Properties

Label 128.2
Level 128
Weight 2
Dimension 264
Nonzero newspaces 5
Newform subspaces 11
Sturm bound 2048
Trace bound 9

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 128 = 2^{7} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 11 \)
Sturm bound: \(2048\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(128))\).

Total New Old
Modular forms 592 312 280
Cusp forms 433 264 169
Eisenstein series 159 48 111

Trace form

\( 264q - 16q^{2} - 12q^{3} - 16q^{4} - 16q^{5} - 16q^{6} - 12q^{7} - 16q^{8} - 20q^{9} + O(q^{10}) \) \( 264q - 16q^{2} - 12q^{3} - 16q^{4} - 16q^{5} - 16q^{6} - 12q^{7} - 16q^{8} - 20q^{9} - 16q^{10} - 12q^{11} - 16q^{12} - 16q^{13} - 16q^{14} - 16q^{15} - 16q^{16} - 24q^{17} - 16q^{18} - 12q^{19} - 16q^{20} - 28q^{21} - 16q^{22} - 20q^{23} - 16q^{24} - 36q^{25} - 16q^{26} - 36q^{27} - 16q^{28} - 32q^{29} - 16q^{30} - 32q^{31} - 16q^{32} - 64q^{33} - 16q^{34} - 36q^{35} - 16q^{36} - 32q^{37} - 16q^{38} - 36q^{39} - 16q^{40} - 36q^{41} - 16q^{42} - 20q^{43} - 16q^{44} - 12q^{45} - 16q^{46} - 16q^{47} - 16q^{48} + 4q^{49} + 32q^{50} - 8q^{51} + 80q^{52} + 16q^{53} + 112q^{54} + 20q^{55} + 96q^{56} + 44q^{57} + 128q^{58} + 20q^{59} + 176q^{60} + 48q^{61} + 80q^{62} + 48q^{63} + 176q^{64} + 48q^{65} + 176q^{66} + 28q^{67} + 80q^{68} + 36q^{69} + 176q^{70} + 20q^{71} + 128q^{72} + 44q^{73} + 96q^{74} + 112q^{76} - 12q^{77} + 80q^{78} - 16q^{79} + 32q^{80} - 20q^{81} - 16q^{82} - 52q^{83} - 16q^{84} - 8q^{85} - 16q^{86} - 68q^{87} - 16q^{88} - 84q^{89} - 16q^{90} - 60q^{91} - 16q^{92} - 64q^{93} - 16q^{94} - 72q^{95} - 16q^{96} - 96q^{97} - 16q^{98} - 64q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(128))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
128.2.a \(\chi_{128}(1, \cdot)\) 128.2.a.a 1 1
128.2.a.b 1
128.2.a.c 1
128.2.a.d 1
128.2.b \(\chi_{128}(65, \cdot)\) 128.2.b.a 2 1
128.2.b.b 2
128.2.e \(\chi_{128}(33, \cdot)\) 128.2.e.a 2 2
128.2.e.b 2
128.2.g \(\chi_{128}(17, \cdot)\) 128.2.g.a 4 4
128.2.g.b 8
128.2.i \(\chi_{128}(9, \cdot)\) None 0 8
128.2.k \(\chi_{128}(5, \cdot)\) 128.2.k.a 240 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(128))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(128)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)