859\) −3.46410 −0.118194 −0.0590968 0.998252i \(-0.518822\pi\)
−0.0590968 + 0.998252i \(0.518822\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.44949i 0.0833816i 0.999131 + 0.0416908i \(0.0132744\pi\)
−0.999131 + 0.0416908i \(0.986726\pi\)
\(864\) 0 0
\(865\) 4.00000 4.89898i 0.136004 0.166570i
\(866\) 0 0
\(867\) 9.89949i 0.336204i
\(868\) 0 0
\(869\) −13.8564 −0.470046
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 4.89898i 0.165805i
\(874\) 0 0
\(875\) 24.2487 + 12.7279i 0.819756 + 0.430282i
\(876\) 0 0
\(877\) 8.48528i 0.286528i −0.989685 0.143264i \(-0.954240\pi\)
0.989685 0.143264i \(-0.0457597\pi\)
\(878\) 0 0
\(879\) 28.0000 0.944417
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 4.24264i 0.142776i 0.997449 + 0.0713881i \(0.0227429\pi\)
−0.997449 + 0.0713881i \(0.977257\pi\)
\(884\) 0 0
\(885\) −20.7846 + 25.4558i −0.698667 + 0.855689i
\(886\) 0 0
\(887\) 26.9444i 0.904704i −0.891839 0.452352i \(-0.850585\pi\)
0.891839 0.452352i \(-0.149415\pi\)
\(888\) 0 0
\(889\) −42.0000 −1.40863
\(890\) 0 0
\(891\) −17.3205 −0.580259
\(892\) 0 0
\(893\) 25.4558i 0.851847i
\(894\) 0 0
\(895\) 6.00000 + 4.89898i 0.200558 + 0.163755i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 27.7128 0.923248
\(902\) 0 0
\(903\) 14.6969i 0.489083i
\(904\) 0 0
\(905\) −24.0000 19.5959i −0.797787 0.651390i
\(906\) 0 0
\(907\) 4.24264i 0.140875i 0.997516 + 0.0704373i \(0.0224395\pi\)
−0.997516 + 0.0704373i \(0.977561\pi\)
\(908\) 0 0
\(909\) −13.8564 −0.459588
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 34.2929i 1.13493i
\(914\) 0 0
\(915\) −6.92820 + 8.48528i −0.229039 + 0.280515i
\(916\) 0 0
\(917\) 8.48528i 0.280209i
\(918\) 0 0
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) 0 0
\(921\) 42.0000 1.38395
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −41.5692 + 8.48528i −1.36679 + 0.278994i
\(926\) 0 0
\(927\) 7.34847i 0.241355i
\(928\) 0 0
\(929\) −36.0000 −1.18112 −0.590561 0.806993i \(-0.701093\pi\)
−0.590561 + 0.806993i \(0.701093\pi\)
\(930\) 0 0
\(931\) 3.46410 0.113531
\(932\) 0 0
\(933\) 33.9411i 1.11118i
\(934\) 0 0
\(935\) 24.0000 29.3939i 0.784884 0.961283i
\(936\) 0 0
\(937\) 4.89898i 0.160043i 0.996793 + 0.0800213i \(0.0254988\pi\)
−0.996793 + 0.0800213i \(0.974501\pi\)
\(938\) 0 0
\(939\) −13.8564 −0.452187
\(940\) 0 0
\(941\) 13.8564 0.451706 0.225853 0.974161i \(-0.427483\pi\)
0.225853 + 0.974161i \(0.427483\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −24.0000 19.5959i −0.780720 0.637455i
\(946\) 0 0
\(947\) 41.0122i 1.33272i 0.745631 + 0.666359i \(0.232148\pi\)
−0.745631 + 0.666359i \(0.767852\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −40.0000 −1.29709
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) −41.5692 33.9411i −1.34515 1.09831i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −24.0000 −0.775000
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 1.41421i 0.0455724i
\(964\) 0 0
\(965\) 34.6410 42.4264i 1.11513 1.36575i
\(966\) 0 0
\(967\) 17.1464i 0.551392i 0.961245 + 0.275696i \(0.0889083\pi\)
−0.961245 + 0.275696i \(0.911092\pi\)
\(968\) 0 0
\(969\) 24.0000 0.770991
\(970\) 0 0
\(971\) −3.46410 −0.111168 −0.0555842 0.998454i \(-0.517702\pi\)
−0.0555842 + 0.998454i \(0.517702\pi\)
\(972\) 0 0
\(973\) 25.4558i 0.816077i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 44.0908i 1.41059i −0.708914 0.705295i \(-0.750815\pi\)
0.708914 0.705295i \(-0.249185\pi\)
\(978\) 0 0
\(979\) −20.7846 −0.664279
\(980\) 0 0
\(981\) −3.46410 −0.110600
\(982\) 0 0
\(983\) 56.3383i 1.79691i −0.439064 0.898456i \(-0.644690\pi\)
0.439064 0.898456i \(-0.355310\pi\)
\(984\) 0 0
\(985\) 8.00000 9.79796i 0.254901 0.312189i
\(986\) 0 0
\(987\) 25.4558i 0.810268i
\(988\) 0 0
\(989\) −10.3923 −0.330456
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 44.0908i 1.39918i
\(994\) 0 0
\(995\) 6.92820 + 5.65685i 0.219639 + 0.179334i
\(996\) 0 0
\(997\) 50.9117i 1.61239i 0.591650 + 0.806195i \(0.298477\pi\)
−0.591650 + 0.806195i \(0.701523\pi\)
\(998\) 0 0
\(999\) 48.0000 1.51865
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.c.i.769.1 4
4.3 odd 2 1280.2.c.k.769.3 4
5.2 odd 4 6400.2.a.co.1.1 4
5.3 odd 4 6400.2.a.co.1.4 4
5.4 even 2 inner 1280.2.c.i.769.3 4
8.3 odd 2 1280.2.c.k.769.2 4
8.5 even 2 inner 1280.2.c.i.769.4 4
16.3 odd 4 160.2.f.a.49.2 4
16.5 even 4 40.2.f.a.29.4 yes 4
16.11 odd 4 160.2.f.a.49.3 4
16.13 even 4 40.2.f.a.29.2 yes 4
20.3 even 4 6400.2.a.cm.1.1 4
20.7 even 4 6400.2.a.cm.1.4 4
20.19 odd 2 1280.2.c.k.769.1 4
40.3 even 4 6400.2.a.cm.1.3 4
40.13 odd 4 6400.2.a.co.1.2 4
40.19 odd 2 1280.2.c.k.769.4 4
40.27 even 4 6400.2.a.cm.1.2 4
40.29 even 2 inner 1280.2.c.i.769.2 4
40.37 odd 4 6400.2.a.co.1.3 4
48.5 odd 4 360.2.d.b.109.1 4
48.11 even 4 1440.2.d.c.1009.2 4
48.29 odd 4 360.2.d.b.109.3 4
48.35 even 4 1440.2.d.c.1009.3 4
80.3 even 4 800.2.d.f.401.2 4
80.13 odd 4 200.2.d.e.101.4 4
80.19 odd 4 160.2.f.a.49.4 4
80.27 even 4 800.2.d.f.401.1 4
80.29 even 4 40.2.f.a.29.3 yes 4
80.37 odd 4 200.2.d.e.101.2 4
80.43 even 4 800.2.d.f.401.4 4
80.53 odd 4 200.2.d.e.101.3 4
80.59 odd 4 160.2.f.a.49.1 4
80.67 even 4 800.2.d.f.401.3 4
80.69 even 4 40.2.f.a.29.1 4
80.77 odd 4 200.2.d.e.101.1 4
240.29 odd 4 360.2.d.b.109.2 4
240.53 even 4 1800.2.k.m.901.2 4
240.59 even 4 1440.2.d.c.1009.4 4
240.77 even 4 1800.2.k.m.901.4 4
240.83 odd 4 7200.2.k.l.3601.3 4
240.107 odd 4 7200.2.k.l.3601.2 4
240.149 odd 4 360.2.d.b.109.4 4
240.173 even 4 1800.2.k.m.901.1 4
240.179 even 4 1440.2.d.c.1009.1 4
240.197 even 4 1800.2.k.m.901.3 4
240.203 odd 4 7200.2.k.l.3601.4 4
240.227 odd 4 7200.2.k.l.3601.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.f.a.29.1 4 80.69 even 4
40.2.f.a.29.2 yes 4 16.13 even 4
40.2.f.a.29.3 yes 4 80.29 even 4
40.2.f.a.29.4 yes 4 16.5 even 4
160.2.f.a.49.1 4 80.59 odd 4
160.2.f.a.49.2 4 16.3 odd 4
160.2.f.a.49.3 4 16.11 odd 4
160.2.f.a.49.4 4 80.19 odd 4
200.2.d.e.101.1 4 80.77 odd 4
200.2.d.e.101.2 4 80.37 odd 4
200.2.d.e.101.3 4 80.53 odd 4
200.2.d.e.101.4 4 80.13 odd 4
360.2.d.b.109.1 4 48.5 odd 4
360.2.d.b.109.2 4 240.29 odd 4
360.2.d.b.109.3 4 48.29 odd 4
360.2.d.b.109.4 4 240.149 odd 4
800.2.d.f.401.1 4 80.27 even 4
800.2.d.f.401.2 4 80.3 even 4
800.2.d.f.401.3 4 80.67 even 4
800.2.d.f.401.4 4 80.43 even 4
1280.2.c.i.769.1 4 1.1 even 1 trivial
1280.2.c.i.769.2 4 40.29 even 2 inner
1280.2.c.i.769.3 4 5.4 even 2 inner
1280.2.c.i.769.4 4 8.5 even 2 inner
1280.2.c.k.769.1 4 20.19 odd 2
1280.2.c.k.769.2 4 8.3 odd 2
1280.2.c.k.769.3 4 4.3 odd 2
1280.2.c.k.769.4 4 40.19 odd 2
1440.2.d.c.1009.1 4 240.179 even 4
1440.2.d.c.1009.2 4 48.11 even 4
1440.2.d.c.1009.3 4 48.35 even 4
1440.2.d.c.1009.4 4 240.59 even 4
1800.2.k.m.901.1 4 240.173 even 4
1800.2.k.m.901.2 4 240.53 even 4
1800.2.k.m.901.3 4 240.197 even 4
1800.2.k.m.901.4 4 240.77 even 4
6400.2.a.cm.1.1 4 20.3 even 4
6400.2.a.cm.1.2 4 40.27 even 4
6400.2.a.cm.1.3 4 40.3 even 4
6400.2.a.cm.1.4 4 20.7 even 4
6400.2.a.co.1.1 4 5.2 odd 4
6400.2.a.co.1.2 4 40.13 odd 4
6400.2.a.co.1.3 4 40.37 odd 4
6400.2.a.co.1.4 4 5.3 odd 4
7200.2.k.l.3601.1 4 240.227 odd 4
7200.2.k.l.3601.2 4 240.107 odd 4
7200.2.k.l.3601.3 4 240.83 odd 4
7200.2.k.l.3601.4 4 240.203 odd 4