Properties

Label 128.12.a.e.1.5
Level $128$
Weight $12$
Character 128.1
Self dual yes
Analytic conductor $98.348$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [128,12,Mod(1,128)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("128.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(128, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 128 = 2^{7} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 128.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-20,0,-1804] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.3479271116\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 4442x^{4} + 153566x^{3} - 1333532x^{2} - 4433532x + 49754286 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{43}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-5.65189\) of defining polynomial
Character \(\chi\) \(=\) 128.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+551.275 q^{3} -3654.34 q^{5} -40487.8 q^{7} +126757. q^{9} +786434. q^{11} -7304.56 q^{13} -2.01455e6 q^{15} +2.76028e6 q^{17} +5.35085e6 q^{19} -2.23199e7 q^{21} -1.21321e7 q^{23} -3.54739e7 q^{25} -2.77786e7 q^{27} +4.12196e7 q^{29} -2.16997e8 q^{31} +4.33541e8 q^{33} +1.47956e8 q^{35} +7.29218e8 q^{37} -4.02682e6 q^{39} +7.55803e8 q^{41} +1.08585e9 q^{43} -4.63214e8 q^{45} -8.69907e8 q^{47} -3.38067e8 q^{49} +1.52167e9 q^{51} +4.14610e9 q^{53} -2.87390e9 q^{55} +2.94979e9 q^{57} +8.16388e9 q^{59} +2.17668e9 q^{61} -5.13212e9 q^{63} +2.66933e7 q^{65} -4.75936e9 q^{67} -6.68811e9 q^{69} +1.55138e10 q^{71} +1.64559e10 q^{73} -1.95559e10 q^{75} -3.18410e10 q^{77} +3.86007e10 q^{79} -3.77683e10 q^{81} -9.96841e9 q^{83} -1.00870e10 q^{85} +2.27234e10 q^{87} +5.42764e10 q^{89} +2.95745e8 q^{91} -1.19625e11 q^{93} -1.95538e10 q^{95} -1.28140e11 q^{97} +9.96862e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 20 q^{3} - 1804 q^{5} + 49368 q^{7} + 313814 q^{9} - 688460 q^{11} - 2290348 q^{13} + 4828264 q^{15} + 4127636 q^{17} + 9936364 q^{19} + 20325616 q^{21} + 9921320 q^{23} + 51633002 q^{25} - 132503384 q^{27}+ \cdots + 240482467988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 551.275 1.30979 0.654895 0.755720i \(-0.272713\pi\)
0.654895 + 0.755720i \(0.272713\pi\)
\(4\) 0 0
\(5\) −3654.34 −0.522967 −0.261483 0.965208i \(-0.584212\pi\)
−0.261483 + 0.965208i \(0.584212\pi\)
\(6\) 0 0
\(7\) −40487.8 −0.910510 −0.455255 0.890361i \(-0.650452\pi\)
−0.455255 + 0.890361i \(0.650452\pi\)
\(8\) 0 0
\(9\) 126757. 0.715548
\(10\) 0 0
\(11\) 786434. 1.47232 0.736160 0.676807i \(-0.236637\pi\)
0.736160 + 0.676807i \(0.236637\pi\)
\(12\) 0 0
\(13\) −7304.56 −0.00545639 −0.00272820 0.999996i \(-0.500868\pi\)
−0.00272820 + 0.999996i \(0.500868\pi\)
\(14\) 0 0
\(15\) −2.01455e6 −0.684976
\(16\) 0 0
\(17\) 2.76028e6 0.471502 0.235751 0.971813i \(-0.424245\pi\)
0.235751 + 0.971813i \(0.424245\pi\)
\(18\) 0 0
\(19\) 5.35085e6 0.495767 0.247884 0.968790i \(-0.420265\pi\)
0.247884 + 0.968790i \(0.420265\pi\)
\(20\) 0 0
\(21\) −2.23199e7 −1.19258
\(22\) 0 0
\(23\) −1.21321e7 −0.393035 −0.196518 0.980500i \(-0.562963\pi\)
−0.196518 + 0.980500i \(0.562963\pi\)
\(24\) 0 0
\(25\) −3.54739e7 −0.726506
\(26\) 0 0
\(27\) −2.77786e7 −0.372572
\(28\) 0 0
\(29\) 4.12196e7 0.373177 0.186589 0.982438i \(-0.440257\pi\)
0.186589 + 0.982438i \(0.440257\pi\)
\(30\) 0 0
\(31\) −2.16997e8 −1.36133 −0.680667 0.732593i \(-0.738310\pi\)
−0.680667 + 0.732593i \(0.738310\pi\)
\(32\) 0 0
\(33\) 4.33541e8 1.92843
\(34\) 0 0
\(35\) 1.47956e8 0.476166
\(36\) 0 0
\(37\) 7.29218e8 1.72881 0.864406 0.502794i \(-0.167694\pi\)
0.864406 + 0.502794i \(0.167694\pi\)
\(38\) 0 0
\(39\) −4.02682e6 −0.00714673
\(40\) 0 0
\(41\) 7.55803e8 1.01882 0.509410 0.860524i \(-0.329864\pi\)
0.509410 + 0.860524i \(0.329864\pi\)
\(42\) 0 0
\(43\) 1.08585e9 1.12641 0.563203 0.826318i \(-0.309569\pi\)
0.563203 + 0.826318i \(0.309569\pi\)
\(44\) 0 0
\(45\) −4.63214e8 −0.374208
\(46\) 0 0
\(47\) −8.69907e8 −0.553267 −0.276633 0.960976i \(-0.589219\pi\)
−0.276633 + 0.960976i \(0.589219\pi\)
\(48\) 0 0
\(49\) −3.38067e8 −0.170972
\(50\) 0 0
\(51\) 1.52167e9 0.617568
\(52\) 0 0
\(53\) 4.14610e9 1.36183 0.680914 0.732364i \(-0.261583\pi\)
0.680914 + 0.732364i \(0.261583\pi\)
\(54\) 0 0
\(55\) −2.87390e9 −0.769974
\(56\) 0 0
\(57\) 2.94979e9 0.649351
\(58\) 0 0
\(59\) 8.16388e9 1.48666 0.743328 0.668927i \(-0.233246\pi\)
0.743328 + 0.668927i \(0.233246\pi\)
\(60\) 0 0
\(61\) 2.17668e9 0.329975 0.164987 0.986296i \(-0.447242\pi\)
0.164987 + 0.986296i \(0.447242\pi\)
\(62\) 0 0
\(63\) −5.13212e9 −0.651514
\(64\) 0 0
\(65\) 2.66933e7 0.00285351
\(66\) 0 0
\(67\) −4.75936e9 −0.430663 −0.215331 0.976541i \(-0.569083\pi\)
−0.215331 + 0.976541i \(0.569083\pi\)
\(68\) 0 0
\(69\) −6.68811e9 −0.514794
\(70\) 0 0
\(71\) 1.55138e10 1.02046 0.510232 0.860037i \(-0.329560\pi\)
0.510232 + 0.860037i \(0.329560\pi\)
\(72\) 0 0
\(73\) 1.64559e10 0.929067 0.464533 0.885556i \(-0.346222\pi\)
0.464533 + 0.885556i \(0.346222\pi\)
\(74\) 0 0
\(75\) −1.95559e10 −0.951570
\(76\) 0 0
\(77\) −3.18410e10 −1.34056
\(78\) 0 0
\(79\) 3.86007e10 1.41139 0.705693 0.708518i \(-0.250636\pi\)
0.705693 + 0.708518i \(0.250636\pi\)
\(80\) 0 0
\(81\) −3.77683e10 −1.20354
\(82\) 0 0
\(83\) −9.96841e9 −0.277777 −0.138888 0.990308i \(-0.544353\pi\)
−0.138888 + 0.990308i \(0.544353\pi\)
\(84\) 0 0
\(85\) −1.00870e10 −0.246580
\(86\) 0 0
\(87\) 2.27234e10 0.488784
\(88\) 0 0
\(89\) 5.42764e10 1.03030 0.515152 0.857099i \(-0.327735\pi\)
0.515152 + 0.857099i \(0.327735\pi\)
\(90\) 0 0
\(91\) 2.95745e8 0.00496810
\(92\) 0 0
\(93\) −1.19625e11 −1.78306
\(94\) 0 0
\(95\) −1.95538e10 −0.259270
\(96\) 0 0
\(97\) −1.28140e11 −1.51510 −0.757549 0.652778i \(-0.773603\pi\)
−0.757549 + 0.652778i \(0.773603\pi\)
\(98\) 0 0
\(99\) 9.96862e10 1.05352
\(100\) 0 0
\(101\) 1.11960e11 1.05997 0.529986 0.848006i \(-0.322197\pi\)
0.529986 + 0.848006i \(0.322197\pi\)
\(102\) 0 0
\(103\) 7.18102e10 0.610354 0.305177 0.952296i \(-0.401284\pi\)
0.305177 + 0.952296i \(0.401284\pi\)
\(104\) 0 0
\(105\) 8.15645e10 0.623677
\(106\) 0 0
\(107\) 8.71862e10 0.600948 0.300474 0.953790i \(-0.402855\pi\)
0.300474 + 0.953790i \(0.402855\pi\)
\(108\) 0 0
\(109\) −2.95112e11 −1.83714 −0.918568 0.395263i \(-0.870653\pi\)
−0.918568 + 0.395263i \(0.870653\pi\)
\(110\) 0 0
\(111\) 4.02000e11 2.26438
\(112\) 0 0
\(113\) 2.87657e11 1.46874 0.734368 0.678752i \(-0.237479\pi\)
0.734368 + 0.678752i \(0.237479\pi\)
\(114\) 0 0
\(115\) 4.43347e10 0.205544
\(116\) 0 0
\(117\) −9.25906e8 −0.00390431
\(118\) 0 0
\(119\) −1.11757e11 −0.429307
\(120\) 0 0
\(121\) 3.33167e11 1.16773
\(122\) 0 0
\(123\) 4.16656e11 1.33444
\(124\) 0 0
\(125\) 3.08068e11 0.902905
\(126\) 0 0
\(127\) −2.35051e11 −0.631309 −0.315654 0.948874i \(-0.602224\pi\)
−0.315654 + 0.948874i \(0.602224\pi\)
\(128\) 0 0
\(129\) 5.98605e11 1.47536
\(130\) 0 0
\(131\) 5.97200e11 1.35247 0.676235 0.736686i \(-0.263610\pi\)
0.676235 + 0.736686i \(0.263610\pi\)
\(132\) 0 0
\(133\) −2.16644e11 −0.451401
\(134\) 0 0
\(135\) 1.01513e11 0.194843
\(136\) 0 0
\(137\) 7.18124e11 1.27127 0.635633 0.771991i \(-0.280739\pi\)
0.635633 + 0.771991i \(0.280739\pi\)
\(138\) 0 0
\(139\) 5.88675e11 0.962264 0.481132 0.876648i \(-0.340226\pi\)
0.481132 + 0.876648i \(0.340226\pi\)
\(140\) 0 0
\(141\) −4.79558e11 −0.724663
\(142\) 0 0
\(143\) −5.74455e9 −0.00803356
\(144\) 0 0
\(145\) −1.50631e11 −0.195159
\(146\) 0 0
\(147\) −1.86368e11 −0.223937
\(148\) 0 0
\(149\) −1.39301e12 −1.55392 −0.776960 0.629549i \(-0.783239\pi\)
−0.776960 + 0.629549i \(0.783239\pi\)
\(150\) 0 0
\(151\) 1.03117e12 1.06895 0.534477 0.845183i \(-0.320509\pi\)
0.534477 + 0.845183i \(0.320509\pi\)
\(152\) 0 0
\(153\) 3.49885e11 0.337382
\(154\) 0 0
\(155\) 7.92981e11 0.711932
\(156\) 0 0
\(157\) −7.26716e11 −0.608018 −0.304009 0.952669i \(-0.598325\pi\)
−0.304009 + 0.952669i \(0.598325\pi\)
\(158\) 0 0
\(159\) 2.28564e12 1.78371
\(160\) 0 0
\(161\) 4.91200e11 0.357863
\(162\) 0 0
\(163\) 1.12891e12 0.768468 0.384234 0.923236i \(-0.374466\pi\)
0.384234 + 0.923236i \(0.374466\pi\)
\(164\) 0 0
\(165\) −1.58431e12 −1.00850
\(166\) 0 0
\(167\) 9.81193e11 0.584539 0.292270 0.956336i \(-0.405590\pi\)
0.292270 + 0.956336i \(0.405590\pi\)
\(168\) 0 0
\(169\) −1.79211e12 −0.999970
\(170\) 0 0
\(171\) 6.78259e11 0.354745
\(172\) 0 0
\(173\) 9.41584e11 0.461961 0.230981 0.972958i \(-0.425807\pi\)
0.230981 + 0.972958i \(0.425807\pi\)
\(174\) 0 0
\(175\) 1.43626e12 0.661491
\(176\) 0 0
\(177\) 4.50054e12 1.94721
\(178\) 0 0
\(179\) −4.29763e12 −1.74798 −0.873991 0.485942i \(-0.838477\pi\)
−0.873991 + 0.485942i \(0.838477\pi\)
\(180\) 0 0
\(181\) −2.08789e12 −0.798868 −0.399434 0.916762i \(-0.630793\pi\)
−0.399434 + 0.916762i \(0.630793\pi\)
\(182\) 0 0
\(183\) 1.19995e12 0.432197
\(184\) 0 0
\(185\) −2.66481e12 −0.904111
\(186\) 0 0
\(187\) 2.17078e12 0.694202
\(188\) 0 0
\(189\) 1.12469e12 0.339230
\(190\) 0 0
\(191\) 4.60932e12 1.31206 0.656029 0.754736i \(-0.272235\pi\)
0.656029 + 0.754736i \(0.272235\pi\)
\(192\) 0 0
\(193\) −1.69638e12 −0.455992 −0.227996 0.973662i \(-0.573217\pi\)
−0.227996 + 0.973662i \(0.573217\pi\)
\(194\) 0 0
\(195\) 1.47154e10 0.00373750
\(196\) 0 0
\(197\) −4.63692e12 −1.11344 −0.556718 0.830701i \(-0.687940\pi\)
−0.556718 + 0.830701i \(0.687940\pi\)
\(198\) 0 0
\(199\) −8.14553e12 −1.85024 −0.925119 0.379677i \(-0.876035\pi\)
−0.925119 + 0.379677i \(0.876035\pi\)
\(200\) 0 0
\(201\) −2.62372e12 −0.564077
\(202\) 0 0
\(203\) −1.66889e12 −0.339781
\(204\) 0 0
\(205\) −2.76196e12 −0.532809
\(206\) 0 0
\(207\) −1.53783e12 −0.281236
\(208\) 0 0
\(209\) 4.20809e12 0.729929
\(210\) 0 0
\(211\) 2.68527e12 0.442013 0.221006 0.975272i \(-0.429066\pi\)
0.221006 + 0.975272i \(0.429066\pi\)
\(212\) 0 0
\(213\) 8.55238e12 1.33659
\(214\) 0 0
\(215\) −3.96808e12 −0.589073
\(216\) 0 0
\(217\) 8.78572e12 1.23951
\(218\) 0 0
\(219\) 9.07175e12 1.21688
\(220\) 0 0
\(221\) −2.01626e10 −0.00257270
\(222\) 0 0
\(223\) −3.26277e12 −0.396196 −0.198098 0.980182i \(-0.563476\pi\)
−0.198098 + 0.980182i \(0.563476\pi\)
\(224\) 0 0
\(225\) −4.49658e12 −0.519850
\(226\) 0 0
\(227\) −6.95158e12 −0.765493 −0.382746 0.923853i \(-0.625022\pi\)
−0.382746 + 0.923853i \(0.625022\pi\)
\(228\) 0 0
\(229\) 1.76851e13 1.85572 0.927859 0.372931i \(-0.121647\pi\)
0.927859 + 0.372931i \(0.121647\pi\)
\(230\) 0 0
\(231\) −1.75531e13 −1.75585
\(232\) 0 0
\(233\) 7.22622e12 0.689372 0.344686 0.938718i \(-0.387985\pi\)
0.344686 + 0.938718i \(0.387985\pi\)
\(234\) 0 0
\(235\) 3.17894e12 0.289340
\(236\) 0 0
\(237\) 2.12796e13 1.84862
\(238\) 0 0
\(239\) 6.24761e12 0.518233 0.259117 0.965846i \(-0.416569\pi\)
0.259117 + 0.965846i \(0.416569\pi\)
\(240\) 0 0
\(241\) −1.87686e13 −1.48709 −0.743545 0.668685i \(-0.766857\pi\)
−0.743545 + 0.668685i \(0.766857\pi\)
\(242\) 0 0
\(243\) −1.58998e13 −1.20381
\(244\) 0 0
\(245\) 1.23541e12 0.0894126
\(246\) 0 0
\(247\) −3.90856e10 −0.00270510
\(248\) 0 0
\(249\) −5.49533e12 −0.363829
\(250\) 0 0
\(251\) −1.05783e13 −0.670210 −0.335105 0.942181i \(-0.608772\pi\)
−0.335105 + 0.942181i \(0.608772\pi\)
\(252\) 0 0
\(253\) −9.54107e12 −0.578674
\(254\) 0 0
\(255\) −5.56071e12 −0.322968
\(256\) 0 0
\(257\) −2.56310e13 −1.42605 −0.713023 0.701141i \(-0.752674\pi\)
−0.713023 + 0.701141i \(0.752674\pi\)
\(258\) 0 0
\(259\) −2.95244e13 −1.57410
\(260\) 0 0
\(261\) 5.22489e12 0.267026
\(262\) 0 0
\(263\) −2.53528e13 −1.24242 −0.621211 0.783643i \(-0.713359\pi\)
−0.621211 + 0.783643i \(0.713359\pi\)
\(264\) 0 0
\(265\) −1.51512e13 −0.712190
\(266\) 0 0
\(267\) 2.99212e13 1.34948
\(268\) 0 0
\(269\) −8.98689e12 −0.389020 −0.194510 0.980901i \(-0.562312\pi\)
−0.194510 + 0.980901i \(0.562312\pi\)
\(270\) 0 0
\(271\) 3.94576e13 1.63983 0.819916 0.572484i \(-0.194020\pi\)
0.819916 + 0.572484i \(0.194020\pi\)
\(272\) 0 0
\(273\) 1.63037e11 0.00650717
\(274\) 0 0
\(275\) −2.78979e13 −1.06965
\(276\) 0 0
\(277\) 1.74960e13 0.644614 0.322307 0.946635i \(-0.395542\pi\)
0.322307 + 0.946635i \(0.395542\pi\)
\(278\) 0 0
\(279\) −2.75059e13 −0.974099
\(280\) 0 0
\(281\) −1.03034e13 −0.350830 −0.175415 0.984495i \(-0.556127\pi\)
−0.175415 + 0.984495i \(0.556127\pi\)
\(282\) 0 0
\(283\) −5.18756e12 −0.169878 −0.0849391 0.996386i \(-0.527070\pi\)
−0.0849391 + 0.996386i \(0.527070\pi\)
\(284\) 0 0
\(285\) −1.07795e13 −0.339589
\(286\) 0 0
\(287\) −3.06008e13 −0.927646
\(288\) 0 0
\(289\) −2.66528e13 −0.777686
\(290\) 0 0
\(291\) −7.06405e13 −1.98446
\(292\) 0 0
\(293\) −2.39851e12 −0.0648888 −0.0324444 0.999474i \(-0.510329\pi\)
−0.0324444 + 0.999474i \(0.510329\pi\)
\(294\) 0 0
\(295\) −2.98336e13 −0.777471
\(296\) 0 0
\(297\) −2.18461e13 −0.548545
\(298\) 0 0
\(299\) 8.86194e10 0.00214456
\(300\) 0 0
\(301\) −4.39638e13 −1.02560
\(302\) 0 0
\(303\) 6.17207e13 1.38834
\(304\) 0 0
\(305\) −7.95433e12 −0.172566
\(306\) 0 0
\(307\) −2.49590e13 −0.522356 −0.261178 0.965291i \(-0.584111\pi\)
−0.261178 + 0.965291i \(0.584111\pi\)
\(308\) 0 0
\(309\) 3.95872e13 0.799435
\(310\) 0 0
\(311\) 3.76443e13 0.733698 0.366849 0.930281i \(-0.380437\pi\)
0.366849 + 0.930281i \(0.380437\pi\)
\(312\) 0 0
\(313\) −3.25337e12 −0.0612125 −0.0306063 0.999532i \(-0.509744\pi\)
−0.0306063 + 0.999532i \(0.509744\pi\)
\(314\) 0 0
\(315\) 1.87545e13 0.340720
\(316\) 0 0
\(317\) 6.95267e13 1.21990 0.609952 0.792438i \(-0.291189\pi\)
0.609952 + 0.792438i \(0.291189\pi\)
\(318\) 0 0
\(319\) 3.24165e13 0.549436
\(320\) 0 0
\(321\) 4.80636e13 0.787116
\(322\) 0 0
\(323\) 1.47698e13 0.233755
\(324\) 0 0
\(325\) 2.59121e11 0.00396410
\(326\) 0 0
\(327\) −1.62688e14 −2.40626
\(328\) 0 0
\(329\) 3.52206e13 0.503755
\(330\) 0 0
\(331\) 3.29777e13 0.456212 0.228106 0.973636i \(-0.426747\pi\)
0.228106 + 0.973636i \(0.426747\pi\)
\(332\) 0 0
\(333\) 9.24337e13 1.23705
\(334\) 0 0
\(335\) 1.73923e13 0.225222
\(336\) 0 0
\(337\) 9.62604e13 1.20638 0.603189 0.797599i \(-0.293897\pi\)
0.603189 + 0.797599i \(0.293897\pi\)
\(338\) 0 0
\(339\) 1.58578e14 1.92373
\(340\) 0 0
\(341\) −1.70654e14 −2.00432
\(342\) 0 0
\(343\) 9.37451e13 1.06618
\(344\) 0 0
\(345\) 2.44406e13 0.269220
\(346\) 0 0
\(347\) 1.78648e14 1.90627 0.953137 0.302540i \(-0.0978345\pi\)
0.953137 + 0.302540i \(0.0978345\pi\)
\(348\) 0 0
\(349\) 9.24872e13 0.956185 0.478092 0.878310i \(-0.341328\pi\)
0.478092 + 0.878310i \(0.341328\pi\)
\(350\) 0 0
\(351\) 2.02911e11 0.00203290
\(352\) 0 0
\(353\) 7.79284e13 0.756719 0.378360 0.925659i \(-0.376488\pi\)
0.378360 + 0.925659i \(0.376488\pi\)
\(354\) 0 0
\(355\) −5.66927e13 −0.533668
\(356\) 0 0
\(357\) −6.16091e13 −0.562302
\(358\) 0 0
\(359\) −1.85589e14 −1.64260 −0.821302 0.570494i \(-0.806752\pi\)
−0.821302 + 0.570494i \(0.806752\pi\)
\(360\) 0 0
\(361\) −8.78587e13 −0.754215
\(362\) 0 0
\(363\) 1.83666e14 1.52948
\(364\) 0 0
\(365\) −6.01356e13 −0.485871
\(366\) 0 0
\(367\) 1.51794e14 1.19012 0.595062 0.803680i \(-0.297128\pi\)
0.595062 + 0.803680i \(0.297128\pi\)
\(368\) 0 0
\(369\) 9.58035e13 0.729015
\(370\) 0 0
\(371\) −1.67866e14 −1.23996
\(372\) 0 0
\(373\) −1.01362e14 −0.726900 −0.363450 0.931614i \(-0.618401\pi\)
−0.363450 + 0.931614i \(0.618401\pi\)
\(374\) 0 0
\(375\) 1.69830e14 1.18262
\(376\) 0 0
\(377\) −3.01091e11 −0.00203620
\(378\) 0 0
\(379\) −1.53470e14 −1.00811 −0.504055 0.863672i \(-0.668159\pi\)
−0.504055 + 0.863672i \(0.668159\pi\)
\(380\) 0 0
\(381\) −1.29578e14 −0.826881
\(382\) 0 0
\(383\) 2.10193e14 1.30324 0.651622 0.758544i \(-0.274089\pi\)
0.651622 + 0.758544i \(0.274089\pi\)
\(384\) 0 0
\(385\) 1.16358e14 0.701069
\(386\) 0 0
\(387\) 1.37640e14 0.805999
\(388\) 0 0
\(389\) −2.05132e13 −0.116765 −0.0583823 0.998294i \(-0.518594\pi\)
−0.0583823 + 0.998294i \(0.518594\pi\)
\(390\) 0 0
\(391\) −3.34879e13 −0.185317
\(392\) 0 0
\(393\) 3.29221e14 1.77145
\(394\) 0 0
\(395\) −1.41060e14 −0.738108
\(396\) 0 0
\(397\) −2.03637e14 −1.03636 −0.518178 0.855273i \(-0.673389\pi\)
−0.518178 + 0.855273i \(0.673389\pi\)
\(398\) 0 0
\(399\) −1.19430e14 −0.591240
\(400\) 0 0
\(401\) −3.43647e14 −1.65508 −0.827538 0.561409i \(-0.810259\pi\)
−0.827538 + 0.561409i \(0.810259\pi\)
\(402\) 0 0
\(403\) 1.58507e12 0.00742797
\(404\) 0 0
\(405\) 1.38018e14 0.629411
\(406\) 0 0
\(407\) 5.73482e14 2.54537
\(408\) 0 0
\(409\) −5.75859e13 −0.248793 −0.124396 0.992233i \(-0.539699\pi\)
−0.124396 + 0.992233i \(0.539699\pi\)
\(410\) 0 0
\(411\) 3.95884e14 1.66509
\(412\) 0 0
\(413\) −3.30537e14 −1.35361
\(414\) 0 0
\(415\) 3.64279e13 0.145268
\(416\) 0 0
\(417\) 3.24522e14 1.26036
\(418\) 0 0
\(419\) 4.77562e13 0.180656 0.0903280 0.995912i \(-0.471208\pi\)
0.0903280 + 0.995912i \(0.471208\pi\)
\(420\) 0 0
\(421\) −1.98821e14 −0.732676 −0.366338 0.930482i \(-0.619389\pi\)
−0.366338 + 0.930482i \(0.619389\pi\)
\(422\) 0 0
\(423\) −1.10267e14 −0.395889
\(424\) 0 0
\(425\) −9.79179e13 −0.342549
\(426\) 0 0
\(427\) −8.81290e13 −0.300445
\(428\) 0 0
\(429\) −3.16683e12 −0.0105223
\(430\) 0 0
\(431\) 2.95924e14 0.958419 0.479210 0.877701i \(-0.340923\pi\)
0.479210 + 0.877701i \(0.340923\pi\)
\(432\) 0 0
\(433\) −1.46462e14 −0.462425 −0.231212 0.972903i \(-0.574269\pi\)
−0.231212 + 0.972903i \(0.574269\pi\)
\(434\) 0 0
\(435\) −8.30389e13 −0.255617
\(436\) 0 0
\(437\) −6.49169e13 −0.194854
\(438\) 0 0
\(439\) 2.74004e14 0.802052 0.401026 0.916067i \(-0.368654\pi\)
0.401026 + 0.916067i \(0.368654\pi\)
\(440\) 0 0
\(441\) −4.28525e13 −0.122339
\(442\) 0 0
\(443\) −3.76008e14 −1.04707 −0.523536 0.852004i \(-0.675387\pi\)
−0.523536 + 0.852004i \(0.675387\pi\)
\(444\) 0 0
\(445\) −1.98344e14 −0.538815
\(446\) 0 0
\(447\) −7.67930e14 −2.03531
\(448\) 0 0
\(449\) −6.84249e14 −1.76954 −0.884768 0.466033i \(-0.845683\pi\)
−0.884768 + 0.466033i \(0.845683\pi\)
\(450\) 0 0
\(451\) 5.94389e14 1.50003
\(452\) 0 0
\(453\) 5.68461e14 1.40010
\(454\) 0 0
\(455\) −1.08075e12 −0.00259815
\(456\) 0 0
\(457\) 1.10262e12 0.00258753 0.00129377 0.999999i \(-0.499588\pi\)
0.00129377 + 0.999999i \(0.499588\pi\)
\(458\) 0 0
\(459\) −7.66767e13 −0.175668
\(460\) 0 0
\(461\) 3.06439e14 0.685471 0.342735 0.939432i \(-0.388647\pi\)
0.342735 + 0.939432i \(0.388647\pi\)
\(462\) 0 0
\(463\) 7.60027e13 0.166010 0.0830049 0.996549i \(-0.473548\pi\)
0.0830049 + 0.996549i \(0.473548\pi\)
\(464\) 0 0
\(465\) 4.37150e14 0.932480
\(466\) 0 0
\(467\) 9.91065e13 0.206471 0.103236 0.994657i \(-0.467080\pi\)
0.103236 + 0.994657i \(0.467080\pi\)
\(468\) 0 0
\(469\) 1.92696e14 0.392122
\(470\) 0 0
\(471\) −4.00620e14 −0.796376
\(472\) 0 0
\(473\) 8.53953e14 1.65843
\(474\) 0 0
\(475\) −1.89816e14 −0.360178
\(476\) 0 0
\(477\) 5.25548e14 0.974453
\(478\) 0 0
\(479\) −6.81262e14 −1.23444 −0.617219 0.786792i \(-0.711741\pi\)
−0.617219 + 0.786792i \(0.711741\pi\)
\(480\) 0 0
\(481\) −5.32662e12 −0.00943308
\(482\) 0 0
\(483\) 2.70787e14 0.468725
\(484\) 0 0
\(485\) 4.68268e14 0.792346
\(486\) 0 0
\(487\) −6.88411e14 −1.13878 −0.569388 0.822069i \(-0.692820\pi\)
−0.569388 + 0.822069i \(0.692820\pi\)
\(488\) 0 0
\(489\) 6.22337e14 1.00653
\(490\) 0 0
\(491\) −1.86593e14 −0.295085 −0.147542 0.989056i \(-0.547136\pi\)
−0.147542 + 0.989056i \(0.547136\pi\)
\(492\) 0 0
\(493\) 1.13778e14 0.175954
\(494\) 0 0
\(495\) −3.64287e14 −0.550954
\(496\) 0 0
\(497\) −6.28120e14 −0.929142
\(498\) 0 0
\(499\) −1.23594e14 −0.178831 −0.0894156 0.995994i \(-0.528500\pi\)
−0.0894156 + 0.995994i \(0.528500\pi\)
\(500\) 0 0
\(501\) 5.40907e14 0.765624
\(502\) 0 0
\(503\) 7.47743e14 1.03545 0.517724 0.855548i \(-0.326779\pi\)
0.517724 + 0.855548i \(0.326779\pi\)
\(504\) 0 0
\(505\) −4.09139e14 −0.554330
\(506\) 0 0
\(507\) −9.87944e14 −1.30975
\(508\) 0 0
\(509\) −4.13938e13 −0.0537017 −0.0268508 0.999639i \(-0.508548\pi\)
−0.0268508 + 0.999639i \(0.508548\pi\)
\(510\) 0 0
\(511\) −6.66264e14 −0.845925
\(512\) 0 0
\(513\) −1.48639e14 −0.184709
\(514\) 0 0
\(515\) −2.62419e14 −0.319194
\(516\) 0 0
\(517\) −6.84124e14 −0.814586
\(518\) 0 0
\(519\) 5.19072e14 0.605072
\(520\) 0 0
\(521\) −1.04645e15 −1.19430 −0.597149 0.802130i \(-0.703700\pi\)
−0.597149 + 0.802130i \(0.703700\pi\)
\(522\) 0 0
\(523\) −1.23919e15 −1.38478 −0.692388 0.721525i \(-0.743442\pi\)
−0.692388 + 0.721525i \(0.743442\pi\)
\(524\) 0 0
\(525\) 7.91774e14 0.866414
\(526\) 0 0
\(527\) −5.98972e14 −0.641871
\(528\) 0 0
\(529\) −8.05623e14 −0.845523
\(530\) 0 0
\(531\) 1.03483e15 1.06377
\(532\) 0 0
\(533\) −5.52081e12 −0.00555909
\(534\) 0 0
\(535\) −3.18608e14 −0.314276
\(536\) 0 0
\(537\) −2.36917e15 −2.28949
\(538\) 0 0
\(539\) −2.65867e14 −0.251725
\(540\) 0 0
\(541\) −4.83405e14 −0.448462 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(542\) 0 0
\(543\) −1.15100e15 −1.04635
\(544\) 0 0
\(545\) 1.07844e15 0.960761
\(546\) 0 0
\(547\) −4.12315e14 −0.359997 −0.179998 0.983667i \(-0.557609\pi\)
−0.179998 + 0.983667i \(0.557609\pi\)
\(548\) 0 0
\(549\) 2.75910e14 0.236113
\(550\) 0 0
\(551\) 2.20560e14 0.185009
\(552\) 0 0
\(553\) −1.56285e15 −1.28508
\(554\) 0 0
\(555\) −1.46904e15 −1.18420
\(556\) 0 0
\(557\) 6.38861e14 0.504897 0.252449 0.967610i \(-0.418764\pi\)
0.252449 + 0.967610i \(0.418764\pi\)
\(558\) 0 0
\(559\) −7.93169e12 −0.00614612
\(560\) 0 0
\(561\) 1.19669e15 0.909259
\(562\) 0 0
\(563\) 5.82711e13 0.0434167 0.0217083 0.999764i \(-0.493089\pi\)
0.0217083 + 0.999764i \(0.493089\pi\)
\(564\) 0 0
\(565\) −1.05120e15 −0.768099
\(566\) 0 0
\(567\) 1.52916e15 1.09583
\(568\) 0 0
\(569\) −7.62456e14 −0.535917 −0.267959 0.963430i \(-0.586349\pi\)
−0.267959 + 0.963430i \(0.586349\pi\)
\(570\) 0 0
\(571\) −4.96039e14 −0.341993 −0.170996 0.985272i \(-0.554699\pi\)
−0.170996 + 0.985272i \(0.554699\pi\)
\(572\) 0 0
\(573\) 2.54100e15 1.71852
\(574\) 0 0
\(575\) 4.30372e14 0.285543
\(576\) 0 0
\(577\) −1.21340e15 −0.789835 −0.394917 0.918717i \(-0.629227\pi\)
−0.394917 + 0.918717i \(0.629227\pi\)
\(578\) 0 0
\(579\) −9.35171e14 −0.597254
\(580\) 0 0
\(581\) 4.03599e14 0.252919
\(582\) 0 0
\(583\) 3.26063e15 2.00505
\(584\) 0 0
\(585\) 3.38358e12 0.00204183
\(586\) 0 0
\(587\) 2.52382e14 0.149468 0.0747341 0.997203i \(-0.476189\pi\)
0.0747341 + 0.997203i \(0.476189\pi\)
\(588\) 0 0
\(589\) −1.16112e15 −0.674904
\(590\) 0 0
\(591\) −2.55622e15 −1.45837
\(592\) 0 0
\(593\) 1.27472e15 0.713862 0.356931 0.934131i \(-0.383823\pi\)
0.356931 + 0.934131i \(0.383823\pi\)
\(594\) 0 0
\(595\) 4.08400e14 0.224513
\(596\) 0 0
\(597\) −4.49043e15 −2.42342
\(598\) 0 0
\(599\) −1.41976e15 −0.752258 −0.376129 0.926567i \(-0.622745\pi\)
−0.376129 + 0.926567i \(0.622745\pi\)
\(600\) 0 0
\(601\) 3.50205e15 1.82185 0.910924 0.412573i \(-0.135370\pi\)
0.910924 + 0.412573i \(0.135370\pi\)
\(602\) 0 0
\(603\) −6.03283e14 −0.308160
\(604\) 0 0
\(605\) −1.21750e15 −0.610683
\(606\) 0 0
\(607\) 3.12148e15 1.53753 0.768764 0.639533i \(-0.220872\pi\)
0.768764 + 0.639533i \(0.220872\pi\)
\(608\) 0 0
\(609\) −9.20018e14 −0.445042
\(610\) 0 0
\(611\) 6.35429e12 0.00301884
\(612\) 0 0
\(613\) 3.38076e15 1.57755 0.788773 0.614685i \(-0.210717\pi\)
0.788773 + 0.614685i \(0.210717\pi\)
\(614\) 0 0
\(615\) −1.52260e15 −0.697868
\(616\) 0 0
\(617\) −3.27266e14 −0.147344 −0.0736720 0.997283i \(-0.523472\pi\)
−0.0736720 + 0.997283i \(0.523472\pi\)
\(618\) 0 0
\(619\) 2.13718e15 0.945241 0.472621 0.881266i \(-0.343308\pi\)
0.472621 + 0.881266i \(0.343308\pi\)
\(620\) 0 0
\(621\) 3.37012e14 0.146434
\(622\) 0 0
\(623\) −2.19753e15 −0.938103
\(624\) 0 0
\(625\) 6.06339e14 0.254317
\(626\) 0 0
\(627\) 2.31981e15 0.956053
\(628\) 0 0
\(629\) 2.01284e15 0.815139
\(630\) 0 0
\(631\) −3.36186e15 −1.33788 −0.668941 0.743316i \(-0.733252\pi\)
−0.668941 + 0.743316i \(0.733252\pi\)
\(632\) 0 0
\(633\) 1.48032e15 0.578943
\(634\) 0 0
\(635\) 8.58956e14 0.330153
\(636\) 0 0
\(637\) 2.46943e12 0.000932890 0
\(638\) 0 0
\(639\) 1.96649e15 0.730191
\(640\) 0 0
\(641\) −6.56033e13 −0.0239445 −0.0119723 0.999928i \(-0.503811\pi\)
−0.0119723 + 0.999928i \(0.503811\pi\)
\(642\) 0 0
\(643\) 2.63738e15 0.946263 0.473131 0.880992i \(-0.343124\pi\)
0.473131 + 0.880992i \(0.343124\pi\)
\(644\) 0 0
\(645\) −2.18751e15 −0.771562
\(646\) 0 0
\(647\) 2.09388e15 0.726069 0.363035 0.931776i \(-0.381741\pi\)
0.363035 + 0.931776i \(0.381741\pi\)
\(648\) 0 0
\(649\) 6.42035e15 2.18883
\(650\) 0 0
\(651\) 4.84335e15 1.62349
\(652\) 0 0
\(653\) −1.49359e15 −0.492276 −0.246138 0.969235i \(-0.579162\pi\)
−0.246138 + 0.969235i \(0.579162\pi\)
\(654\) 0 0
\(655\) −2.18237e15 −0.707296
\(656\) 0 0
\(657\) 2.08591e15 0.664792
\(658\) 0 0
\(659\) 1.48461e15 0.465310 0.232655 0.972559i \(-0.425259\pi\)
0.232655 + 0.972559i \(0.425259\pi\)
\(660\) 0 0
\(661\) 2.19787e15 0.677475 0.338737 0.940881i \(-0.390000\pi\)
0.338737 + 0.940881i \(0.390000\pi\)
\(662\) 0 0
\(663\) −1.11151e13 −0.00336970
\(664\) 0 0
\(665\) 7.91691e14 0.236068
\(666\) 0 0
\(667\) −5.00079e14 −0.146672
\(668\) 0 0
\(669\) −1.79868e15 −0.518933
\(670\) 0 0
\(671\) 1.71182e15 0.485829
\(672\) 0 0
\(673\) 1.64475e14 0.0459216 0.0229608 0.999736i \(-0.492691\pi\)
0.0229608 + 0.999736i \(0.492691\pi\)
\(674\) 0 0
\(675\) 9.85417e14 0.270676
\(676\) 0 0
\(677\) −9.91084e14 −0.267838 −0.133919 0.990992i \(-0.542756\pi\)
−0.133919 + 0.990992i \(0.542756\pi\)
\(678\) 0 0
\(679\) 5.18811e15 1.37951
\(680\) 0 0
\(681\) −3.83223e15 −1.00263
\(682\) 0 0
\(683\) −1.73762e15 −0.447344 −0.223672 0.974664i \(-0.571804\pi\)
−0.223672 + 0.974664i \(0.571804\pi\)
\(684\) 0 0
\(685\) −2.62427e15 −0.664830
\(686\) 0 0
\(687\) 9.74935e15 2.43060
\(688\) 0 0
\(689\) −3.02854e13 −0.00743067
\(690\) 0 0
\(691\) 1.27029e15 0.306743 0.153371 0.988169i \(-0.450987\pi\)
0.153371 + 0.988169i \(0.450987\pi\)
\(692\) 0 0
\(693\) −4.03607e15 −0.959237
\(694\) 0 0
\(695\) −2.15122e15 −0.503232
\(696\) 0 0
\(697\) 2.08623e15 0.480376
\(698\) 0 0
\(699\) 3.98364e15 0.902933
\(700\) 0 0
\(701\) −6.91240e15 −1.54234 −0.771169 0.636631i \(-0.780328\pi\)
−0.771169 + 0.636631i \(0.780328\pi\)
\(702\) 0 0
\(703\) 3.90194e15 0.857089
\(704\) 0 0
\(705\) 1.75247e15 0.378974
\(706\) 0 0
\(707\) −4.53300e15 −0.965116
\(708\) 0 0
\(709\) 5.79605e15 1.21500 0.607502 0.794318i \(-0.292172\pi\)
0.607502 + 0.794318i \(0.292172\pi\)
\(710\) 0 0
\(711\) 4.89291e15 1.00991
\(712\) 0 0
\(713\) 2.63262e15 0.535052
\(714\) 0 0
\(715\) 2.09926e13 0.00420128
\(716\) 0 0
\(717\) 3.44415e15 0.678776
\(718\) 0 0
\(719\) 2.64053e14 0.0512486 0.0256243 0.999672i \(-0.491843\pi\)
0.0256243 + 0.999672i \(0.491843\pi\)
\(720\) 0 0
\(721\) −2.90744e15 −0.555733
\(722\) 0 0
\(723\) −1.03466e16 −1.94778
\(724\) 0 0
\(725\) −1.46222e15 −0.271115
\(726\) 0 0
\(727\) −9.04171e15 −1.65124 −0.825622 0.564224i \(-0.809176\pi\)
−0.825622 + 0.564224i \(0.809176\pi\)
\(728\) 0 0
\(729\) −2.07464e15 −0.373200
\(730\) 0 0
\(731\) 2.99726e15 0.531103
\(732\) 0 0
\(733\) −7.18071e15 −1.25342 −0.626709 0.779254i \(-0.715598\pi\)
−0.626709 + 0.779254i \(0.715598\pi\)
\(734\) 0 0
\(735\) 6.81052e14 0.117112
\(736\) 0 0
\(737\) −3.74292e15 −0.634073
\(738\) 0 0
\(739\) 4.88569e15 0.815419 0.407710 0.913112i \(-0.366328\pi\)
0.407710 + 0.913112i \(0.366328\pi\)
\(740\) 0 0
\(741\) −2.15469e13 −0.00354311
\(742\) 0 0
\(743\) −2.69418e15 −0.436504 −0.218252 0.975892i \(-0.570035\pi\)
−0.218252 + 0.975892i \(0.570035\pi\)
\(744\) 0 0
\(745\) 5.09052e15 0.812649
\(746\) 0 0
\(747\) −1.26357e15 −0.198763
\(748\) 0 0
\(749\) −3.52998e15 −0.547169
\(750\) 0 0
\(751\) 5.17450e15 0.790403 0.395201 0.918594i \(-0.370675\pi\)
0.395201 + 0.918594i \(0.370675\pi\)
\(752\) 0 0
\(753\) −5.83156e15 −0.877834
\(754\) 0 0
\(755\) −3.76826e15 −0.559027
\(756\) 0 0
\(757\) −7.96286e15 −1.16424 −0.582119 0.813104i \(-0.697776\pi\)
−0.582119 + 0.813104i \(0.697776\pi\)
\(758\) 0 0
\(759\) −5.25975e15 −0.757941
\(760\) 0 0
\(761\) −1.12233e15 −0.159406 −0.0797032 0.996819i \(-0.525397\pi\)
−0.0797032 + 0.996819i \(0.525397\pi\)
\(762\) 0 0
\(763\) 1.19484e16 1.67273
\(764\) 0 0
\(765\) −1.27860e15 −0.176440
\(766\) 0 0
\(767\) −5.96335e13 −0.00811178
\(768\) 0 0
\(769\) 4.36417e15 0.585204 0.292602 0.956234i \(-0.405479\pi\)
0.292602 + 0.956234i \(0.405479\pi\)
\(770\) 0 0
\(771\) −1.41297e16 −1.86782
\(772\) 0 0
\(773\) 9.18355e15 1.19680 0.598402 0.801196i \(-0.295802\pi\)
0.598402 + 0.801196i \(0.295802\pi\)
\(774\) 0 0
\(775\) 7.69774e15 0.989017
\(776\) 0 0
\(777\) −1.62761e16 −2.06174
\(778\) 0 0
\(779\) 4.04419e15 0.505098
\(780\) 0 0
\(781\) 1.22006e16 1.50245
\(782\) 0 0
\(783\) −1.14502e15 −0.139035
\(784\) 0 0
\(785\) 2.65567e15 0.317973
\(786\) 0 0
\(787\) −9.76151e15 −1.15254 −0.576270 0.817260i \(-0.695492\pi\)
−0.576270 + 0.817260i \(0.695492\pi\)
\(788\) 0 0
\(789\) −1.39764e16 −1.62731
\(790\) 0 0
\(791\) −1.16466e16 −1.33730
\(792\) 0 0
\(793\) −1.58997e13 −0.00180047
\(794\) 0 0
\(795\) −8.35250e15 −0.932819
\(796\) 0 0
\(797\) 1.38967e16 1.53070 0.765349 0.643615i \(-0.222566\pi\)
0.765349 + 0.643615i \(0.222566\pi\)
\(798\) 0 0
\(799\) −2.40118e15 −0.260866
\(800\) 0 0
\(801\) 6.87992e15 0.737233
\(802\) 0 0
\(803\) 1.29415e16 1.36788
\(804\) 0 0
\(805\) −1.79501e15 −0.187150
\(806\) 0 0
\(807\) −4.95425e15 −0.509534
\(808\) 0 0
\(809\) 1.32141e16 1.34067 0.670334 0.742060i \(-0.266151\pi\)
0.670334 + 0.742060i \(0.266151\pi\)
\(810\) 0 0
\(811\) 5.53890e15 0.554381 0.277191 0.960815i \(-0.410597\pi\)
0.277191 + 0.960815i \(0.410597\pi\)
\(812\) 0 0
\(813\) 2.17520e16 2.14783
\(814\) 0 0
\(815\) −4.12540e15 −0.401883
\(816\) 0 0
\(817\) 5.81025e15 0.558436
\(818\) 0 0
\(819\) 3.74879e13 0.00355492
\(820\) 0 0
\(821\) 1.63030e16 1.52538 0.762692 0.646761i \(-0.223877\pi\)
0.762692 + 0.646761i \(0.223877\pi\)
\(822\) 0 0
\(823\) −1.00504e16 −0.927864 −0.463932 0.885871i \(-0.653562\pi\)
−0.463932 + 0.885871i \(0.653562\pi\)
\(824\) 0 0
\(825\) −1.53794e16 −1.40102
\(826\) 0 0
\(827\) 2.30840e15 0.207506 0.103753 0.994603i \(-0.466915\pi\)
0.103753 + 0.994603i \(0.466915\pi\)
\(828\) 0 0
\(829\) 1.49111e16 1.32270 0.661348 0.750079i \(-0.269985\pi\)
0.661348 + 0.750079i \(0.269985\pi\)
\(830\) 0 0
\(831\) 9.64511e15 0.844309
\(832\) 0 0
\(833\) −9.33159e14 −0.0806136
\(834\) 0 0
\(835\) −3.58561e15 −0.305695
\(836\) 0 0
\(837\) 6.02788e15 0.507194
\(838\) 0 0
\(839\) −1.93037e16 −1.60306 −0.801529 0.597956i \(-0.795980\pi\)
−0.801529 + 0.597956i \(0.795980\pi\)
\(840\) 0 0
\(841\) −1.05015e16 −0.860739
\(842\) 0 0
\(843\) −5.68002e15 −0.459513
\(844\) 0 0
\(845\) 6.54897e15 0.522951
\(846\) 0 0
\(847\) −1.34892e16 −1.06323
\(848\) 0 0
\(849\) −2.85977e15 −0.222505
\(850\) 0 0
\(851\) −8.84692e15 −0.679485
\(852\) 0 0
\(853\) −1.28155e16 −0.971667 −0.485833 0.874051i \(-0.661484\pi\)
−0.485833 + 0.874051i \(0.661484\pi\)
\(854\) 0 0
\(855\) −2.47859e15 −0.185520
\(856\) 0 0
\(857\) −4.41075e15 −0.325926 −0.162963 0.986632i \(-0.552105\pi\)
−0.162963 + 0.986632i \(0.552105\pi\)
\(858\) 0 0
\(859\) 9.04065e15 0.659534 0.329767 0.944062i \(-0.393030\pi\)
0.329767 + 0.944062i \(0.393030\pi\)
\(860\) 0 0
\(861\) −1.68695e16 −1.21502
\(862\) 0 0
\(863\) −9.65353e15 −0.686478 −0.343239 0.939248i \(-0.611524\pi\)
−0.343239 + 0.939248i \(0.611524\pi\)
\(864\) 0 0
\(865\) −3.44087e15 −0.241590
\(866\) 0 0
\(867\) −1.46930e16 −1.01860
\(868\) 0 0
\(869\) 3.03569e16 2.07801
\(870\) 0 0
\(871\) 3.47650e13 0.00234986
\(872\) 0 0
\(873\) −1.62427e16 −1.08413
\(874\) 0 0
\(875\) −1.24730e16 −0.822104
\(876\) 0 0
\(877\) −2.78709e16 −1.81406 −0.907032 0.421061i \(-0.861658\pi\)
−0.907032 + 0.421061i \(0.861658\pi\)
\(878\) 0 0
\(879\) −1.32224e15 −0.0849906
\(880\) 0 0
\(881\) −1.05187e16 −0.667717 −0.333859 0.942623i \(-0.608351\pi\)
−0.333859 + 0.942623i \(0.608351\pi\)
\(882\) 0 0
\(883\) 1.36308e16 0.854547 0.427274 0.904122i \(-0.359474\pi\)
0.427274 + 0.904122i \(0.359474\pi\)
\(884\) 0 0
\(885\) −1.64465e16 −1.01832
\(886\) 0 0
\(887\) 2.26455e16 1.38485 0.692425 0.721490i \(-0.256542\pi\)
0.692425 + 0.721490i \(0.256542\pi\)
\(888\) 0 0
\(889\) 9.51669e15 0.574813
\(890\) 0 0
\(891\) −2.97023e16 −1.77200
\(892\) 0 0
\(893\) −4.65474e15 −0.274292
\(894\) 0 0
\(895\) 1.57050e16 0.914136
\(896\) 0 0
\(897\) 4.88537e13 0.00280892
\(898\) 0 0
\(899\) −8.94453e15 −0.508018
\(900\) 0 0
\(901\) 1.14444e16 0.642104
\(902\) 0 0
\(903\) −2.42362e16 −1.34333
\(904\) 0 0
\(905\) 7.62986e15 0.417781
\(906\) 0 0
\(907\) 1.24222e16 0.671984 0.335992 0.941865i \(-0.390929\pi\)
0.335992 + 0.941865i \(0.390929\pi\)
\(908\) 0 0
\(909\) 1.41917e16 0.758462
\(910\) 0 0
\(911\) 1.30030e16 0.686582 0.343291 0.939229i \(-0.388458\pi\)
0.343291 + 0.939229i \(0.388458\pi\)
\(912\) 0 0
\(913\) −7.83949e15 −0.408977
\(914\) 0 0
\(915\) −4.38502e15 −0.226025
\(916\) 0 0
\(917\) −2.41793e16 −1.23144
\(918\) 0 0
\(919\) 6.28559e15 0.316309 0.158154 0.987414i \(-0.449446\pi\)
0.158154 + 0.987414i \(0.449446\pi\)
\(920\) 0 0
\(921\) −1.37593e16 −0.684176
\(922\) 0 0
\(923\) −1.13322e14 −0.00556805
\(924\) 0 0
\(925\) −2.58682e16 −1.25599
\(926\) 0 0
\(927\) 9.10246e15 0.436737
\(928\) 0 0
\(929\) −1.96785e16 −0.933052 −0.466526 0.884507i \(-0.654495\pi\)
−0.466526 + 0.884507i \(0.654495\pi\)
\(930\) 0 0
\(931\) −1.80895e15 −0.0847623
\(932\) 0 0
\(933\) 2.07524e16 0.960989
\(934\) 0 0
\(935\) −7.93275e15 −0.363045
\(936\) 0 0
\(937\) 2.38475e16 1.07864 0.539319 0.842102i \(-0.318682\pi\)
0.539319 + 0.842102i \(0.318682\pi\)
\(938\) 0 0
\(939\) −1.79350e15 −0.0801755
\(940\) 0 0
\(941\) 6.08299e15 0.268766 0.134383 0.990929i \(-0.457095\pi\)
0.134383 + 0.990929i \(0.457095\pi\)
\(942\) 0 0
\(943\) −9.16946e15 −0.400433
\(944\) 0 0
\(945\) −4.11002e15 −0.177406
\(946\) 0 0
\(947\) −6.47876e15 −0.276418 −0.138209 0.990403i \(-0.544135\pi\)
−0.138209 + 0.990403i \(0.544135\pi\)
\(948\) 0 0
\(949\) −1.20203e14 −0.00506936
\(950\) 0 0
\(951\) 3.83283e16 1.59782
\(952\) 0 0
\(953\) 1.56847e16 0.646344 0.323172 0.946340i \(-0.395251\pi\)
0.323172 + 0.946340i \(0.395251\pi\)
\(954\) 0 0
\(955\) −1.68440e16 −0.686163
\(956\) 0 0
\(957\) 1.78704e16 0.719646
\(958\) 0 0
\(959\) −2.90753e16 −1.15750
\(960\) 0 0
\(961\) 2.16792e16 0.853228
\(962\) 0 0
\(963\) 1.10515e16 0.430007
\(964\) 0 0
\(965\) 6.19914e15 0.238469
\(966\) 0 0
\(967\) 4.09978e16 1.55925 0.779623 0.626249i \(-0.215411\pi\)
0.779623 + 0.626249i \(0.215411\pi\)
\(968\) 0 0
\(969\) 8.14224e15 0.306170
\(970\) 0 0
\(971\) −3.41053e15 −0.126799 −0.0633996 0.997988i \(-0.520194\pi\)
−0.0633996 + 0.997988i \(0.520194\pi\)
\(972\) 0 0
\(973\) −2.38341e16 −0.876150
\(974\) 0 0
\(975\) 1.42847e14 0.00519214
\(976\) 0 0
\(977\) −4.94757e16 −1.77816 −0.889082 0.457748i \(-0.848656\pi\)
−0.889082 + 0.457748i \(0.848656\pi\)
\(978\) 0 0
\(979\) 4.26848e16 1.51694
\(980\) 0 0
\(981\) −3.74076e16 −1.31456
\(982\) 0 0
\(983\) 4.70999e16 1.63673 0.818363 0.574702i \(-0.194882\pi\)
0.818363 + 0.574702i \(0.194882\pi\)
\(984\) 0 0
\(985\) 1.69449e16 0.582290
\(986\) 0 0
\(987\) 1.94162e16 0.659813
\(988\) 0 0
\(989\) −1.31737e16 −0.442718
\(990\) 0 0
\(991\) −7.35285e15 −0.244372 −0.122186 0.992507i \(-0.538990\pi\)
−0.122186 + 0.992507i \(0.538990\pi\)
\(992\) 0 0
\(993\) 1.81798e16 0.597542
\(994\) 0 0
\(995\) 2.97665e16 0.967612
\(996\) 0 0
\(997\) 2.19052e16 0.704244 0.352122 0.935954i \(-0.385460\pi\)
0.352122 + 0.935954i \(0.385460\pi\)
\(998\) 0 0
\(999\) −2.02567e16 −0.644107
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 128.12.a.e.1.5 6
4.3 odd 2 128.12.a.g.1.2 yes 6
8.3 odd 2 128.12.a.f.1.5 yes 6
8.5 even 2 128.12.a.h.1.2 yes 6
16.3 odd 4 256.12.b.q.129.3 12
16.5 even 4 256.12.b.p.129.3 12
16.11 odd 4 256.12.b.q.129.10 12
16.13 even 4 256.12.b.p.129.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.12.a.e.1.5 6 1.1 even 1 trivial
128.12.a.f.1.5 yes 6 8.3 odd 2
128.12.a.g.1.2 yes 6 4.3 odd 2
128.12.a.h.1.2 yes 6 8.5 even 2
256.12.b.p.129.3 12 16.5 even 4
256.12.b.p.129.10 12 16.13 even 4
256.12.b.q.129.3 12 16.3 odd 4
256.12.b.q.129.10 12 16.11 odd 4