Properties

Label 1275.2.d.i.424.6
Level $1275$
Weight $2$
Character 1275.424
Analytic conductor $10.181$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1275,2,Mod(424,1275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1275.424"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-12,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1809262577\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 144x^{8} + 452x^{6} + 604x^{4} + 268x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 424.6
Root \(-0.505687i\) of defining polynomial
Character \(\chi\) \(=\) 1275.424
Dual form 1275.2.d.i.424.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.505687i q^{2} -1.00000 q^{3} +1.74428 q^{4} +0.505687i q^{6} +2.32475 q^{7} -1.89343i q^{8} +1.00000 q^{9} +3.83044i q^{11} -1.74428 q^{12} +1.37414i q^{13} -1.17560i q^{14} +2.53108 q^{16} +(-3.54700 + 2.10209i) q^{17} -0.505687i q^{18} +6.12980 q^{19} -2.32475 q^{21} +1.93700 q^{22} +1.89121 q^{23} +1.89343i q^{24} +0.694887 q^{26} -1.00000 q^{27} +4.05502 q^{28} +4.87983i q^{29} +1.84404i q^{31} -5.06680i q^{32} -3.83044i q^{33} +(1.06300 + 1.79367i) q^{34} +1.74428 q^{36} -3.82266 q^{37} -3.09976i q^{38} -1.37414i q^{39} +4.24219i q^{41} +1.17560i q^{42} -6.76392i q^{43} +6.68136i q^{44} -0.956358i q^{46} +6.98287i q^{47} -2.53108 q^{48} -1.59554 q^{49} +(3.54700 - 2.10209i) q^{51} +2.39689i q^{52} -10.3558i q^{53} +0.505687i q^{54} -4.40176i q^{56} -6.12980 q^{57} +2.46767 q^{58} +6.24463 q^{59} -2.08944i q^{61} +0.932508 q^{62} +2.32475 q^{63} +2.49994 q^{64} -1.93700 q^{66} +11.4165i q^{67} +(-6.18697 + 3.66663i) q^{68} -1.89121 q^{69} -0.485278i q^{71} -1.89343i q^{72} +15.0256 q^{73} +1.93307i q^{74} +10.6921 q^{76} +8.90481i q^{77} -0.694887 q^{78} -16.0715i q^{79} +1.00000 q^{81} +2.14522 q^{82} -2.21770i q^{83} -4.05502 q^{84} -3.42043 q^{86} -4.87983i q^{87} +7.25268 q^{88} -0.0376087 q^{89} +3.19454i q^{91} +3.29879 q^{92} -1.84404i q^{93} +3.53115 q^{94} +5.06680i q^{96} +8.19523 q^{97} +0.806843i q^{98} +3.83044i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{3} - 16 q^{4} + 12 q^{9} + 16 q^{12} + 32 q^{16} - 6 q^{17} + 4 q^{19} + 12 q^{22} - 16 q^{23} - 36 q^{26} - 12 q^{27} - 36 q^{28} + 24 q^{34} - 16 q^{36} - 4 q^{37} - 32 q^{48} + 16 q^{49}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1275\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(751\) \(851\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.505687i 0.357575i −0.983888 0.178787i \(-0.942783\pi\)
0.983888 0.178787i \(-0.0572174\pi\)
\(3\) −1.00000 −0.577350
\(4\) 1.74428 0.872140
\(5\) 0 0
\(6\) 0.505687i 0.206446i
\(7\) 2.32475 0.878673 0.439336 0.898323i \(-0.355214\pi\)
0.439336 + 0.898323i \(0.355214\pi\)
\(8\) 1.89343i 0.669430i
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.83044i 1.15492i 0.816419 + 0.577460i \(0.195956\pi\)
−0.816419 + 0.577460i \(0.804044\pi\)
\(12\) −1.74428 −0.503530
\(13\) 1.37414i 0.381119i 0.981676 + 0.190559i \(0.0610302\pi\)
−0.981676 + 0.190559i \(0.938970\pi\)
\(14\) 1.17560i 0.314191i
\(15\) 0 0
\(16\) 2.53108 0.632769
\(17\) −3.54700 + 2.10209i −0.860275 + 0.509831i
\(18\) 0.505687i 0.119192i
\(19\) 6.12980 1.40627 0.703136 0.711055i \(-0.251782\pi\)
0.703136 + 0.711055i \(0.251782\pi\)
\(20\) 0 0
\(21\) −2.32475 −0.507302
\(22\) 1.93700 0.412970
\(23\) 1.89121 0.394344 0.197172 0.980369i \(-0.436824\pi\)
0.197172 + 0.980369i \(0.436824\pi\)
\(24\) 1.89343i 0.386496i
\(25\) 0 0
\(26\) 0.694887 0.136279
\(27\) −1.00000 −0.192450
\(28\) 4.05502 0.766326
\(29\) 4.87983i 0.906162i 0.891469 + 0.453081i \(0.149675\pi\)
−0.891469 + 0.453081i \(0.850325\pi\)
\(30\) 0 0
\(31\) 1.84404i 0.331199i 0.986193 + 0.165600i \(0.0529560\pi\)
−0.986193 + 0.165600i \(0.947044\pi\)
\(32\) 5.06680i 0.895692i
\(33\) 3.83044i 0.666794i
\(34\) 1.06300 + 1.79367i 0.182303 + 0.307613i
\(35\) 0 0
\(36\) 1.74428 0.290713
\(37\) −3.82266 −0.628441 −0.314221 0.949350i \(-0.601743\pi\)
−0.314221 + 0.949350i \(0.601743\pi\)
\(38\) 3.09976i 0.502847i
\(39\) 1.37414i 0.220039i
\(40\) 0 0
\(41\) 4.24219i 0.662519i 0.943540 + 0.331259i \(0.107474\pi\)
−0.943540 + 0.331259i \(0.892526\pi\)
\(42\) 1.17560i 0.181398i
\(43\) 6.76392i 1.03149i −0.856743 0.515744i \(-0.827516\pi\)
0.856743 0.515744i \(-0.172484\pi\)
\(44\) 6.68136i 1.00725i
\(45\) 0 0
\(46\) 0.956358i 0.141007i
\(47\) 6.98287i 1.01856i 0.860602 + 0.509278i \(0.170088\pi\)
−0.860602 + 0.509278i \(0.829912\pi\)
\(48\) −2.53108 −0.365329
\(49\) −1.59554 −0.227934
\(50\) 0 0
\(51\) 3.54700 2.10209i 0.496680 0.294351i
\(52\) 2.39689i 0.332389i
\(53\) 10.3558i 1.42247i −0.702953 0.711237i \(-0.748135\pi\)
0.702953 0.711237i \(-0.251865\pi\)
\(54\) 0.505687i 0.0688153i
\(55\) 0 0
\(56\) 4.40176i 0.588210i
\(57\) −6.12980 −0.811912
\(58\) 2.46767 0.324021
\(59\) 6.24463 0.812981 0.406491 0.913655i \(-0.366752\pi\)
0.406491 + 0.913655i \(0.366752\pi\)
\(60\) 0 0
\(61\) 2.08944i 0.267525i −0.991013 0.133763i \(-0.957294\pi\)
0.991013 0.133763i \(-0.0427060\pi\)
\(62\) 0.932508 0.118429
\(63\) 2.32475 0.292891
\(64\) 2.49994 0.312492
\(65\) 0 0
\(66\) −1.93700 −0.238429
\(67\) 11.4165i 1.39475i 0.716706 + 0.697376i \(0.245649\pi\)
−0.716706 + 0.697376i \(0.754351\pi\)
\(68\) −6.18697 + 3.66663i −0.750280 + 0.444644i
\(69\) −1.89121 −0.227674
\(70\) 0 0
\(71\) 0.485278i 0.0575919i −0.999585 0.0287960i \(-0.990833\pi\)
0.999585 0.0287960i \(-0.00916731\pi\)
\(72\) 1.89343i 0.223143i
\(73\) 15.0256 1.75861 0.879305 0.476259i \(-0.158007\pi\)
0.879305 + 0.476259i \(0.158007\pi\)
\(74\) 1.93307i 0.224715i
\(75\) 0 0
\(76\) 10.6921 1.22647
\(77\) 8.90481i 1.01480i
\(78\) −0.694887 −0.0786804
\(79\) 16.0715i 1.80819i −0.427332 0.904095i \(-0.640546\pi\)
0.427332 0.904095i \(-0.359454\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 2.14522 0.236900
\(83\) 2.21770i 0.243424i −0.992565 0.121712i \(-0.961162\pi\)
0.992565 0.121712i \(-0.0388385\pi\)
\(84\) −4.05502 −0.442439
\(85\) 0 0
\(86\) −3.42043 −0.368834
\(87\) 4.87983i 0.523173i
\(88\) 7.25268 0.773138
\(89\) −0.0376087 −0.00398652 −0.00199326 0.999998i \(-0.500634\pi\)
−0.00199326 + 0.999998i \(0.500634\pi\)
\(90\) 0 0
\(91\) 3.19454i 0.334879i
\(92\) 3.29879 0.343923
\(93\) 1.84404i 0.191218i
\(94\) 3.53115 0.364210
\(95\) 0 0
\(96\) 5.06680i 0.517128i
\(97\) 8.19523 0.832100 0.416050 0.909342i \(-0.363414\pi\)
0.416050 + 0.909342i \(0.363414\pi\)
\(98\) 0.806843i 0.0815034i
\(99\) 3.83044i 0.384973i
\(100\) 0 0
\(101\) 13.7028 1.36348 0.681738 0.731596i \(-0.261224\pi\)
0.681738 + 0.731596i \(0.261224\pi\)
\(102\) −1.06300 1.79367i −0.105252 0.177600i
\(103\) 8.53495i 0.840974i 0.907299 + 0.420487i \(0.138141\pi\)
−0.907299 + 0.420487i \(0.861859\pi\)
\(104\) 2.60185 0.255132
\(105\) 0 0
\(106\) −5.23677 −0.508641
\(107\) −8.99707 −0.869780 −0.434890 0.900484i \(-0.643213\pi\)
−0.434890 + 0.900484i \(0.643213\pi\)
\(108\) −1.74428 −0.167843
\(109\) 0.529331i 0.0507007i 0.999679 + 0.0253504i \(0.00807013\pi\)
−0.999679 + 0.0253504i \(0.991930\pi\)
\(110\) 0 0
\(111\) 3.82266 0.362831
\(112\) 5.88412 0.555997
\(113\) 5.59928 0.526736 0.263368 0.964695i \(-0.415167\pi\)
0.263368 + 0.964695i \(0.415167\pi\)
\(114\) 3.09976i 0.290319i
\(115\) 0 0
\(116\) 8.51179i 0.790300i
\(117\) 1.37414i 0.127040i
\(118\) 3.15783i 0.290702i
\(119\) −8.24590 + 4.88682i −0.755900 + 0.447974i
\(120\) 0 0
\(121\) −3.67225 −0.333841
\(122\) −1.05660 −0.0956603
\(123\) 4.24219i 0.382505i
\(124\) 3.21652i 0.288852i
\(125\) 0 0
\(126\) 1.17560i 0.104730i
\(127\) 6.18065i 0.548444i 0.961666 + 0.274222i \(0.0884203\pi\)
−0.961666 + 0.274222i \(0.911580\pi\)
\(128\) 11.3978i 1.00743i
\(129\) 6.76392i 0.595530i
\(130\) 0 0
\(131\) 12.3531i 1.07930i −0.841890 0.539649i \(-0.818557\pi\)
0.841890 0.539649i \(-0.181443\pi\)
\(132\) 6.68136i 0.581537i
\(133\) 14.2502 1.23565
\(134\) 5.77319 0.498728
\(135\) 0 0
\(136\) 3.98016 + 6.71602i 0.341296 + 0.575894i
\(137\) 10.2200i 0.873150i −0.899668 0.436575i \(-0.856191\pi\)
0.899668 0.436575i \(-0.143809\pi\)
\(138\) 0.956358i 0.0814106i
\(139\) 22.5106i 1.90933i −0.297690 0.954663i \(-0.596216\pi\)
0.297690 0.954663i \(-0.403784\pi\)
\(140\) 0 0
\(141\) 6.98287i 0.588064i
\(142\) −0.245399 −0.0205934
\(143\) −5.26357 −0.440162
\(144\) 2.53108 0.210923
\(145\) 0 0
\(146\) 7.59824i 0.628835i
\(147\) 1.59554 0.131598
\(148\) −6.66779 −0.548089
\(149\) −19.1867 −1.57183 −0.785917 0.618332i \(-0.787809\pi\)
−0.785917 + 0.618332i \(0.787809\pi\)
\(150\) 0 0
\(151\) −19.2687 −1.56807 −0.784034 0.620718i \(-0.786841\pi\)
−0.784034 + 0.620718i \(0.786841\pi\)
\(152\) 11.6064i 0.941401i
\(153\) −3.54700 + 2.10209i −0.286758 + 0.169944i
\(154\) 4.50305 0.362866
\(155\) 0 0
\(156\) 2.39689i 0.191905i
\(157\) 7.64868i 0.610431i 0.952283 + 0.305215i \(0.0987285\pi\)
−0.952283 + 0.305215i \(0.901272\pi\)
\(158\) −8.12717 −0.646563
\(159\) 10.3558i 0.821265i
\(160\) 0 0
\(161\) 4.39658 0.346499
\(162\) 0.505687i 0.0397305i
\(163\) −5.11501 −0.400639 −0.200319 0.979731i \(-0.564198\pi\)
−0.200319 + 0.979731i \(0.564198\pi\)
\(164\) 7.39957i 0.577809i
\(165\) 0 0
\(166\) −1.12146 −0.0870424
\(167\) 17.9196 1.38666 0.693330 0.720621i \(-0.256143\pi\)
0.693330 + 0.720621i \(0.256143\pi\)
\(168\) 4.40176i 0.339603i
\(169\) 11.1117 0.854748
\(170\) 0 0
\(171\) 6.12980 0.468757
\(172\) 11.7982i 0.899602i
\(173\) −6.63957 −0.504797 −0.252399 0.967623i \(-0.581219\pi\)
−0.252399 + 0.967623i \(0.581219\pi\)
\(174\) −2.46767 −0.187073
\(175\) 0 0
\(176\) 9.69513i 0.730798i
\(177\) −6.24463 −0.469375
\(178\) 0.0190183i 0.00142548i
\(179\) −7.04898 −0.526866 −0.263433 0.964678i \(-0.584855\pi\)
−0.263433 + 0.964678i \(0.584855\pi\)
\(180\) 0 0
\(181\) 1.48990i 0.110743i 0.998466 + 0.0553715i \(0.0176343\pi\)
−0.998466 + 0.0553715i \(0.982366\pi\)
\(182\) 1.61544 0.119744
\(183\) 2.08944i 0.154456i
\(184\) 3.58087i 0.263985i
\(185\) 0 0
\(186\) −0.932508 −0.0683748
\(187\) −8.05190 13.5866i −0.588814 0.993549i
\(188\) 12.1801i 0.888324i
\(189\) −2.32475 −0.169101
\(190\) 0 0
\(191\) −3.85489 −0.278930 −0.139465 0.990227i \(-0.544538\pi\)
−0.139465 + 0.990227i \(0.544538\pi\)
\(192\) −2.49994 −0.180417
\(193\) −24.4093 −1.75702 −0.878511 0.477722i \(-0.841463\pi\)
−0.878511 + 0.477722i \(0.841463\pi\)
\(194\) 4.14422i 0.297538i
\(195\) 0 0
\(196\) −2.78306 −0.198790
\(197\) 7.22171 0.514525 0.257263 0.966342i \(-0.417179\pi\)
0.257263 + 0.966342i \(0.417179\pi\)
\(198\) 1.93700 0.137657
\(199\) 23.3923i 1.65824i −0.559074 0.829118i \(-0.688843\pi\)
0.559074 0.829118i \(-0.311157\pi\)
\(200\) 0 0
\(201\) 11.4165i 0.805260i
\(202\) 6.92931i 0.487545i
\(203\) 11.3444i 0.796220i
\(204\) 6.18697 3.66663i 0.433175 0.256715i
\(205\) 0 0
\(206\) 4.31602 0.300711
\(207\) 1.89121 0.131448
\(208\) 3.47806i 0.241160i
\(209\) 23.4798i 1.62413i
\(210\) 0 0
\(211\) 25.3754i 1.74691i 0.486901 + 0.873457i \(0.338127\pi\)
−0.486901 + 0.873457i \(0.661873\pi\)
\(212\) 18.0634i 1.24060i
\(213\) 0.485278i 0.0332507i
\(214\) 4.54970i 0.311011i
\(215\) 0 0
\(216\) 1.89343i 0.128832i
\(217\) 4.28693i 0.291016i
\(218\) 0.267676 0.0181293
\(219\) −15.0256 −1.01533
\(220\) 0 0
\(221\) −2.88857 4.87409i −0.194306 0.327867i
\(222\) 1.93307i 0.129739i
\(223\) 7.63412i 0.511218i 0.966780 + 0.255609i \(0.0822760\pi\)
−0.966780 + 0.255609i \(0.917724\pi\)
\(224\) 11.7790i 0.787021i
\(225\) 0 0
\(226\) 2.83149i 0.188348i
\(227\) −21.5939 −1.43324 −0.716620 0.697464i \(-0.754312\pi\)
−0.716620 + 0.697464i \(0.754312\pi\)
\(228\) −10.6921 −0.708101
\(229\) 4.89696 0.323600 0.161800 0.986824i \(-0.448270\pi\)
0.161800 + 0.986824i \(0.448270\pi\)
\(230\) 0 0
\(231\) 8.90481i 0.585893i
\(232\) 9.23964 0.606612
\(233\) 10.7349 0.703264 0.351632 0.936138i \(-0.385627\pi\)
0.351632 + 0.936138i \(0.385627\pi\)
\(234\) 0.694887 0.0454262
\(235\) 0 0
\(236\) 10.8924 0.709034
\(237\) 16.0715i 1.04396i
\(238\) 2.47120 + 4.16984i 0.160184 + 0.270291i
\(239\) −16.3116 −1.05511 −0.527554 0.849521i \(-0.676891\pi\)
−0.527554 + 0.849521i \(0.676891\pi\)
\(240\) 0 0
\(241\) 15.1531i 0.976099i 0.872816 + 0.488049i \(0.162291\pi\)
−0.872816 + 0.488049i \(0.837709\pi\)
\(242\) 1.85701i 0.119373i
\(243\) −1.00000 −0.0641500
\(244\) 3.64457i 0.233320i
\(245\) 0 0
\(246\) −2.14522 −0.136774
\(247\) 8.42322i 0.535957i
\(248\) 3.49157 0.221715
\(249\) 2.21770i 0.140541i
\(250\) 0 0
\(251\) −27.5040 −1.73604 −0.868019 0.496531i \(-0.834607\pi\)
−0.868019 + 0.496531i \(0.834607\pi\)
\(252\) 4.05502 0.255442
\(253\) 7.24414i 0.455435i
\(254\) 3.12547 0.196110
\(255\) 0 0
\(256\) −0.763844 −0.0477402
\(257\) 4.83678i 0.301710i 0.988556 + 0.150855i \(0.0482027\pi\)
−0.988556 + 0.150855i \(0.951797\pi\)
\(258\) 3.42043 0.212946
\(259\) −8.88673 −0.552194
\(260\) 0 0
\(261\) 4.87983i 0.302054i
\(262\) −6.24681 −0.385929
\(263\) 0.614515i 0.0378926i −0.999821 0.0189463i \(-0.993969\pi\)
0.999821 0.0189463i \(-0.00603116\pi\)
\(264\) −7.25268 −0.446372
\(265\) 0 0
\(266\) 7.20617i 0.441838i
\(267\) 0.0376087 0.00230162
\(268\) 19.9136i 1.21642i
\(269\) 24.1847i 1.47457i −0.675582 0.737285i \(-0.736108\pi\)
0.675582 0.737285i \(-0.263892\pi\)
\(270\) 0 0
\(271\) −25.6004 −1.55511 −0.777556 0.628814i \(-0.783541\pi\)
−0.777556 + 0.628814i \(0.783541\pi\)
\(272\) −8.97774 + 5.32054i −0.544355 + 0.322605i
\(273\) 3.19454i 0.193342i
\(274\) −5.16810 −0.312217
\(275\) 0 0
\(276\) −3.29879 −0.198564
\(277\) 1.53603 0.0922909 0.0461454 0.998935i \(-0.485306\pi\)
0.0461454 + 0.998935i \(0.485306\pi\)
\(278\) −11.3833 −0.682727
\(279\) 1.84404i 0.110400i
\(280\) 0 0
\(281\) −17.0111 −1.01480 −0.507398 0.861712i \(-0.669393\pi\)
−0.507398 + 0.861712i \(0.669393\pi\)
\(282\) −3.53115 −0.210277
\(283\) 9.57549 0.569204 0.284602 0.958646i \(-0.408139\pi\)
0.284602 + 0.958646i \(0.408139\pi\)
\(284\) 0.846461i 0.0502282i
\(285\) 0 0
\(286\) 2.66172i 0.157391i
\(287\) 9.86203i 0.582137i
\(288\) 5.06680i 0.298564i
\(289\) 8.16248 14.9122i 0.480146 0.877189i
\(290\) 0 0
\(291\) −8.19523 −0.480413
\(292\) 26.2088 1.53375
\(293\) 12.5909i 0.735571i 0.929911 + 0.367785i \(0.119884\pi\)
−0.929911 + 0.367785i \(0.880116\pi\)
\(294\) 0.806843i 0.0470560i
\(295\) 0 0
\(296\) 7.23795i 0.420698i
\(297\) 3.83044i 0.222265i
\(298\) 9.70246i 0.562048i
\(299\) 2.59879i 0.150292i
\(300\) 0 0
\(301\) 15.7244i 0.906340i
\(302\) 9.74395i 0.560701i
\(303\) −13.7028 −0.787204
\(304\) 15.5150 0.889845
\(305\) 0 0
\(306\) 1.06300 + 1.79367i 0.0607675 + 0.102538i
\(307\) 4.24103i 0.242048i −0.992650 0.121024i \(-0.961382\pi\)
0.992650 0.121024i \(-0.0386179\pi\)
\(308\) 15.5325i 0.885045i
\(309\) 8.53495i 0.485537i
\(310\) 0 0
\(311\) 27.6793i 1.56955i −0.619781 0.784775i \(-0.712779\pi\)
0.619781 0.784775i \(-0.287221\pi\)
\(312\) −2.60185 −0.147301
\(313\) −7.92765 −0.448098 −0.224049 0.974578i \(-0.571927\pi\)
−0.224049 + 0.974578i \(0.571927\pi\)
\(314\) 3.86784 0.218275
\(315\) 0 0
\(316\) 28.0333i 1.57700i
\(317\) −6.63483 −0.372649 −0.186324 0.982488i \(-0.559658\pi\)
−0.186324 + 0.982488i \(0.559658\pi\)
\(318\) 5.23677 0.293664
\(319\) −18.6919 −1.04654
\(320\) 0 0
\(321\) 8.99707 0.502168
\(322\) 2.22329i 0.123899i
\(323\) −21.7424 + 12.8854i −1.20978 + 0.716960i
\(324\) 1.74428 0.0969045
\(325\) 0 0
\(326\) 2.58660i 0.143258i
\(327\) 0.529331i 0.0292721i
\(328\) 8.03231 0.443510
\(329\) 16.2334i 0.894978i
\(330\) 0 0
\(331\) −9.36993 −0.515018 −0.257509 0.966276i \(-0.582902\pi\)
−0.257509 + 0.966276i \(0.582902\pi\)
\(332\) 3.86829i 0.212300i
\(333\) −3.82266 −0.209480
\(334\) 9.06171i 0.495834i
\(335\) 0 0
\(336\) −5.88412 −0.321005
\(337\) 3.14459 0.171296 0.0856482 0.996325i \(-0.472704\pi\)
0.0856482 + 0.996325i \(0.472704\pi\)
\(338\) 5.61906i 0.305636i
\(339\) −5.59928 −0.304111
\(340\) 0 0
\(341\) −7.06348 −0.382509
\(342\) 3.09976i 0.167616i
\(343\) −19.9825 −1.07895
\(344\) −12.8070 −0.690509
\(345\) 0 0
\(346\) 3.35754i 0.180503i
\(347\) −18.0617 −0.969605 −0.484802 0.874624i \(-0.661108\pi\)
−0.484802 + 0.874624i \(0.661108\pi\)
\(348\) 8.51179i 0.456280i
\(349\) −7.72131 −0.413312 −0.206656 0.978414i \(-0.566258\pi\)
−0.206656 + 0.978414i \(0.566258\pi\)
\(350\) 0 0
\(351\) 1.37414i 0.0733464i
\(352\) 19.4081 1.03445
\(353\) 28.5719i 1.52073i −0.649497 0.760364i \(-0.725021\pi\)
0.649497 0.760364i \(-0.274979\pi\)
\(354\) 3.15783i 0.167837i
\(355\) 0 0
\(356\) −0.0656002 −0.00347680
\(357\) 8.24590 4.88682i 0.436419 0.258638i
\(358\) 3.56458i 0.188394i
\(359\) 16.7892 0.886101 0.443050 0.896497i \(-0.353896\pi\)
0.443050 + 0.896497i \(0.353896\pi\)
\(360\) 0 0
\(361\) 18.5744 0.977602
\(362\) 0.753421 0.0395989
\(363\) 3.67225 0.192743
\(364\) 5.57218i 0.292061i
\(365\) 0 0
\(366\) 1.05660 0.0552295
\(367\) 4.94971 0.258373 0.129186 0.991620i \(-0.458763\pi\)
0.129186 + 0.991620i \(0.458763\pi\)
\(368\) 4.78678 0.249528
\(369\) 4.24219i 0.220840i
\(370\) 0 0
\(371\) 24.0746i 1.24989i
\(372\) 3.21652i 0.166769i
\(373\) 20.3711i 1.05478i −0.849625 0.527388i \(-0.823171\pi\)
0.849625 0.527388i \(-0.176829\pi\)
\(374\) −6.87056 + 4.07174i −0.355268 + 0.210545i
\(375\) 0 0
\(376\) 13.2216 0.681853
\(377\) −6.70559 −0.345355
\(378\) 1.17560i 0.0604661i
\(379\) 14.5285i 0.746279i 0.927775 + 0.373140i \(0.121719\pi\)
−0.927775 + 0.373140i \(0.878281\pi\)
\(380\) 0 0
\(381\) 6.18065i 0.316644i
\(382\) 1.94937i 0.0997385i
\(383\) 30.1233i 1.53923i 0.638508 + 0.769616i \(0.279552\pi\)
−0.638508 + 0.769616i \(0.720448\pi\)
\(384\) 11.3978i 0.581641i
\(385\) 0 0
\(386\) 12.3435i 0.628267i
\(387\) 6.76392i 0.343829i
\(388\) 14.2948 0.725708
\(389\) −12.1939 −0.618254 −0.309127 0.951021i \(-0.600037\pi\)
−0.309127 + 0.951021i \(0.600037\pi\)
\(390\) 0 0
\(391\) −6.70811 + 3.97547i −0.339244 + 0.201048i
\(392\) 3.02105i 0.152586i
\(393\) 12.3531i 0.623133i
\(394\) 3.65192i 0.183981i
\(395\) 0 0
\(396\) 6.68136i 0.335751i
\(397\) −23.1700 −1.16287 −0.581434 0.813593i \(-0.697508\pi\)
−0.581434 + 0.813593i \(0.697508\pi\)
\(398\) −11.8292 −0.592943
\(399\) −14.2502 −0.713405
\(400\) 0 0
\(401\) 33.8852i 1.69215i −0.533067 0.846073i \(-0.678961\pi\)
0.533067 0.846073i \(-0.321039\pi\)
\(402\) −5.77319 −0.287941
\(403\) −2.53398 −0.126226
\(404\) 23.9015 1.18914
\(405\) 0 0
\(406\) 5.73671 0.284708
\(407\) 14.6425i 0.725800i
\(408\) −3.98016 6.71602i −0.197047 0.332493i
\(409\) 16.7600 0.828728 0.414364 0.910111i \(-0.364004\pi\)
0.414364 + 0.910111i \(0.364004\pi\)
\(410\) 0 0
\(411\) 10.2200i 0.504114i
\(412\) 14.8874i 0.733447i
\(413\) 14.5172 0.714345
\(414\) 0.956358i 0.0470024i
\(415\) 0 0
\(416\) 6.96251 0.341365
\(417\) 22.5106i 1.10235i
\(418\) 11.8734 0.580749
\(419\) 7.77239i 0.379706i −0.981813 0.189853i \(-0.939199\pi\)
0.981813 0.189853i \(-0.0608012\pi\)
\(420\) 0 0
\(421\) −0.392213 −0.0191153 −0.00955765 0.999954i \(-0.503042\pi\)
−0.00955765 + 0.999954i \(0.503042\pi\)
\(422\) 12.8320 0.624653
\(423\) 6.98287i 0.339519i
\(424\) −19.6080 −0.952246
\(425\) 0 0
\(426\) 0.245399 0.0118896
\(427\) 4.85742i 0.235067i
\(428\) −15.6934 −0.758570
\(429\) 5.26357 0.254128
\(430\) 0 0
\(431\) 33.3511i 1.60646i 0.595666 + 0.803232i \(0.296888\pi\)
−0.595666 + 0.803232i \(0.703112\pi\)
\(432\) −2.53108 −0.121776
\(433\) 23.0430i 1.10738i 0.832724 + 0.553689i \(0.186780\pi\)
−0.832724 + 0.553689i \(0.813220\pi\)
\(434\) 2.16785 0.104060
\(435\) 0 0
\(436\) 0.923302i 0.0442181i
\(437\) 11.5927 0.554554
\(438\) 7.59824i 0.363058i
\(439\) 15.4050i 0.735241i 0.929976 + 0.367620i \(0.119827\pi\)
−0.929976 + 0.367620i \(0.880173\pi\)
\(440\) 0 0
\(441\) −1.59554 −0.0759780
\(442\) −2.46477 + 1.46071i −0.117237 + 0.0694789i
\(443\) 9.39992i 0.446604i −0.974749 0.223302i \(-0.928316\pi\)
0.974749 0.223302i \(-0.0716836\pi\)
\(444\) 6.66779 0.316439
\(445\) 0 0
\(446\) 3.86048 0.182799
\(447\) 19.1867 0.907499
\(448\) 5.81172 0.274578
\(449\) 34.8548i 1.64490i −0.568836 0.822451i \(-0.692606\pi\)
0.568836 0.822451i \(-0.307394\pi\)
\(450\) 0 0
\(451\) −16.2494 −0.765156
\(452\) 9.76672 0.459388
\(453\) 19.2687 0.905324
\(454\) 10.9198i 0.512491i
\(455\) 0 0
\(456\) 11.6064i 0.543518i
\(457\) 5.59302i 0.261631i 0.991407 + 0.130815i \(0.0417595\pi\)
−0.991407 + 0.130815i \(0.958241\pi\)
\(458\) 2.47633i 0.115711i
\(459\) 3.54700 2.10209i 0.165560 0.0981169i
\(460\) 0 0
\(461\) 37.6643 1.75420 0.877102 0.480305i \(-0.159474\pi\)
0.877102 + 0.480305i \(0.159474\pi\)
\(462\) −4.50305 −0.209501
\(463\) 4.49005i 0.208671i 0.994542 + 0.104335i \(0.0332715\pi\)
−0.994542 + 0.104335i \(0.966729\pi\)
\(464\) 12.3512i 0.573391i
\(465\) 0 0
\(466\) 5.42848i 0.251469i
\(467\) 24.4972i 1.13359i −0.823857 0.566797i \(-0.808182\pi\)
0.823857 0.566797i \(-0.191818\pi\)
\(468\) 2.39689i 0.110796i
\(469\) 26.5406i 1.22553i
\(470\) 0 0
\(471\) 7.64868i 0.352432i
\(472\) 11.8238i 0.544234i
\(473\) 25.9088 1.19129
\(474\) 8.12717 0.373293
\(475\) 0 0
\(476\) −14.3832 + 8.52399i −0.659251 + 0.390696i
\(477\) 10.3558i 0.474158i
\(478\) 8.24856i 0.377280i
\(479\) 23.7462i 1.08499i 0.840059 + 0.542495i \(0.182520\pi\)
−0.840059 + 0.542495i \(0.817480\pi\)
\(480\) 0 0
\(481\) 5.25288i 0.239511i
\(482\) 7.66274 0.349028
\(483\) −4.39658 −0.200051
\(484\) −6.40543 −0.291156
\(485\) 0 0
\(486\) 0.505687i 0.0229384i
\(487\) 9.54322 0.432445 0.216222 0.976344i \(-0.430626\pi\)
0.216222 + 0.976344i \(0.430626\pi\)
\(488\) −3.95622 −0.179090
\(489\) 5.11501 0.231309
\(490\) 0 0
\(491\) 15.6317 0.705447 0.352724 0.935728i \(-0.385256\pi\)
0.352724 + 0.935728i \(0.385256\pi\)
\(492\) 7.39957i 0.333598i
\(493\) −10.2578 17.3088i −0.461989 0.779548i
\(494\) 4.25952 0.191645
\(495\) 0 0
\(496\) 4.66741i 0.209573i
\(497\) 1.12815i 0.0506045i
\(498\) 1.12146 0.0502539
\(499\) 13.9399i 0.624036i −0.950076 0.312018i \(-0.898995\pi\)
0.950076 0.312018i \(-0.101005\pi\)
\(500\) 0 0
\(501\) −17.9196 −0.800588
\(502\) 13.9084i 0.620763i
\(503\) 19.4642 0.867868 0.433934 0.900945i \(-0.357125\pi\)
0.433934 + 0.900945i \(0.357125\pi\)
\(504\) 4.40176i 0.196070i
\(505\) 0 0
\(506\) 3.66327 0.162852
\(507\) −11.1117 −0.493489
\(508\) 10.7808i 0.478320i
\(509\) 10.3056 0.456786 0.228393 0.973569i \(-0.426653\pi\)
0.228393 + 0.973569i \(0.426653\pi\)
\(510\) 0 0
\(511\) 34.9307 1.54524
\(512\) 22.4093i 0.990361i
\(513\) −6.12980 −0.270637
\(514\) 2.44590 0.107884
\(515\) 0 0
\(516\) 11.7982i 0.519385i
\(517\) −26.7475 −1.17635
\(518\) 4.49390i 0.197451i
\(519\) 6.63957 0.291445
\(520\) 0 0
\(521\) 36.6047i 1.60368i 0.597539 + 0.801840i \(0.296145\pi\)
−0.597539 + 0.801840i \(0.703855\pi\)
\(522\) 2.46767 0.108007
\(523\) 23.6841i 1.03564i −0.855491 0.517818i \(-0.826745\pi\)
0.855491 0.517818i \(-0.173255\pi\)
\(524\) 21.5473i 0.941299i
\(525\) 0 0
\(526\) −0.310752 −0.0135494
\(527\) −3.87633 6.54082i −0.168856 0.284923i
\(528\) 9.69513i 0.421926i
\(529\) −19.4233 −0.844493
\(530\) 0 0
\(531\) 6.24463 0.270994
\(532\) 24.8564 1.07766
\(533\) −5.82938 −0.252498
\(534\) 0.0190183i 0.000823000i
\(535\) 0 0
\(536\) 21.6164 0.933688
\(537\) 7.04898 0.304186
\(538\) −12.2299 −0.527269
\(539\) 6.11161i 0.263246i
\(540\) 0 0
\(541\) 7.82890i 0.336591i 0.985737 + 0.168295i \(0.0538262\pi\)
−0.985737 + 0.168295i \(0.946174\pi\)
\(542\) 12.9458i 0.556069i
\(543\) 1.48990i 0.0639375i
\(544\) 10.6508 + 17.9720i 0.456651 + 0.770542i
\(545\) 0 0
\(546\) −1.61544 −0.0691344
\(547\) −15.9716 −0.682896 −0.341448 0.939901i \(-0.610917\pi\)
−0.341448 + 0.939901i \(0.610917\pi\)
\(548\) 17.8265i 0.761510i
\(549\) 2.08944i 0.0891751i
\(550\) 0 0
\(551\) 29.9124i 1.27431i
\(552\) 3.58087i 0.152412i
\(553\) 37.3623i 1.58881i
\(554\) 0.776749i 0.0330009i
\(555\) 0 0
\(556\) 39.2648i 1.66520i
\(557\) 37.8410i 1.60337i 0.597745 + 0.801687i \(0.296064\pi\)
−0.597745 + 0.801687i \(0.703936\pi\)
\(558\) 0.932508 0.0394762
\(559\) 9.29459 0.393119
\(560\) 0 0
\(561\) 8.05190 + 13.5866i 0.339952 + 0.573626i
\(562\) 8.60229i 0.362866i
\(563\) 4.01350i 0.169149i −0.996417 0.0845744i \(-0.973047\pi\)
0.996417 0.0845744i \(-0.0269531\pi\)
\(564\) 12.1801i 0.512874i
\(565\) 0 0
\(566\) 4.84220i 0.203533i
\(567\) 2.32475 0.0976303
\(568\) −0.918842 −0.0385538
\(569\) 22.9552 0.962333 0.481166 0.876629i \(-0.340213\pi\)
0.481166 + 0.876629i \(0.340213\pi\)
\(570\) 0 0
\(571\) 45.8971i 1.92073i −0.278738 0.960367i \(-0.589916\pi\)
0.278738 0.960367i \(-0.410084\pi\)
\(572\) −9.18114 −0.383883
\(573\) 3.85489 0.161041
\(574\) 4.98710 0.208158
\(575\) 0 0
\(576\) 2.49994 0.104164
\(577\) 5.62185i 0.234041i 0.993130 + 0.117020i \(0.0373343\pi\)
−0.993130 + 0.117020i \(0.962666\pi\)
\(578\) −7.54091 4.12766i −0.313661 0.171688i
\(579\) 24.4093 1.01442
\(580\) 0 0
\(581\) 5.15560i 0.213890i
\(582\) 4.14422i 0.171784i
\(583\) 39.6671 1.64284
\(584\) 28.4499i 1.17727i
\(585\) 0 0
\(586\) 6.36708 0.263022
\(587\) 26.5389i 1.09538i −0.836682 0.547689i \(-0.815508\pi\)
0.836682 0.547689i \(-0.184492\pi\)
\(588\) 2.78306 0.114772
\(589\) 11.3036i 0.465757i
\(590\) 0 0
\(591\) −7.22171 −0.297061
\(592\) −9.67544 −0.397658
\(593\) 37.9304i 1.55762i −0.627263 0.778808i \(-0.715825\pi\)
0.627263 0.778808i \(-0.284175\pi\)
\(594\) −1.93700 −0.0794762
\(595\) 0 0
\(596\) −33.4670 −1.37086
\(597\) 23.3923i 0.957383i
\(598\) 1.31417 0.0537405
\(599\) −16.2424 −0.663645 −0.331823 0.943342i \(-0.607664\pi\)
−0.331823 + 0.943342i \(0.607664\pi\)
\(600\) 0 0
\(601\) 36.2489i 1.47862i 0.673364 + 0.739311i \(0.264849\pi\)
−0.673364 + 0.739311i \(0.735151\pi\)
\(602\) −7.95163 −0.324084
\(603\) 11.4165i 0.464917i
\(604\) −33.6101 −1.36757
\(605\) 0 0
\(606\) 6.92931i 0.281484i
\(607\) 3.39794 0.137918 0.0689591 0.997619i \(-0.478032\pi\)
0.0689591 + 0.997619i \(0.478032\pi\)
\(608\) 31.0585i 1.25959i
\(609\) 11.3444i 0.459698i
\(610\) 0 0
\(611\) −9.59547 −0.388191
\(612\) −6.18697 + 3.66663i −0.250093 + 0.148215i
\(613\) 39.3248i 1.58831i −0.607713 0.794157i \(-0.707913\pi\)
0.607713 0.794157i \(-0.292087\pi\)
\(614\) −2.14463 −0.0865504
\(615\) 0 0
\(616\) 16.8607 0.679336
\(617\) 38.7378 1.55953 0.779763 0.626075i \(-0.215339\pi\)
0.779763 + 0.626075i \(0.215339\pi\)
\(618\) −4.31602 −0.173616
\(619\) 0.0346436i 0.00139244i 1.00000 0.000696222i \(0.000221614\pi\)
−1.00000 0.000696222i \(0.999778\pi\)
\(620\) 0 0
\(621\) −1.89121 −0.0758914
\(622\) −13.9971 −0.561231
\(623\) −0.0874309 −0.00350284
\(624\) 3.47806i 0.139234i
\(625\) 0 0
\(626\) 4.00891i 0.160228i
\(627\) 23.4798i 0.937693i
\(628\) 13.3414i 0.532381i
\(629\) 13.5590 8.03555i 0.540632 0.320399i
\(630\) 0 0
\(631\) −8.34701 −0.332289 −0.166145 0.986101i \(-0.553132\pi\)
−0.166145 + 0.986101i \(0.553132\pi\)
\(632\) −30.4304 −1.21046
\(633\) 25.3754i 1.00858i
\(634\) 3.35515i 0.133250i
\(635\) 0 0
\(636\) 18.0634i 0.716259i
\(637\) 2.19250i 0.0868699i
\(638\) 9.45225i 0.374218i
\(639\) 0.485278i 0.0191973i
\(640\) 0 0
\(641\) 30.5955i 1.20845i −0.796813 0.604225i \(-0.793483\pi\)
0.796813 0.604225i \(-0.206517\pi\)
\(642\) 4.54970i 0.179562i
\(643\) −15.2754 −0.602404 −0.301202 0.953560i \(-0.597388\pi\)
−0.301202 + 0.953560i \(0.597388\pi\)
\(644\) 7.66887 0.302196
\(645\) 0 0
\(646\) 6.51596 + 10.9949i 0.256367 + 0.432587i
\(647\) 29.0753i 1.14307i 0.820579 + 0.571533i \(0.193651\pi\)
−0.820579 + 0.571533i \(0.806349\pi\)
\(648\) 1.89343i 0.0743811i
\(649\) 23.9196i 0.938928i
\(650\) 0 0
\(651\) 4.28693i 0.168018i
\(652\) −8.92202 −0.349413
\(653\) 46.6691 1.82630 0.913152 0.407618i \(-0.133641\pi\)
0.913152 + 0.407618i \(0.133641\pi\)
\(654\) −0.267676 −0.0104670
\(655\) 0 0
\(656\) 10.7373i 0.419221i
\(657\) 15.0256 0.586203
\(658\) 8.20904 0.320022
\(659\) 7.46941 0.290967 0.145483 0.989361i \(-0.453526\pi\)
0.145483 + 0.989361i \(0.453526\pi\)
\(660\) 0 0
\(661\) 5.29492 0.205948 0.102974 0.994684i \(-0.467164\pi\)
0.102974 + 0.994684i \(0.467164\pi\)
\(662\) 4.73825i 0.184158i
\(663\) 2.88857 + 4.87409i 0.112183 + 0.189294i
\(664\) −4.19907 −0.162955
\(665\) 0 0
\(666\) 1.93307i 0.0749049i
\(667\) 9.22876i 0.357339i
\(668\) 31.2568 1.20936
\(669\) 7.63412i 0.295152i
\(670\) 0 0
\(671\) 8.00347 0.308970
\(672\) 11.7790i 0.454387i
\(673\) 2.55338 0.0984256 0.0492128 0.998788i \(-0.484329\pi\)
0.0492128 + 0.998788i \(0.484329\pi\)
\(674\) 1.59018i 0.0612513i
\(675\) 0 0
\(676\) 19.3820 0.745460
\(677\) −18.6769 −0.717810 −0.358905 0.933374i \(-0.616850\pi\)
−0.358905 + 0.933374i \(0.616850\pi\)
\(678\) 2.83149i 0.108743i
\(679\) 19.0519 0.731144
\(680\) 0 0
\(681\) 21.5939 0.827482
\(682\) 3.57191i 0.136776i
\(683\) −34.7600 −1.33005 −0.665027 0.746820i \(-0.731580\pi\)
−0.665027 + 0.746820i \(0.731580\pi\)
\(684\) 10.6921 0.408822
\(685\) 0 0
\(686\) 10.1049i 0.385806i
\(687\) −4.89696 −0.186831
\(688\) 17.1200i 0.652693i
\(689\) 14.2303 0.542131
\(690\) 0 0
\(691\) 34.9888i 1.33104i 0.746381 + 0.665519i \(0.231790\pi\)
−0.746381 + 0.665519i \(0.768210\pi\)
\(692\) −11.5813 −0.440254
\(693\) 8.90481i 0.338266i
\(694\) 9.13359i 0.346706i
\(695\) 0 0
\(696\) −9.23964 −0.350228
\(697\) −8.91744 15.0471i −0.337772 0.569948i
\(698\) 3.90457i 0.147790i
\(699\) −10.7349 −0.406030
\(700\) 0 0
\(701\) −38.1963 −1.44266 −0.721328 0.692594i \(-0.756468\pi\)
−0.721328 + 0.692594i \(0.756468\pi\)
\(702\) −0.694887 −0.0262268
\(703\) −23.4321 −0.883760
\(704\) 9.57584i 0.360903i
\(705\) 0 0
\(706\) −14.4484 −0.543774
\(707\) 31.8555 1.19805
\(708\) −10.8924 −0.409361
\(709\) 29.6717i 1.11434i 0.830397 + 0.557172i \(0.188114\pi\)
−0.830397 + 0.557172i \(0.811886\pi\)
\(710\) 0 0
\(711\) 16.0715i 0.602730i
\(712\) 0.0712097i 0.00266869i
\(713\) 3.48746i 0.130606i
\(714\) −2.47120 4.16984i −0.0924824 0.156053i
\(715\) 0 0
\(716\) −12.2954 −0.459501
\(717\) 16.3116 0.609167
\(718\) 8.49009i 0.316847i
\(719\) 27.4951i 1.02539i 0.858570 + 0.512697i \(0.171354\pi\)
−0.858570 + 0.512697i \(0.828646\pi\)
\(720\) 0 0
\(721\) 19.8416i 0.738941i
\(722\) 9.39285i 0.349566i
\(723\) 15.1531i 0.563551i
\(724\) 2.59880i 0.0965835i
\(725\) 0 0
\(726\) 1.85701i 0.0689201i
\(727\) 6.27499i 0.232726i −0.993207 0.116363i \(-0.962876\pi\)
0.993207 0.116363i \(-0.0371237\pi\)
\(728\) 6.04865 0.224178
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 14.2183 + 23.9916i 0.525884 + 0.887363i
\(732\) 3.64457i 0.134707i
\(733\) 34.9909i 1.29242i −0.763160 0.646210i \(-0.776353\pi\)
0.763160 0.646210i \(-0.223647\pi\)
\(734\) 2.50301i 0.0923876i
\(735\) 0 0
\(736\) 9.58236i 0.353210i
\(737\) −43.7303 −1.61083
\(738\) 2.14522 0.0789667
\(739\) −33.5129 −1.23279 −0.616396 0.787437i \(-0.711408\pi\)
−0.616396 + 0.787437i \(0.711408\pi\)
\(740\) 0 0
\(741\) 8.42322i 0.309435i
\(742\) −12.1742 −0.446929
\(743\) 20.6043 0.755898 0.377949 0.925826i \(-0.376629\pi\)
0.377949 + 0.925826i \(0.376629\pi\)
\(744\) −3.49157 −0.128007
\(745\) 0 0
\(746\) −10.3014 −0.377161
\(747\) 2.21770i 0.0811414i
\(748\) −14.0448 23.6988i −0.513528 0.866514i
\(749\) −20.9159 −0.764252
\(750\) 0 0
\(751\) 0.215296i 0.00785625i −0.999992 0.00392812i \(-0.998750\pi\)
0.999992 0.00392812i \(-0.00125036\pi\)
\(752\) 17.6742i 0.644511i
\(753\) 27.5040 1.00230
\(754\) 3.39093i 0.123490i
\(755\) 0 0
\(756\) −4.05502 −0.147480
\(757\) 29.8753i 1.08584i −0.839786 0.542918i \(-0.817320\pi\)
0.839786 0.542918i \(-0.182680\pi\)
\(758\) 7.34688 0.266851
\(759\) 7.24414i 0.262946i
\(760\) 0 0
\(761\) 54.5427 1.97717 0.988586 0.150659i \(-0.0481396\pi\)
0.988586 + 0.150659i \(0.0481396\pi\)
\(762\) −3.12547 −0.113224
\(763\) 1.23056i 0.0445493i
\(764\) −6.72402 −0.243266
\(765\) 0 0
\(766\) 15.2330 0.550390
\(767\) 8.58101i 0.309842i
\(768\) 0.763844 0.0275628
\(769\) 33.8727 1.22148 0.610741 0.791831i \(-0.290872\pi\)
0.610741 + 0.791831i \(0.290872\pi\)
\(770\) 0 0
\(771\) 4.83678i 0.174193i
\(772\) −42.5767 −1.53237
\(773\) 6.63104i 0.238502i 0.992864 + 0.119251i \(0.0380493\pi\)
−0.992864 + 0.119251i \(0.961951\pi\)
\(774\) −3.42043 −0.122945
\(775\) 0 0
\(776\) 15.5171i 0.557033i
\(777\) 8.88673 0.318810
\(778\) 6.16629i 0.221072i
\(779\) 26.0038i 0.931682i
\(780\) 0 0
\(781\) 1.85883 0.0665141
\(782\) 2.01035 + 3.39221i 0.0718898 + 0.121305i
\(783\) 4.87983i 0.174391i
\(784\) −4.03843 −0.144230
\(785\) 0 0
\(786\) 6.24681 0.222816
\(787\) −6.09846 −0.217387 −0.108693 0.994075i \(-0.534667\pi\)
−0.108693 + 0.994075i \(0.534667\pi\)
\(788\) 12.5967 0.448738
\(789\) 0.614515i 0.0218773i
\(790\) 0 0
\(791\) 13.0169 0.462829
\(792\) 7.25268 0.257713
\(793\) 2.87119 0.101959
\(794\) 11.7168i 0.415813i
\(795\) 0 0
\(796\) 40.8027i 1.44621i
\(797\) 56.0490i 1.98536i 0.120787 + 0.992678i \(0.461458\pi\)
−0.120787 + 0.992678i \(0.538542\pi\)
\(798\) 7.20617i 0.255096i
\(799\) −14.6786 24.7683i −0.519291 0.876239i
\(800\) 0 0
\(801\) −0.0376087 −0.00132884
\(802\) −17.1353 −0.605069
\(803\) 57.5545i 2.03105i
\(804\) 19.9136i 0.702300i
\(805\) 0 0
\(806\) 1.28140i 0.0451354i
\(807\) 24.1847i 0.851343i
\(808\) 25.9453i 0.912752i
\(809\) 1.98666i 0.0698473i −0.999390 0.0349237i \(-0.988881\pi\)
0.999390 0.0349237i \(-0.0111188\pi\)
\(810\) 0 0
\(811\) 4.99801i 0.175504i 0.996142 + 0.0877519i \(0.0279683\pi\)
−0.996142 + 0.0877519i \(0.972032\pi\)
\(812\) 19.7878i 0.694415i
\(813\) 25.6004 0.897844
\(814\) −7.40450 −0.259528
\(815\) 0 0
\(816\) 8.97774 5.32054i 0.314284 0.186256i
\(817\) 41.4615i 1.45055i
\(818\) 8.47531i 0.296332i
\(819\) 3.19454i 0.111626i
\(820\) 0 0
\(821\) 12.0615i 0.420950i −0.977599 0.210475i \(-0.932499\pi\)
0.977599 0.210475i \(-0.0675010\pi\)
\(822\) 5.16810 0.180258
\(823\) −50.2102 −1.75022 −0.875108 0.483927i \(-0.839210\pi\)
−0.875108 + 0.483927i \(0.839210\pi\)
\(824\) 16.1604 0.562973
\(825\) 0 0
\(826\) 7.34116i 0.255432i
\(827\) 7.32302 0.254646 0.127323 0.991861i \(-0.459361\pi\)
0.127323 + 0.991861i \(0.459361\pi\)
\(828\) 3.29879 0.114641
\(829\) 5.98889 0.208003 0.104001 0.994577i \(-0.466835\pi\)
0.104001 + 0.994577i \(0.466835\pi\)
\(830\) 0 0
\(831\) −1.53603 −0.0532842
\(832\) 3.43527i 0.119097i
\(833\) 5.65938 3.35396i 0.196086 0.116208i
\(834\) 11.3833 0.394172
\(835\) 0 0
\(836\) 40.9554i 1.41647i
\(837\) 1.84404i 0.0637394i
\(838\) −3.93040 −0.135773
\(839\) 43.0621i 1.48667i −0.668920 0.743335i \(-0.733243\pi\)
0.668920 0.743335i \(-0.266757\pi\)
\(840\) 0 0
\(841\) 5.18725 0.178871
\(842\) 0.198337i 0.00683515i
\(843\) 17.0111 0.585893
\(844\) 44.2618i 1.52355i
\(845\) 0 0
\(846\) 3.53115 0.121403
\(847\) −8.53706 −0.293337
\(848\) 26.2112i 0.900097i
\(849\) −9.57549 −0.328630
\(850\) 0 0
\(851\) −7.22943 −0.247822
\(852\) 0.846461i 0.0289993i
\(853\) −25.6869 −0.879503 −0.439751 0.898120i \(-0.644933\pi\)
−0.439751 + 0.898120i \(0.644933\pi\)
\(854\) −2.45634 −0.0840541
\(855\) 0 0
\(856\) 17.0354i 0.582257i
\(857\) 40.9919 1.40026 0.700128 0.714017i \(-0.253126\pi\)
0.700128 + 0.714017i \(0.253126\pi\)
\(858\) 2.66172i 0.0908696i
\(859\) −4.27475 −0.145853 −0.0729264 0.997337i \(-0.523234\pi\)
−0.0729264 + 0.997337i \(0.523234\pi\)
\(860\) 0 0
\(861\) 9.86203i 0.336097i
\(862\) 16.8652 0.574431
\(863\) 34.0512i 1.15912i −0.814931 0.579559i \(-0.803225\pi\)
0.814931 0.579559i \(-0.196775\pi\)
\(864\) 5.06680i 0.172376i
\(865\) 0 0
\(866\) 11.6526 0.395970
\(867\) −8.16248 + 14.9122i −0.277212 + 0.506445i
\(868\) 7.47761i 0.253807i
\(869\) 61.5610 2.08831
\(870\) 0 0
\(871\) −15.6880 −0.531566
\(872\) 1.00225 0.0339406
\(873\) 8.19523 0.277367
\(874\) 5.86228i 0.198295i
\(875\) 0 0
\(876\) −26.2088 −0.885514
\(877\) 39.9948 1.35053 0.675264 0.737576i \(-0.264030\pi\)
0.675264 + 0.737576i \(0.264030\pi\)
\(878\) 7.79011 0.262904
\(879\) 12.5909i 0.424682i
\(880\) 0 0
\(881\) 0.223269i 0.00752212i −0.999993 0.00376106i \(-0.998803\pi\)
0.999993 0.00376106i \(-0.00119719\pi\)
\(882\) 0.806843i 0.0271678i
\(883\) 57.6604i 1.94043i 0.242252 + 0.970213i \(0.422114\pi\)
−0.242252 + 0.970213i \(0.577886\pi\)
\(884\) −5.03847 8.50179i −0.169462 0.285946i
\(885\) 0 0
\(886\) −4.75342 −0.159694
\(887\) 38.8898 1.30579 0.652895 0.757448i \(-0.273554\pi\)
0.652895 + 0.757448i \(0.273554\pi\)
\(888\) 7.23795i 0.242890i
\(889\) 14.3685i 0.481903i
\(890\) 0 0
\(891\) 3.83044i 0.128324i
\(892\) 13.3160i 0.445854i
\(893\) 42.8036i 1.43237i
\(894\) 9.70246i 0.324499i
\(895\) 0 0
\(896\) 26.4970i 0.885203i
\(897\) 2.59879i 0.0867710i
\(898\) −17.6256 −0.588175
\(899\) −8.99861 −0.300120
\(900\) 0 0
\(901\) 21.7687 + 36.7319i 0.725220 + 1.22372i
\(902\) 8.21713i 0.273601i
\(903\) 15.7244i 0.523276i
\(904\) 10.6019i 0.352613i
\(905\) 0 0
\(906\) 9.74395i 0.323721i
\(907\) −35.5315 −1.17981 −0.589903 0.807474i \(-0.700834\pi\)
−0.589903 + 0.807474i \(0.700834\pi\)
\(908\) −37.6659 −1.24999
\(909\) 13.7028 0.454492
\(910\) 0 0
\(911\) 45.6538i 1.51258i −0.654239 0.756288i \(-0.727011\pi\)
0.654239 0.756288i \(-0.272989\pi\)
\(912\) −15.5150 −0.513752
\(913\) 8.49476 0.281136
\(914\) 2.82832 0.0935525
\(915\) 0 0
\(916\) 8.54167 0.282225
\(917\) 28.7179i 0.948349i
\(918\) −1.06300 1.79367i −0.0350841 0.0592001i
\(919\) 50.6856 1.67196 0.835981 0.548758i \(-0.184899\pi\)
0.835981 + 0.548758i \(0.184899\pi\)
\(920\) 0 0
\(921\) 4.24103i 0.139747i
\(922\) 19.0464i 0.627259i
\(923\) 0.666842 0.0219494
\(924\) 15.5325i 0.510981i
\(925\) 0 0
\(926\) 2.27056 0.0746153
\(927\) 8.53495i 0.280325i
\(928\) 24.7251 0.811642
\(929\) 25.8365i 0.847668i 0.905740 + 0.423834i \(0.139316\pi\)
−0.905740 + 0.423834i \(0.860684\pi\)
\(930\) 0 0
\(931\) −9.78032 −0.320537
\(932\) 18.7246 0.613345
\(933\) 27.6793i 0.906180i
\(934\) −12.3879 −0.405345
\(935\) 0 0
\(936\) 2.60185 0.0850442
\(937\) 8.65692i 0.282809i −0.989952 0.141405i \(-0.954838\pi\)
0.989952 0.141405i \(-0.0451619\pi\)
\(938\) 13.4212 0.438219
\(939\) 7.92765 0.258709
\(940\) 0 0
\(941\) 44.7978i 1.46037i 0.683251 + 0.730184i \(0.260566\pi\)
−0.683251 + 0.730184i \(0.739434\pi\)
\(942\) −3.86784 −0.126021
\(943\) 8.02285i 0.261260i
\(944\) 15.8056 0.514429
\(945\) 0 0
\(946\) 13.1017i 0.425974i
\(947\) 53.4086 1.73555 0.867774 0.496960i \(-0.165550\pi\)
0.867774 + 0.496960i \(0.165550\pi\)
\(948\) 28.0333i 0.910479i
\(949\) 20.6473i 0.670240i
\(950\) 0 0
\(951\) 6.63483 0.215149
\(952\) 9.25288 + 15.6131i 0.299887 + 0.506022i
\(953\) 25.4821i 0.825445i 0.910857 + 0.412722i \(0.135422\pi\)
−0.910857 + 0.412722i \(0.864578\pi\)
\(954\) −5.23677 −0.169547
\(955\) 0 0
\(956\) −28.4520 −0.920202
\(957\) 18.6919 0.604223
\(958\) 12.0081 0.387965
\(959\) 23.7589i 0.767213i
\(960\) 0 0
\(961\) 27.5995 0.890307
\(962\) −2.65632 −0.0856430
\(963\) −8.99707 −0.289927
\(964\) 26.4313i 0.851295i
\(965\) 0 0
\(966\) 2.22329i 0.0715333i
\(967\) 57.1051i 1.83638i −0.396144 0.918188i \(-0.629652\pi\)
0.396144 0.918188i \(-0.370348\pi\)
\(968\) 6.95316i 0.223483i
\(969\) 21.7424 12.8854i 0.698467 0.413937i
\(970\) 0 0
\(971\) −10.9022 −0.349867 −0.174934 0.984580i \(-0.555971\pi\)
−0.174934 + 0.984580i \(0.555971\pi\)
\(972\) −1.74428 −0.0559478
\(973\) 52.3315i 1.67767i
\(974\) 4.82588i 0.154631i
\(975\) 0 0
\(976\) 5.28853i 0.169282i
\(977\) 14.8498i 0.475087i 0.971377 + 0.237544i \(0.0763423\pi\)
−0.971377 + 0.237544i \(0.923658\pi\)
\(978\) 2.58660i 0.0827102i
\(979\) 0.144058i 0.00460411i
\(980\) 0 0
\(981\) 0.529331i 0.0169002i
\(982\) 7.90473i 0.252250i
\(983\) −2.90236 −0.0925707 −0.0462854 0.998928i \(-0.514738\pi\)
−0.0462854 + 0.998928i \(0.514738\pi\)
\(984\) −8.03231 −0.256061
\(985\) 0 0
\(986\) −8.75283 + 5.18725i −0.278747 + 0.165196i
\(987\) 16.2334i 0.516716i
\(988\) 14.6925i 0.467430i
\(989\) 12.7920i 0.406761i
\(990\) 0 0
\(991\) 56.8848i 1.80700i −0.428583 0.903502i \(-0.640987\pi\)
0.428583 0.903502i \(-0.359013\pi\)
\(992\) 9.34339 0.296653
\(993\) 9.36993 0.297346
\(994\) −0.570491 −0.0180949
\(995\) 0 0
\(996\) 3.86829i 0.122571i
\(997\) −52.0909 −1.64974 −0.824868 0.565325i \(-0.808751\pi\)
−0.824868 + 0.565325i \(0.808751\pi\)
\(998\) −7.04923 −0.223140
\(999\) 3.82266 0.120944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.2.d.i.424.6 12
5.2 odd 4 1275.2.g.e.526.8 yes 12
5.3 odd 4 1275.2.g.f.526.5 yes 12
5.4 even 2 1275.2.d.j.424.7 12
17.16 even 2 1275.2.d.j.424.6 12
85.33 odd 4 1275.2.g.f.526.6 yes 12
85.67 odd 4 1275.2.g.e.526.7 12
85.84 even 2 inner 1275.2.d.i.424.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1275.2.d.i.424.6 12 1.1 even 1 trivial
1275.2.d.i.424.7 12 85.84 even 2 inner
1275.2.d.j.424.6 12 17.16 even 2
1275.2.d.j.424.7 12 5.4 even 2
1275.2.g.e.526.7 12 85.67 odd 4
1275.2.g.e.526.8 yes 12 5.2 odd 4
1275.2.g.f.526.5 yes 12 5.3 odd 4
1275.2.g.f.526.6 yes 12 85.33 odd 4