Defining parameters
Level: | \( N \) | \(=\) | \( 128 = 2^{7} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 128.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(128, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 12 | 36 |
Cusp forms | 16 | 4 | 12 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(128, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
128.2.e.a | $2$ | $1.022$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(2\) | \(0\) | \(q+(-1+i)q^{3}+(1+i)q^{5}+2iq^{7}+\cdots\) |
128.2.e.b | $2$ | $1.022$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(2\) | \(2\) | \(0\) | \(q+(1-i)q^{3}+(1+i)q^{5}-2iq^{7}+iq^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(128, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(128, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)