Properties

Label 1275.2.d.i.424.1
Level $1275$
Weight $2$
Character 1275.424
Analytic conductor $10.181$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1275,2,Mod(424,1275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1275.424"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-12,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1809262577\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 144x^{8} + 452x^{6} + 604x^{4} + 268x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 424.1
Root \(-2.67247i\) of defining polynomial
Character \(\chi\) \(=\) 1275.424
Dual form 1275.2.d.i.424.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.67247i q^{2} -1.00000 q^{3} -5.14207 q^{4} +2.67247i q^{6} +3.95896 q^{7} +8.39707i q^{8} +1.00000 q^{9} -2.28650i q^{11} +5.14207 q^{12} -1.90324i q^{13} -10.5802i q^{14} +12.1567 q^{16} +(-2.31913 + 3.40905i) q^{17} -2.67247i q^{18} -6.58376 q^{19} -3.95896 q^{21} -6.11058 q^{22} -7.11415 q^{23} -8.39707i q^{24} -5.08635 q^{26} -1.00000 q^{27} -20.3573 q^{28} -2.23078i q^{29} -9.45279i q^{31} -15.6943i q^{32} +2.28650i q^{33} +(9.11058 + 6.19779i) q^{34} -5.14207 q^{36} -6.57214 q^{37} +17.5949i q^{38} +1.90324i q^{39} +1.52889i q^{41} +10.5802i q^{42} -4.26946i q^{43} +11.7573i q^{44} +19.0123i q^{46} +3.61168i q^{47} -12.1567 q^{48} +8.67337 q^{49} +(2.31913 - 3.40905i) q^{51} +9.78662i q^{52} +1.48664i q^{53} +2.67247i q^{54} +33.2437i q^{56} +6.58376 q^{57} -5.96168 q^{58} -10.7633 q^{59} -15.0087i q^{61} -25.2623 q^{62} +3.95896 q^{63} -17.6291 q^{64} +6.11058 q^{66} +4.91401i q^{67} +(11.9251 - 17.5296i) q^{68} +7.11415 q^{69} +9.15317i q^{71} +8.39707i q^{72} +7.94910 q^{73} +17.5638i q^{74} +33.8541 q^{76} -9.05214i q^{77} +5.08635 q^{78} -3.92218i q^{79} +1.00000 q^{81} +4.08592 q^{82} +3.85286i q^{83} +20.3573 q^{84} -11.4100 q^{86} +2.23078i q^{87} +19.1999 q^{88} +4.71863 q^{89} -7.53487i q^{91} +36.5815 q^{92} +9.45279i q^{93} +9.65208 q^{94} +15.6943i q^{96} -7.70758 q^{97} -23.1793i q^{98} -2.28650i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{3} - 16 q^{4} + 12 q^{9} + 16 q^{12} + 32 q^{16} - 6 q^{17} + 4 q^{19} + 12 q^{22} - 16 q^{23} - 36 q^{26} - 12 q^{27} - 36 q^{28} + 24 q^{34} - 16 q^{36} - 4 q^{37} - 32 q^{48} + 16 q^{49}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1275\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(751\) \(851\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.67247i 1.88972i −0.327477 0.944859i \(-0.606198\pi\)
0.327477 0.944859i \(-0.393802\pi\)
\(3\) −1.00000 −0.577350
\(4\) −5.14207 −2.57104
\(5\) 0 0
\(6\) 2.67247i 1.09103i
\(7\) 3.95896 1.49635 0.748173 0.663504i \(-0.230931\pi\)
0.748173 + 0.663504i \(0.230931\pi\)
\(8\) 8.39707i 2.96881i
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.28650i 0.689404i −0.938712 0.344702i \(-0.887980\pi\)
0.938712 0.344702i \(-0.112020\pi\)
\(12\) 5.14207 1.48439
\(13\) 1.90324i 0.527865i −0.964541 0.263933i \(-0.914980\pi\)
0.964541 0.263933i \(-0.0850196\pi\)
\(14\) 10.5802i 2.82767i
\(15\) 0 0
\(16\) 12.1567 3.03919
\(17\) −2.31913 + 3.40905i −0.562471 + 0.826817i
\(18\) 2.67247i 0.629906i
\(19\) −6.58376 −1.51042 −0.755209 0.655484i \(-0.772464\pi\)
−0.755209 + 0.655484i \(0.772464\pi\)
\(20\) 0 0
\(21\) −3.95896 −0.863916
\(22\) −6.11058 −1.30278
\(23\) −7.11415 −1.48340 −0.741702 0.670730i \(-0.765981\pi\)
−0.741702 + 0.670730i \(0.765981\pi\)
\(24\) 8.39707i 1.71405i
\(25\) 0 0
\(26\) −5.08635 −0.997516
\(27\) −1.00000 −0.192450
\(28\) −20.3573 −3.84716
\(29\) 2.23078i 0.414245i −0.978315 0.207123i \(-0.933590\pi\)
0.978315 0.207123i \(-0.0664099\pi\)
\(30\) 0 0
\(31\) 9.45279i 1.69777i −0.528577 0.848886i \(-0.677274\pi\)
0.528577 0.848886i \(-0.322726\pi\)
\(32\) 15.6943i 2.77439i
\(33\) 2.28650i 0.398028i
\(34\) 9.11058 + 6.19779i 1.56245 + 1.06291i
\(35\) 0 0
\(36\) −5.14207 −0.857012
\(37\) −6.57214 −1.08045 −0.540226 0.841520i \(-0.681661\pi\)
−0.540226 + 0.841520i \(0.681661\pi\)
\(38\) 17.5949i 2.85426i
\(39\) 1.90324i 0.304763i
\(40\) 0 0
\(41\) 1.52889i 0.238773i 0.992848 + 0.119387i \(0.0380928\pi\)
−0.992848 + 0.119387i \(0.961907\pi\)
\(42\) 10.5802i 1.63256i
\(43\) 4.26946i 0.651087i −0.945527 0.325544i \(-0.894453\pi\)
0.945527 0.325544i \(-0.105547\pi\)
\(44\) 11.7573i 1.77248i
\(45\) 0 0
\(46\) 19.0123i 2.80321i
\(47\) 3.61168i 0.526817i 0.964684 + 0.263409i \(0.0848467\pi\)
−0.964684 + 0.263409i \(0.915153\pi\)
\(48\) −12.1567 −1.75468
\(49\) 8.67337 1.23905
\(50\) 0 0
\(51\) 2.31913 3.40905i 0.324743 0.477363i
\(52\) 9.78662i 1.35716i
\(53\) 1.48664i 0.204205i 0.994774 + 0.102103i \(0.0325570\pi\)
−0.994774 + 0.102103i \(0.967443\pi\)
\(54\) 2.67247i 0.363676i
\(55\) 0 0
\(56\) 33.2437i 4.44237i
\(57\) 6.58376 0.872040
\(58\) −5.96168 −0.782807
\(59\) −10.7633 −1.40126 −0.700631 0.713524i \(-0.747098\pi\)
−0.700631 + 0.713524i \(0.747098\pi\)
\(60\) 0 0
\(61\) 15.0087i 1.92167i −0.277115 0.960837i \(-0.589378\pi\)
0.277115 0.960837i \(-0.410622\pi\)
\(62\) −25.2623 −3.20831
\(63\) 3.95896 0.498782
\(64\) −17.6291 −2.20363
\(65\) 0 0
\(66\) 6.11058 0.752160
\(67\) 4.91401i 0.600342i 0.953885 + 0.300171i \(0.0970437\pi\)
−0.953885 + 0.300171i \(0.902956\pi\)
\(68\) 11.9251 17.5296i 1.44613 2.12578i
\(69\) 7.11415 0.856443
\(70\) 0 0
\(71\) 9.15317i 1.08628i 0.839642 + 0.543141i \(0.182765\pi\)
−0.839642 + 0.543141i \(0.817235\pi\)
\(72\) 8.39707i 0.989605i
\(73\) 7.94910 0.930371 0.465186 0.885213i \(-0.345988\pi\)
0.465186 + 0.885213i \(0.345988\pi\)
\(74\) 17.5638i 2.04175i
\(75\) 0 0
\(76\) 33.8541 3.88334
\(77\) 9.05214i 1.03159i
\(78\) 5.08635 0.575916
\(79\) 3.92218i 0.441280i −0.975355 0.220640i \(-0.929185\pi\)
0.975355 0.220640i \(-0.0708145\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 4.08592 0.451214
\(83\) 3.85286i 0.422906i 0.977388 + 0.211453i \(0.0678195\pi\)
−0.977388 + 0.211453i \(0.932180\pi\)
\(84\) 20.3573 2.22116
\(85\) 0 0
\(86\) −11.4100 −1.23037
\(87\) 2.23078i 0.239165i
\(88\) 19.1999 2.04671
\(89\) 4.71863 0.500174 0.250087 0.968223i \(-0.419541\pi\)
0.250087 + 0.968223i \(0.419541\pi\)
\(90\) 0 0
\(91\) 7.53487i 0.789869i
\(92\) 36.5815 3.81388
\(93\) 9.45279i 0.980209i
\(94\) 9.65208 0.995536
\(95\) 0 0
\(96\) 15.6943i 1.60180i
\(97\) −7.70758 −0.782586 −0.391293 0.920266i \(-0.627972\pi\)
−0.391293 + 0.920266i \(0.627972\pi\)
\(98\) 23.1793i 2.34146i
\(99\) 2.28650i 0.229801i
\(100\) 0 0
\(101\) −16.4474 −1.63658 −0.818288 0.574809i \(-0.805076\pi\)
−0.818288 + 0.574809i \(0.805076\pi\)
\(102\) −9.11058 6.19779i −0.902082 0.613672i
\(103\) 14.1528i 1.39452i 0.716818 + 0.697260i \(0.245598\pi\)
−0.716818 + 0.697260i \(0.754402\pi\)
\(104\) 15.9817 1.56713
\(105\) 0 0
\(106\) 3.97298 0.385890
\(107\) 2.31765 0.224056 0.112028 0.993705i \(-0.464265\pi\)
0.112028 + 0.993705i \(0.464265\pi\)
\(108\) 5.14207 0.494796
\(109\) 1.14870i 0.110025i −0.998486 0.0550127i \(-0.982480\pi\)
0.998486 0.0550127i \(-0.0175199\pi\)
\(110\) 0 0
\(111\) 6.57214 0.623800
\(112\) 48.1281 4.54768
\(113\) −10.0421 −0.944677 −0.472339 0.881417i \(-0.656590\pi\)
−0.472339 + 0.881417i \(0.656590\pi\)
\(114\) 17.5949i 1.64791i
\(115\) 0 0
\(116\) 11.4708i 1.06504i
\(117\) 1.90324i 0.175955i
\(118\) 28.7645i 2.64799i
\(119\) −9.18133 + 13.4963i −0.841651 + 1.23720i
\(120\) 0 0
\(121\) 5.77194 0.524722
\(122\) −40.1104 −3.63142
\(123\) 1.52889i 0.137856i
\(124\) 48.6069i 4.36503i
\(125\) 0 0
\(126\) 10.5802i 0.942558i
\(127\) 15.5700i 1.38161i −0.723039 0.690807i \(-0.757255\pi\)
0.723039 0.690807i \(-0.242745\pi\)
\(128\) 15.7244i 1.38985i
\(129\) 4.26946i 0.375905i
\(130\) 0 0
\(131\) 22.0324i 1.92498i −0.271312 0.962491i \(-0.587457\pi\)
0.271312 0.962491i \(-0.412543\pi\)
\(132\) 11.7573i 1.02334i
\(133\) −26.0648 −2.26011
\(134\) 13.1325 1.13448
\(135\) 0 0
\(136\) −28.6261 19.4739i −2.45467 1.66987i
\(137\) 10.7934i 0.922140i 0.887364 + 0.461070i \(0.152534\pi\)
−0.887364 + 0.461070i \(0.847466\pi\)
\(138\) 19.0123i 1.61844i
\(139\) 0.219574i 0.0186240i 0.999957 + 0.00931200i \(0.00296415\pi\)
−0.999957 + 0.00931200i \(0.997036\pi\)
\(140\) 0 0
\(141\) 3.61168i 0.304158i
\(142\) 24.4615 2.05277
\(143\) −4.35176 −0.363912
\(144\) 12.1567 1.01306
\(145\) 0 0
\(146\) 21.2437i 1.75814i
\(147\) −8.67337 −0.715367
\(148\) 33.7944 2.77788
\(149\) −15.2763 −1.25148 −0.625742 0.780030i \(-0.715204\pi\)
−0.625742 + 0.780030i \(0.715204\pi\)
\(150\) 0 0
\(151\) −23.1265 −1.88201 −0.941004 0.338396i \(-0.890116\pi\)
−0.941004 + 0.338396i \(0.890116\pi\)
\(152\) 55.2843i 4.48415i
\(153\) −2.31913 + 3.40905i −0.187490 + 0.275606i
\(154\) −24.1915 −1.94941
\(155\) 0 0
\(156\) 9.78662i 0.783556i
\(157\) 9.09777i 0.726081i 0.931773 + 0.363041i \(0.118261\pi\)
−0.931773 + 0.363041i \(0.881739\pi\)
\(158\) −10.4819 −0.833894
\(159\) 1.48664i 0.117898i
\(160\) 0 0
\(161\) −28.1646 −2.21968
\(162\) 2.67247i 0.209969i
\(163\) 19.0597 1.49287 0.746434 0.665460i \(-0.231765\pi\)
0.746434 + 0.665460i \(0.231765\pi\)
\(164\) 7.86168i 0.613894i
\(165\) 0 0
\(166\) 10.2966 0.799173
\(167\) 13.4792 1.04305 0.521525 0.853236i \(-0.325363\pi\)
0.521525 + 0.853236i \(0.325363\pi\)
\(168\) 33.2437i 2.56481i
\(169\) 9.37766 0.721359
\(170\) 0 0
\(171\) −6.58376 −0.503472
\(172\) 21.9539i 1.67397i
\(173\) 1.11240 0.0845740 0.0422870 0.999106i \(-0.486536\pi\)
0.0422870 + 0.999106i \(0.486536\pi\)
\(174\) 5.96168 0.451954
\(175\) 0 0
\(176\) 27.7963i 2.09523i
\(177\) 10.7633 0.809019
\(178\) 12.6104i 0.945188i
\(179\) 4.06356 0.303725 0.151863 0.988402i \(-0.451473\pi\)
0.151863 + 0.988402i \(0.451473\pi\)
\(180\) 0 0
\(181\) 13.2839i 0.987388i 0.869636 + 0.493694i \(0.164354\pi\)
−0.869636 + 0.493694i \(0.835646\pi\)
\(182\) −20.1367 −1.49263
\(183\) 15.0087i 1.10948i
\(184\) 59.7381i 4.40395i
\(185\) 0 0
\(186\) 25.2623 1.85232
\(187\) 7.79479 + 5.30267i 0.570011 + 0.387770i
\(188\) 18.5715i 1.35447i
\(189\) −3.95896 −0.287972
\(190\) 0 0
\(191\) −11.4755 −0.830335 −0.415168 0.909745i \(-0.636277\pi\)
−0.415168 + 0.909745i \(0.636277\pi\)
\(192\) 17.6291 1.27227
\(193\) −8.50463 −0.612177 −0.306088 0.952003i \(-0.599020\pi\)
−0.306088 + 0.952003i \(0.599020\pi\)
\(194\) 20.5982i 1.47887i
\(195\) 0 0
\(196\) −44.5991 −3.18565
\(197\) 16.8014 1.19705 0.598526 0.801104i \(-0.295753\pi\)
0.598526 + 0.801104i \(0.295753\pi\)
\(198\) −6.11058 −0.434260
\(199\) 8.91705i 0.632113i −0.948740 0.316056i \(-0.897641\pi\)
0.948740 0.316056i \(-0.102359\pi\)
\(200\) 0 0
\(201\) 4.91401i 0.346608i
\(202\) 43.9550i 3.09267i
\(203\) 8.83157i 0.619854i
\(204\) −11.9251 + 17.5296i −0.834925 + 1.22732i
\(205\) 0 0
\(206\) 37.8230 2.63525
\(207\) −7.11415 −0.494468
\(208\) 23.1373i 1.60428i
\(209\) 15.0537i 1.04129i
\(210\) 0 0
\(211\) 12.3592i 0.850845i −0.904995 0.425423i \(-0.860125\pi\)
0.904995 0.425423i \(-0.139875\pi\)
\(212\) 7.64439i 0.525019i
\(213\) 9.15317i 0.627165i
\(214\) 6.19384i 0.423402i
\(215\) 0 0
\(216\) 8.39707i 0.571348i
\(217\) 37.4232i 2.54045i
\(218\) −3.06986 −0.207917
\(219\) −7.94910 −0.537150
\(220\) 0 0
\(221\) 6.48826 + 4.41387i 0.436448 + 0.296909i
\(222\) 17.5638i 1.17881i
\(223\) 9.31429i 0.623731i −0.950126 0.311866i \(-0.899046\pi\)
0.950126 0.311866i \(-0.100954\pi\)
\(224\) 62.1332i 4.15145i
\(225\) 0 0
\(226\) 26.8371i 1.78517i
\(227\) 0.990817 0.0657628 0.0328814 0.999459i \(-0.489532\pi\)
0.0328814 + 0.999459i \(0.489532\pi\)
\(228\) −33.8541 −2.24205
\(229\) 12.8425 0.848653 0.424327 0.905509i \(-0.360511\pi\)
0.424327 + 0.905509i \(0.360511\pi\)
\(230\) 0 0
\(231\) 9.05214i 0.595587i
\(232\) 18.7320 1.22982
\(233\) −11.2347 −0.736007 −0.368003 0.929824i \(-0.619958\pi\)
−0.368003 + 0.929824i \(0.619958\pi\)
\(234\) −5.08635 −0.332505
\(235\) 0 0
\(236\) 55.3456 3.60269
\(237\) 3.92218i 0.254773i
\(238\) 36.0684 + 24.5368i 2.33797 + 1.59048i
\(239\) 24.7670 1.60205 0.801023 0.598633i \(-0.204289\pi\)
0.801023 + 0.598633i \(0.204289\pi\)
\(240\) 0 0
\(241\) 14.1406i 0.910877i 0.890267 + 0.455439i \(0.150518\pi\)
−0.890267 + 0.455439i \(0.849482\pi\)
\(242\) 15.4253i 0.991576i
\(243\) −1.00000 −0.0641500
\(244\) 77.1760i 4.94069i
\(245\) 0 0
\(246\) −4.08592 −0.260508
\(247\) 12.5305i 0.797296i
\(248\) 79.3758 5.04037
\(249\) 3.85286i 0.244165i
\(250\) 0 0
\(251\) 0.534118 0.0337132 0.0168566 0.999858i \(-0.494634\pi\)
0.0168566 + 0.999858i \(0.494634\pi\)
\(252\) −20.3573 −1.28239
\(253\) 16.2665i 1.02266i
\(254\) −41.6103 −2.61086
\(255\) 0 0
\(256\) 6.76479 0.422800
\(257\) 10.3708i 0.646915i −0.946243 0.323457i \(-0.895155\pi\)
0.946243 0.323457i \(-0.104845\pi\)
\(258\) 11.4100 0.710355
\(259\) −26.0188 −1.61673
\(260\) 0 0
\(261\) 2.23078i 0.138082i
\(262\) −58.8809 −3.63768
\(263\) 10.1290i 0.624583i −0.949986 0.312291i \(-0.898904\pi\)
0.949986 0.312291i \(-0.101096\pi\)
\(264\) −19.1999 −1.18167
\(265\) 0 0
\(266\) 69.6574i 4.27097i
\(267\) −4.71863 −0.288776
\(268\) 25.2682i 1.54350i
\(269\) 25.4852i 1.55386i −0.629587 0.776930i \(-0.716776\pi\)
0.629587 0.776930i \(-0.283224\pi\)
\(270\) 0 0
\(271\) −6.58885 −0.400244 −0.200122 0.979771i \(-0.564134\pi\)
−0.200122 + 0.979771i \(0.564134\pi\)
\(272\) −28.1930 + 41.4430i −1.70945 + 2.51285i
\(273\) 7.53487i 0.456031i
\(274\) 28.8449 1.74258
\(275\) 0 0
\(276\) −36.5815 −2.20195
\(277\) −2.46779 −0.148275 −0.0741375 0.997248i \(-0.523620\pi\)
−0.0741375 + 0.997248i \(0.523620\pi\)
\(278\) 0.586803 0.0351941
\(279\) 9.45279i 0.565924i
\(280\) 0 0
\(281\) 26.2937 1.56855 0.784274 0.620414i \(-0.213035\pi\)
0.784274 + 0.620414i \(0.213035\pi\)
\(282\) −9.65208 −0.574773
\(283\) −18.9028 −1.12365 −0.561826 0.827255i \(-0.689901\pi\)
−0.561826 + 0.827255i \(0.689901\pi\)
\(284\) 47.0663i 2.79287i
\(285\) 0 0
\(286\) 11.6299i 0.687692i
\(287\) 6.05283i 0.357287i
\(288\) 15.6943i 0.924798i
\(289\) −6.24330 15.8121i −0.367253 0.930121i
\(290\) 0 0
\(291\) 7.70758 0.451826
\(292\) −40.8748 −2.39202
\(293\) 5.45486i 0.318676i 0.987224 + 0.159338i \(0.0509360\pi\)
−0.987224 + 0.159338i \(0.949064\pi\)
\(294\) 23.1793i 1.35184i
\(295\) 0 0
\(296\) 55.1867i 3.20766i
\(297\) 2.28650i 0.132676i
\(298\) 40.8254i 2.36495i
\(299\) 13.5400i 0.783037i
\(300\) 0 0
\(301\) 16.9026i 0.974252i
\(302\) 61.8047i 3.55646i
\(303\) 16.4474 0.944877
\(304\) −80.0371 −4.59044
\(305\) 0 0
\(306\) 9.11058 + 6.19779i 0.520817 + 0.354304i
\(307\) 10.7040i 0.610910i −0.952207 0.305455i \(-0.901191\pi\)
0.952207 0.305455i \(-0.0988085\pi\)
\(308\) 46.5468i 2.65225i
\(309\) 14.1528i 0.805127i
\(310\) 0 0
\(311\) 20.1434i 1.14223i −0.820871 0.571113i \(-0.806512\pi\)
0.820871 0.571113i \(-0.193488\pi\)
\(312\) −15.9817 −0.904785
\(313\) 15.0079 0.848296 0.424148 0.905593i \(-0.360574\pi\)
0.424148 + 0.905593i \(0.360574\pi\)
\(314\) 24.3135 1.37209
\(315\) 0 0
\(316\) 20.1681i 1.13455i
\(317\) 5.58449 0.313656 0.156828 0.987626i \(-0.449873\pi\)
0.156828 + 0.987626i \(0.449873\pi\)
\(318\) −3.97298 −0.222794
\(319\) −5.10067 −0.285582
\(320\) 0 0
\(321\) −2.31765 −0.129359
\(322\) 75.2690i 4.19458i
\(323\) 15.2686 22.4444i 0.849566 1.24884i
\(324\) −5.14207 −0.285671
\(325\) 0 0
\(326\) 50.9363i 2.82110i
\(327\) 1.14870i 0.0635232i
\(328\) −12.8382 −0.708873
\(329\) 14.2985i 0.788301i
\(330\) 0 0
\(331\) 34.7988 1.91271 0.956357 0.292200i \(-0.0943874\pi\)
0.956357 + 0.292200i \(0.0943874\pi\)
\(332\) 19.8117i 1.08731i
\(333\) −6.57214 −0.360151
\(334\) 36.0226i 1.97107i
\(335\) 0 0
\(336\) −48.1281 −2.62560
\(337\) 1.89214 0.103071 0.0515357 0.998671i \(-0.483588\pi\)
0.0515357 + 0.998671i \(0.483588\pi\)
\(338\) 25.0615i 1.36316i
\(339\) 10.0421 0.545410
\(340\) 0 0
\(341\) −21.6138 −1.17045
\(342\) 17.5949i 0.951421i
\(343\) 6.62479 0.357705
\(344\) 35.8510 1.93296
\(345\) 0 0
\(346\) 2.97284i 0.159821i
\(347\) −23.6057 −1.26722 −0.633610 0.773652i \(-0.718428\pi\)
−0.633610 + 0.773652i \(0.718428\pi\)
\(348\) 11.4708i 0.614901i
\(349\) 12.6402 0.676616 0.338308 0.941035i \(-0.390145\pi\)
0.338308 + 0.941035i \(0.390145\pi\)
\(350\) 0 0
\(351\) 1.90324i 0.101588i
\(352\) −35.8850 −1.91268
\(353\) 1.54340i 0.0821470i −0.999156 0.0410735i \(-0.986922\pi\)
0.999156 0.0410735i \(-0.0130778\pi\)
\(354\) 28.7645i 1.52882i
\(355\) 0 0
\(356\) −24.2635 −1.28597
\(357\) 9.18133 13.4963i 0.485928 0.714300i
\(358\) 10.8597i 0.573955i
\(359\) −22.2202 −1.17274 −0.586370 0.810044i \(-0.699443\pi\)
−0.586370 + 0.810044i \(0.699443\pi\)
\(360\) 0 0
\(361\) 24.3458 1.28136
\(362\) 35.5009 1.86588
\(363\) −5.77194 −0.302948
\(364\) 38.7448i 2.03078i
\(365\) 0 0
\(366\) 40.1104 2.09660
\(367\) −10.4553 −0.545763 −0.272881 0.962048i \(-0.587977\pi\)
−0.272881 + 0.962048i \(0.587977\pi\)
\(368\) −86.4849 −4.50834
\(369\) 1.52889i 0.0795910i
\(370\) 0 0
\(371\) 5.88553i 0.305562i
\(372\) 48.6069i 2.52015i
\(373\) 25.9610i 1.34421i 0.740455 + 0.672106i \(0.234610\pi\)
−0.740455 + 0.672106i \(0.765390\pi\)
\(374\) 14.1712 20.8313i 0.732776 1.07716i
\(375\) 0 0
\(376\) −30.3275 −1.56402
\(377\) −4.24572 −0.218666
\(378\) 10.5802i 0.544186i
\(379\) 4.86700i 0.250001i 0.992157 + 0.125000i \(0.0398932\pi\)
−0.992157 + 0.125000i \(0.960107\pi\)
\(380\) 0 0
\(381\) 15.5700i 0.797675i
\(382\) 30.6678i 1.56910i
\(383\) 4.65321i 0.237768i −0.992908 0.118884i \(-0.962068\pi\)
0.992908 0.118884i \(-0.0379317\pi\)
\(384\) 15.7244i 0.802433i
\(385\) 0 0
\(386\) 22.7283i 1.15684i
\(387\) 4.26946i 0.217029i
\(388\) 39.6329 2.01206
\(389\) −7.85767 −0.398400 −0.199200 0.979959i \(-0.563834\pi\)
−0.199200 + 0.979959i \(0.563834\pi\)
\(390\) 0 0
\(391\) 16.4986 24.2525i 0.834371 1.22650i
\(392\) 72.8309i 3.67852i
\(393\) 22.0324i 1.11139i
\(394\) 44.9012i 2.26209i
\(395\) 0 0
\(396\) 11.7573i 0.590827i
\(397\) 8.84619 0.443978 0.221989 0.975049i \(-0.428745\pi\)
0.221989 + 0.975049i \(0.428745\pi\)
\(398\) −23.8305 −1.19451
\(399\) 26.0648 1.30487
\(400\) 0 0
\(401\) 35.1967i 1.75764i 0.477154 + 0.878820i \(0.341669\pi\)
−0.477154 + 0.878820i \(0.658331\pi\)
\(402\) −13.1325 −0.654991
\(403\) −17.9910 −0.896194
\(404\) 84.5736 4.20769
\(405\) 0 0
\(406\) −23.6021 −1.17135
\(407\) 15.0272i 0.744869i
\(408\) 28.6261 + 19.4739i 1.41720 + 0.964101i
\(409\) −5.72269 −0.282969 −0.141484 0.989940i \(-0.545188\pi\)
−0.141484 + 0.989940i \(0.545188\pi\)
\(410\) 0 0
\(411\) 10.7934i 0.532398i
\(412\) 72.7749i 3.58536i
\(413\) −42.6115 −2.09677
\(414\) 19.0123i 0.934405i
\(415\) 0 0
\(416\) −29.8702 −1.46450
\(417\) 0.219574i 0.0107526i
\(418\) 40.2306 1.96774
\(419\) 15.4486i 0.754714i −0.926068 0.377357i \(-0.876833\pi\)
0.926068 0.377357i \(-0.123167\pi\)
\(420\) 0 0
\(421\) 10.0582 0.490205 0.245103 0.969497i \(-0.421178\pi\)
0.245103 + 0.969497i \(0.421178\pi\)
\(422\) −33.0296 −1.60786
\(423\) 3.61168i 0.175606i
\(424\) −12.4834 −0.606247
\(425\) 0 0
\(426\) −24.4615 −1.18517
\(427\) 59.4190i 2.87549i
\(428\) −11.9175 −0.576055
\(429\) 4.35176 0.210105
\(430\) 0 0
\(431\) 30.4185i 1.46521i 0.680655 + 0.732604i \(0.261695\pi\)
−0.680655 + 0.732604i \(0.738305\pi\)
\(432\) −12.1567 −0.584892
\(433\) 36.3734i 1.74799i −0.485933 0.873996i \(-0.661520\pi\)
0.485933 0.873996i \(-0.338480\pi\)
\(434\) −100.012 −4.80074
\(435\) 0 0
\(436\) 5.90669i 0.282879i
\(437\) 46.8378 2.24056
\(438\) 21.2437i 1.01506i
\(439\) 8.74032i 0.417153i −0.978006 0.208576i \(-0.933117\pi\)
0.978006 0.208576i \(-0.0668830\pi\)
\(440\) 0 0
\(441\) 8.67337 0.413017
\(442\) 11.7959 17.3397i 0.561074 0.824763i
\(443\) 23.8933i 1.13520i −0.823303 0.567602i \(-0.807871\pi\)
0.823303 0.567602i \(-0.192129\pi\)
\(444\) −33.7944 −1.60381
\(445\) 0 0
\(446\) −24.8921 −1.17868
\(447\) 15.2763 0.722545
\(448\) −69.7928 −3.29740
\(449\) 13.3605i 0.630523i 0.949005 + 0.315262i \(0.102092\pi\)
−0.949005 + 0.315262i \(0.897908\pi\)
\(450\) 0 0
\(451\) 3.49581 0.164611
\(452\) 51.6370 2.42880
\(453\) 23.1265 1.08658
\(454\) 2.64792i 0.124273i
\(455\) 0 0
\(456\) 55.2843i 2.58892i
\(457\) 2.28323i 0.106805i 0.998573 + 0.0534026i \(0.0170067\pi\)
−0.998573 + 0.0534026i \(0.982993\pi\)
\(458\) 34.3210i 1.60372i
\(459\) 2.31913 3.40905i 0.108248 0.159121i
\(460\) 0 0
\(461\) −7.74444 −0.360695 −0.180347 0.983603i \(-0.557722\pi\)
−0.180347 + 0.983603i \(0.557722\pi\)
\(462\) 24.1915 1.12549
\(463\) 1.05455i 0.0490092i −0.999700 0.0245046i \(-0.992199\pi\)
0.999700 0.0245046i \(-0.00780084\pi\)
\(464\) 27.1190i 1.25897i
\(465\) 0 0
\(466\) 30.0242i 1.39085i
\(467\) 20.8216i 0.963507i −0.876307 0.481754i \(-0.840000\pi\)
0.876307 0.481754i \(-0.160000\pi\)
\(468\) 9.78662i 0.452387i
\(469\) 19.4544i 0.898319i
\(470\) 0 0
\(471\) 9.09777i 0.419203i
\(472\) 90.3802i 4.16008i
\(473\) −9.76211 −0.448862
\(474\) 10.4819 0.481449
\(475\) 0 0
\(476\) 47.2111 69.3990i 2.16392 3.18090i
\(477\) 1.48664i 0.0680684i
\(478\) 66.1890i 3.02742i
\(479\) 33.5045i 1.53086i −0.643518 0.765431i \(-0.722526\pi\)
0.643518 0.765431i \(-0.277474\pi\)
\(480\) 0 0
\(481\) 12.5084i 0.570333i
\(482\) 37.7903 1.72130
\(483\) 28.1646 1.28154
\(484\) −29.6797 −1.34908
\(485\) 0 0
\(486\) 2.67247i 0.121225i
\(487\) 1.41364 0.0640580 0.0320290 0.999487i \(-0.489803\pi\)
0.0320290 + 0.999487i \(0.489803\pi\)
\(488\) 126.030 5.70509
\(489\) −19.0597 −0.861907
\(490\) 0 0
\(491\) −28.0849 −1.26745 −0.633727 0.773557i \(-0.718476\pi\)
−0.633727 + 0.773557i \(0.718476\pi\)
\(492\) 7.86168i 0.354432i
\(493\) 7.60485 + 5.17346i 0.342505 + 0.233001i
\(494\) 33.4873 1.50667
\(495\) 0 0
\(496\) 114.915i 5.15984i
\(497\) 36.2371i 1.62545i
\(498\) −10.2966 −0.461403
\(499\) 43.1265i 1.93061i −0.261134 0.965303i \(-0.584096\pi\)
0.261134 0.965303i \(-0.415904\pi\)
\(500\) 0 0
\(501\) −13.4792 −0.602205
\(502\) 1.42741i 0.0637085i
\(503\) −4.47717 −0.199627 −0.0998137 0.995006i \(-0.531825\pi\)
−0.0998137 + 0.995006i \(0.531825\pi\)
\(504\) 33.2437i 1.48079i
\(505\) 0 0
\(506\) 43.4716 1.93255
\(507\) −9.37766 −0.416477
\(508\) 80.0620i 3.55218i
\(509\) −24.3389 −1.07880 −0.539400 0.842049i \(-0.681349\pi\)
−0.539400 + 0.842049i \(0.681349\pi\)
\(510\) 0 0
\(511\) 31.4702 1.39216
\(512\) 13.3701i 0.590882i
\(513\) 6.58376 0.290680
\(514\) −27.7157 −1.22249
\(515\) 0 0
\(516\) 21.9539i 0.966466i
\(517\) 8.25808 0.363190
\(518\) 69.5344i 3.05517i
\(519\) −1.11240 −0.0488288
\(520\) 0 0
\(521\) 1.01295i 0.0443781i 0.999754 + 0.0221891i \(0.00706358\pi\)
−0.999754 + 0.0221891i \(0.992936\pi\)
\(522\) −5.96168 −0.260936
\(523\) 2.18441i 0.0955174i −0.998859 0.0477587i \(-0.984792\pi\)
0.998859 0.0477587i \(-0.0152078\pi\)
\(524\) 113.292i 4.94920i
\(525\) 0 0
\(526\) −27.0695 −1.18029
\(527\) 32.2251 + 21.9222i 1.40375 + 0.954947i
\(528\) 27.7963i 1.20968i
\(529\) 27.6111 1.20048
\(530\) 0 0
\(531\) −10.7633 −0.467087
\(532\) 134.027 5.81082
\(533\) 2.90986 0.126040
\(534\) 12.6104i 0.545705i
\(535\) 0 0
\(536\) −41.2633 −1.78230
\(537\) −4.06356 −0.175356
\(538\) −68.1083 −2.93636
\(539\) 19.8316i 0.854208i
\(540\) 0 0
\(541\) 29.4672i 1.26689i 0.773787 + 0.633446i \(0.218360\pi\)
−0.773787 + 0.633446i \(0.781640\pi\)
\(542\) 17.6085i 0.756349i
\(543\) 13.2839i 0.570068i
\(544\) 53.5028 + 36.3972i 2.29392 + 1.56052i
\(545\) 0 0
\(546\) 20.1367 0.861770
\(547\) −1.36308 −0.0582810 −0.0291405 0.999575i \(-0.509277\pi\)
−0.0291405 + 0.999575i \(0.509277\pi\)
\(548\) 55.5003i 2.37085i
\(549\) 15.0087i 0.640558i
\(550\) 0 0
\(551\) 14.6869i 0.625683i
\(552\) 59.7381i 2.54262i
\(553\) 15.5278i 0.660307i
\(554\) 6.59507i 0.280198i
\(555\) 0 0
\(556\) 1.12906i 0.0478830i
\(557\) 12.4667i 0.528230i 0.964491 + 0.264115i \(0.0850798\pi\)
−0.964491 + 0.264115i \(0.914920\pi\)
\(558\) −25.2623 −1.06944
\(559\) −8.12583 −0.343686
\(560\) 0 0
\(561\) −7.79479 5.30267i −0.329096 0.223879i
\(562\) 70.2689i 2.96412i
\(563\) 21.6084i 0.910686i −0.890316 0.455343i \(-0.849517\pi\)
0.890316 0.455343i \(-0.150483\pi\)
\(564\) 18.5715i 0.782001i
\(565\) 0 0
\(566\) 50.5170i 2.12339i
\(567\) 3.95896 0.166261
\(568\) −76.8599 −3.22497
\(569\) −15.4303 −0.646871 −0.323435 0.946250i \(-0.604838\pi\)
−0.323435 + 0.946250i \(0.604838\pi\)
\(570\) 0 0
\(571\) 20.3659i 0.852287i −0.904656 0.426144i \(-0.859872\pi\)
0.904656 0.426144i \(-0.140128\pi\)
\(572\) 22.3771 0.935631
\(573\) 11.4755 0.479394
\(574\) 16.1760 0.675172
\(575\) 0 0
\(576\) −17.6291 −0.734545
\(577\) 2.85180i 0.118722i 0.998237 + 0.0593611i \(0.0189063\pi\)
−0.998237 + 0.0593611i \(0.981094\pi\)
\(578\) −42.2572 + 16.6850i −1.75767 + 0.694005i
\(579\) 8.50463 0.353440
\(580\) 0 0
\(581\) 15.2533i 0.632814i
\(582\) 20.5982i 0.853824i
\(583\) 3.39919 0.140780
\(584\) 66.7491i 2.76210i
\(585\) 0 0
\(586\) 14.5779 0.602209
\(587\) 38.8326i 1.60279i −0.598134 0.801396i \(-0.704091\pi\)
0.598134 0.801396i \(-0.295909\pi\)
\(588\) 44.5991 1.83923
\(589\) 62.2349i 2.56434i
\(590\) 0 0
\(591\) −16.8014 −0.691118
\(592\) −79.8958 −3.28370
\(593\) 23.1318i 0.949907i −0.880011 0.474954i \(-0.842465\pi\)
0.880011 0.474954i \(-0.157535\pi\)
\(594\) 6.11058 0.250720
\(595\) 0 0
\(596\) 78.5519 3.21761
\(597\) 8.91705i 0.364950i
\(598\) 36.1851 1.47972
\(599\) −0.296194 −0.0121022 −0.00605108 0.999982i \(-0.501926\pi\)
−0.00605108 + 0.999982i \(0.501926\pi\)
\(600\) 0 0
\(601\) 20.3712i 0.830958i −0.909603 0.415479i \(-0.863614\pi\)
0.909603 0.415479i \(-0.136386\pi\)
\(602\) −45.1717 −1.84106
\(603\) 4.91401i 0.200114i
\(604\) 118.918 4.83871
\(605\) 0 0
\(606\) 43.9550i 1.78555i
\(607\) 16.7639 0.680427 0.340214 0.940348i \(-0.389501\pi\)
0.340214 + 0.940348i \(0.389501\pi\)
\(608\) 103.328i 4.19049i
\(609\) 8.83157i 0.357873i
\(610\) 0 0
\(611\) 6.87390 0.278088
\(612\) 11.9251 17.5296i 0.482044 0.708592i
\(613\) 19.1793i 0.774645i −0.921944 0.387322i \(-0.873400\pi\)
0.921944 0.387322i \(-0.126600\pi\)
\(614\) −28.6061 −1.15445
\(615\) 0 0
\(616\) 76.0115 3.06259
\(617\) 19.0949 0.768732 0.384366 0.923181i \(-0.374420\pi\)
0.384366 + 0.923181i \(0.374420\pi\)
\(618\) −37.8230 −1.52146
\(619\) 25.4024i 1.02101i 0.859875 + 0.510504i \(0.170541\pi\)
−0.859875 + 0.510504i \(0.829459\pi\)
\(620\) 0 0
\(621\) 7.11415 0.285481
\(622\) −53.8325 −2.15849
\(623\) 18.6809 0.748434
\(624\) 23.1373i 0.926232i
\(625\) 0 0
\(626\) 40.1081i 1.60304i
\(627\) 15.0537i 0.601188i
\(628\) 46.7814i 1.86678i
\(629\) 15.2416 22.4048i 0.607723 0.893337i
\(630\) 0 0
\(631\) 12.9340 0.514895 0.257447 0.966292i \(-0.417119\pi\)
0.257447 + 0.966292i \(0.417119\pi\)
\(632\) 32.9348 1.31008
\(633\) 12.3592i 0.491236i
\(634\) 14.9243i 0.592722i
\(635\) 0 0
\(636\) 7.64439i 0.303120i
\(637\) 16.5075i 0.654052i
\(638\) 13.6314i 0.539670i
\(639\) 9.15317i 0.362094i
\(640\) 0 0
\(641\) 7.97770i 0.315100i 0.987511 + 0.157550i \(0.0503596\pi\)
−0.987511 + 0.157550i \(0.949640\pi\)
\(642\) 6.19384i 0.244451i
\(643\) −14.5100 −0.572219 −0.286109 0.958197i \(-0.592362\pi\)
−0.286109 + 0.958197i \(0.592362\pi\)
\(644\) 144.825 5.70689
\(645\) 0 0
\(646\) −59.9818 40.8047i −2.35995 1.60544i
\(647\) 19.9224i 0.783229i 0.920129 + 0.391614i \(0.128083\pi\)
−0.920129 + 0.391614i \(0.871917\pi\)
\(648\) 8.39707i 0.329868i
\(649\) 24.6102i 0.966036i
\(650\) 0 0
\(651\) 37.4232i 1.46673i
\(652\) −98.0061 −3.83821
\(653\) 23.7364 0.928877 0.464438 0.885605i \(-0.346256\pi\)
0.464438 + 0.885605i \(0.346256\pi\)
\(654\) 3.06986 0.120041
\(655\) 0 0
\(656\) 18.5864i 0.725676i
\(657\) 7.94910 0.310124
\(658\) 38.2122 1.48967
\(659\) 8.04637 0.313442 0.156721 0.987643i \(-0.449908\pi\)
0.156721 + 0.987643i \(0.449908\pi\)
\(660\) 0 0
\(661\) 7.39195 0.287514 0.143757 0.989613i \(-0.454082\pi\)
0.143757 + 0.989613i \(0.454082\pi\)
\(662\) 92.9985i 3.61449i
\(663\) −6.48826 4.41387i −0.251983 0.171420i
\(664\) −32.3527 −1.25553
\(665\) 0 0
\(666\) 17.5638i 0.680584i
\(667\) 15.8701i 0.614493i
\(668\) −69.3108 −2.68172
\(669\) 9.31429i 0.360111i
\(670\) 0 0
\(671\) −34.3174 −1.32481
\(672\) 62.1332i 2.39684i
\(673\) 14.6788 0.565824 0.282912 0.959146i \(-0.408700\pi\)
0.282912 + 0.959146i \(0.408700\pi\)
\(674\) 5.05668i 0.194776i
\(675\) 0 0
\(676\) −48.2206 −1.85464
\(677\) −7.30435 −0.280729 −0.140364 0.990100i \(-0.544827\pi\)
−0.140364 + 0.990100i \(0.544827\pi\)
\(678\) 26.8371i 1.03067i
\(679\) −30.5140 −1.17102
\(680\) 0 0
\(681\) −0.990817 −0.0379682
\(682\) 57.7620i 2.21182i
\(683\) 44.3563 1.69725 0.848623 0.528998i \(-0.177432\pi\)
0.848623 + 0.528998i \(0.177432\pi\)
\(684\) 33.8541 1.29445
\(685\) 0 0
\(686\) 17.7045i 0.675962i
\(687\) −12.8425 −0.489970
\(688\) 51.9028i 1.97878i
\(689\) 2.82943 0.107793
\(690\) 0 0
\(691\) 7.45483i 0.283595i 0.989896 + 0.141798i \(0.0452882\pi\)
−0.989896 + 0.141798i \(0.954712\pi\)
\(692\) −5.72002 −0.217443
\(693\) 9.05214i 0.343862i
\(694\) 63.0854i 2.39469i
\(695\) 0 0
\(696\) −18.7320 −0.710035
\(697\) −5.21208 3.54570i −0.197422 0.134303i
\(698\) 33.7806i 1.27861i
\(699\) 11.2347 0.424934
\(700\) 0 0
\(701\) 38.2321 1.44401 0.722003 0.691890i \(-0.243222\pi\)
0.722003 + 0.691890i \(0.243222\pi\)
\(702\) 5.08635 0.191972
\(703\) 43.2693 1.63193
\(704\) 40.3088i 1.51919i
\(705\) 0 0
\(706\) −4.12469 −0.155235
\(707\) −65.1145 −2.44888
\(708\) −55.3456 −2.08002
\(709\) 10.5468i 0.396093i −0.980193 0.198046i \(-0.936540\pi\)
0.980193 0.198046i \(-0.0634597\pi\)
\(710\) 0 0
\(711\) 3.92218i 0.147093i
\(712\) 39.6227i 1.48492i
\(713\) 67.2486i 2.51848i
\(714\) −36.0684 24.5368i −1.34983 0.918266i
\(715\) 0 0
\(716\) −20.8951 −0.780888
\(717\) −24.7670 −0.924942
\(718\) 59.3828i 2.21615i
\(719\) 0.920080i 0.0343132i −0.999853 0.0171566i \(-0.994539\pi\)
0.999853 0.0171566i \(-0.00546138\pi\)
\(720\) 0 0
\(721\) 56.0305i 2.08669i
\(722\) 65.0634i 2.42141i
\(723\) 14.1406i 0.525895i
\(724\) 68.3070i 2.53861i
\(725\) 0 0
\(726\) 15.4253i 0.572487i
\(727\) 12.0729i 0.447758i 0.974617 + 0.223879i \(0.0718720\pi\)
−0.974617 + 0.223879i \(0.928128\pi\)
\(728\) 63.2708 2.34497
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 14.5548 + 9.90143i 0.538330 + 0.366218i
\(732\) 77.1760i 2.85251i
\(733\) 34.9973i 1.29265i 0.763061 + 0.646327i \(0.223696\pi\)
−0.763061 + 0.646327i \(0.776304\pi\)
\(734\) 27.9415i 1.03134i
\(735\) 0 0
\(736\) 111.652i 4.11554i
\(737\) 11.2359 0.413878
\(738\) 4.08592 0.150405
\(739\) −13.8600 −0.509849 −0.254925 0.966961i \(-0.582051\pi\)
−0.254925 + 0.966961i \(0.582051\pi\)
\(740\) 0 0
\(741\) 12.5305i 0.460319i
\(742\) 15.7289 0.577425
\(743\) 22.7473 0.834517 0.417258 0.908788i \(-0.362991\pi\)
0.417258 + 0.908788i \(0.362991\pi\)
\(744\) −79.3758 −2.91006
\(745\) 0 0
\(746\) 69.3800 2.54018
\(747\) 3.85286i 0.140969i
\(748\) −40.0813 27.2667i −1.46552 0.996970i
\(749\) 9.17548 0.335265
\(750\) 0 0
\(751\) 3.48346i 0.127113i −0.997978 0.0635566i \(-0.979756\pi\)
0.997978 0.0635566i \(-0.0202443\pi\)
\(752\) 43.9062i 1.60110i
\(753\) −0.534118 −0.0194643
\(754\) 11.3465i 0.413216i
\(755\) 0 0
\(756\) 20.3573 0.740386
\(757\) 9.47036i 0.344206i −0.985079 0.172103i \(-0.944944\pi\)
0.985079 0.172103i \(-0.0550562\pi\)
\(758\) 13.0069 0.472431
\(759\) 16.2665i 0.590436i
\(760\) 0 0
\(761\) 22.0781 0.800330 0.400165 0.916443i \(-0.368953\pi\)
0.400165 + 0.916443i \(0.368953\pi\)
\(762\) 41.6103 1.50738
\(763\) 4.54766i 0.164636i
\(764\) 59.0076 2.13482
\(765\) 0 0
\(766\) −12.4356 −0.449315
\(767\) 20.4852i 0.739677i
\(768\) −6.76479 −0.244104
\(769\) 19.4958 0.703035 0.351517 0.936181i \(-0.385666\pi\)
0.351517 + 0.936181i \(0.385666\pi\)
\(770\) 0 0
\(771\) 10.3708i 0.373496i
\(772\) 43.7314 1.57393
\(773\) 0.306046i 0.0110077i −0.999985 0.00550386i \(-0.998248\pi\)
0.999985 0.00550386i \(-0.00175194\pi\)
\(774\) −11.4100 −0.410124
\(775\) 0 0
\(776\) 64.7211i 2.32335i
\(777\) 26.0188 0.933420
\(778\) 20.9993i 0.752863i
\(779\) 10.0659i 0.360647i
\(780\) 0 0
\(781\) 20.9287 0.748887
\(782\) −64.8140 44.0920i −2.31775 1.57673i
\(783\) 2.23078i 0.0797215i
\(784\) 105.440 3.76571
\(785\) 0 0
\(786\) 58.8809 2.10021
\(787\) −8.72388 −0.310973 −0.155486 0.987838i \(-0.549694\pi\)
−0.155486 + 0.987838i \(0.549694\pi\)
\(788\) −86.3941 −3.07766
\(789\) 10.1290i 0.360603i
\(790\) 0 0
\(791\) −39.7561 −1.41356
\(792\) 19.1999 0.682238
\(793\) −28.5653 −1.01438
\(794\) 23.6411i 0.838993i
\(795\) 0 0
\(796\) 45.8521i 1.62518i
\(797\) 19.1824i 0.679474i −0.940520 0.339737i \(-0.889662\pi\)
0.940520 0.339737i \(-0.110338\pi\)
\(798\) 69.6574i 2.46584i
\(799\) −12.3124 8.37593i −0.435581 0.296319i
\(800\) 0 0
\(801\) 4.71863 0.166725
\(802\) 94.0620 3.32144
\(803\) 18.1756i 0.641402i
\(804\) 25.2682i 0.891140i
\(805\) 0 0
\(806\) 48.0802i 1.69355i
\(807\) 25.4852i 0.897122i
\(808\) 138.110i 4.85869i
\(809\) 23.4388i 0.824063i 0.911169 + 0.412032i \(0.135181\pi\)
−0.911169 + 0.412032i \(0.864819\pi\)
\(810\) 0 0
\(811\) 9.67154i 0.339614i −0.985477 0.169807i \(-0.945686\pi\)
0.985477 0.169807i \(-0.0543144\pi\)
\(812\) 45.4125i 1.59367i
\(813\) 6.58885 0.231081
\(814\) 40.1596 1.40759
\(815\) 0 0
\(816\) 28.1930 41.4430i 0.986954 1.45080i
\(817\) 28.1091i 0.983413i
\(818\) 15.2937i 0.534732i
\(819\) 7.53487i 0.263290i
\(820\) 0 0
\(821\) 13.4718i 0.470170i 0.971975 + 0.235085i \(0.0755368\pi\)
−0.971975 + 0.235085i \(0.924463\pi\)
\(822\) −28.8449 −1.00608
\(823\) 34.4453 1.20069 0.600344 0.799742i \(-0.295030\pi\)
0.600344 + 0.799742i \(0.295030\pi\)
\(824\) −118.842 −4.14007
\(825\) 0 0
\(826\) 113.878i 3.96231i
\(827\) 6.29458 0.218884 0.109442 0.993993i \(-0.465094\pi\)
0.109442 + 0.993993i \(0.465094\pi\)
\(828\) 36.5815 1.27129
\(829\) −11.9001 −0.413307 −0.206654 0.978414i \(-0.566257\pi\)
−0.206654 + 0.978414i \(0.566257\pi\)
\(830\) 0 0
\(831\) 2.46779 0.0856066
\(832\) 33.5524i 1.16322i
\(833\) −20.1146 + 29.5680i −0.696931 + 1.02447i
\(834\) −0.586803 −0.0203193
\(835\) 0 0
\(836\) 77.4073i 2.67719i
\(837\) 9.45279i 0.326736i
\(838\) −41.2859 −1.42620
\(839\) 14.0689i 0.485712i −0.970062 0.242856i \(-0.921916\pi\)
0.970062 0.242856i \(-0.0780843\pi\)
\(840\) 0 0
\(841\) 24.0236 0.828401
\(842\) 26.8801i 0.926350i
\(843\) −26.2937 −0.905602
\(844\) 63.5521i 2.18755i
\(845\) 0 0
\(846\) 9.65208 0.331845
\(847\) 22.8509 0.785166
\(848\) 18.0727i 0.620617i
\(849\) 18.9028 0.648741
\(850\) 0 0
\(851\) 46.7552 1.60275
\(852\) 47.0663i 1.61246i
\(853\) −42.2959 −1.44818 −0.724092 0.689703i \(-0.757741\pi\)
−0.724092 + 0.689703i \(0.757741\pi\)
\(854\) −158.795 −5.43386
\(855\) 0 0
\(856\) 19.4615i 0.665179i
\(857\) −10.2126 −0.348855 −0.174427 0.984670i \(-0.555807\pi\)
−0.174427 + 0.984670i \(0.555807\pi\)
\(858\) 11.6299i 0.397039i
\(859\) 45.7519 1.56104 0.780518 0.625134i \(-0.214956\pi\)
0.780518 + 0.625134i \(0.214956\pi\)
\(860\) 0 0
\(861\) 6.05283i 0.206280i
\(862\) 81.2924 2.76883
\(863\) 15.5333i 0.528759i 0.964419 + 0.264380i \(0.0851672\pi\)
−0.964419 + 0.264380i \(0.914833\pi\)
\(864\) 15.6943i 0.533932i
\(865\) 0 0
\(866\) −97.2065 −3.30321
\(867\) 6.24330 + 15.8121i 0.212034 + 0.537006i
\(868\) 192.433i 6.53160i
\(869\) −8.96804 −0.304220
\(870\) 0 0
\(871\) 9.35256 0.316900
\(872\) 9.64572 0.326645
\(873\) −7.70758 −0.260862
\(874\) 125.172i 4.23402i
\(875\) 0 0
\(876\) 40.8748 1.38103
\(877\) −50.5232 −1.70605 −0.853024 0.521871i \(-0.825234\pi\)
−0.853024 + 0.521871i \(0.825234\pi\)
\(878\) −23.3582 −0.788301
\(879\) 5.45486i 0.183988i
\(880\) 0 0
\(881\) 28.5095i 0.960508i −0.877129 0.480254i \(-0.840544\pi\)
0.877129 0.480254i \(-0.159456\pi\)
\(882\) 23.1793i 0.780487i
\(883\) 9.96680i 0.335410i −0.985837 0.167705i \(-0.946364\pi\)
0.985837 0.167705i \(-0.0536355\pi\)
\(884\) −33.3631 22.6964i −1.12212 0.763363i
\(885\) 0 0
\(886\) −63.8540 −2.14522
\(887\) −27.7267 −0.930971 −0.465486 0.885055i \(-0.654120\pi\)
−0.465486 + 0.885055i \(0.654120\pi\)
\(888\) 55.1867i 1.85194i
\(889\) 61.6410i 2.06737i
\(890\) 0 0
\(891\) 2.28650i 0.0766005i
\(892\) 47.8947i 1.60363i
\(893\) 23.7784i 0.795714i
\(894\) 40.8254i 1.36541i
\(895\) 0 0
\(896\) 62.2523i 2.07970i
\(897\) 13.5400i 0.452086i
\(898\) 35.7056 1.19151
\(899\) −21.0871 −0.703294
\(900\) 0 0
\(901\) −5.06802 3.44770i −0.168840 0.114859i
\(902\) 9.34243i 0.311069i
\(903\) 16.9026i 0.562485i
\(904\) 84.3239i 2.80457i
\(905\) 0 0
\(906\) 61.8047i 2.05333i
\(907\) −7.37527 −0.244892 −0.122446 0.992475i \(-0.539074\pi\)
−0.122446 + 0.992475i \(0.539074\pi\)
\(908\) −5.09485 −0.169079
\(909\) −16.4474 −0.545525
\(910\) 0 0
\(911\) 39.4870i 1.30826i 0.756382 + 0.654131i \(0.226965\pi\)
−0.756382 + 0.654131i \(0.773035\pi\)
\(912\) 80.0371 2.65029
\(913\) 8.80954 0.291553
\(914\) 6.10186 0.201832
\(915\) 0 0
\(916\) −66.0368 −2.18192
\(917\) 87.2255i 2.88044i
\(918\) −9.11058 6.19779i −0.300694 0.204557i
\(919\) −8.60852 −0.283969 −0.141985 0.989869i \(-0.545348\pi\)
−0.141985 + 0.989869i \(0.545348\pi\)
\(920\) 0 0
\(921\) 10.7040i 0.352709i
\(922\) 20.6967i 0.681611i
\(923\) 17.4207 0.573410
\(924\) 46.5468i 1.53128i
\(925\) 0 0
\(926\) −2.81825 −0.0926136
\(927\) 14.1528i 0.464840i
\(928\) −35.0106 −1.14928
\(929\) 42.2799i 1.38716i 0.720380 + 0.693580i \(0.243968\pi\)
−0.720380 + 0.693580i \(0.756032\pi\)
\(930\) 0 0
\(931\) −57.1033 −1.87149
\(932\) 57.7694 1.89230
\(933\) 20.1434i 0.659465i
\(934\) −55.6449 −1.82076
\(935\) 0 0
\(936\) 15.9817 0.522378
\(937\) 4.68521i 0.153059i 0.997067 + 0.0765295i \(0.0243839\pi\)
−0.997067 + 0.0765295i \(0.975616\pi\)
\(938\) 51.9911 1.69757
\(939\) −15.0079 −0.489764
\(940\) 0 0
\(941\) 14.8271i 0.483348i −0.970357 0.241674i \(-0.922304\pi\)
0.970357 0.241674i \(-0.0776965\pi\)
\(942\) −24.3135 −0.792176
\(943\) 10.8768i 0.354197i
\(944\) −130.847 −4.25870
\(945\) 0 0
\(946\) 26.0889i 0.848223i
\(947\) −25.5008 −0.828666 −0.414333 0.910125i \(-0.635985\pi\)
−0.414333 + 0.910125i \(0.635985\pi\)
\(948\) 20.1681i 0.655030i
\(949\) 15.1291i 0.491110i
\(950\) 0 0
\(951\) −5.58449 −0.181089
\(952\) −113.330 77.0963i −3.67303 2.49871i
\(953\) 8.10795i 0.262642i 0.991340 + 0.131321i \(0.0419219\pi\)
−0.991340 + 0.131321i \(0.958078\pi\)
\(954\) 3.97298 0.128630
\(955\) 0 0
\(956\) −127.354 −4.11892
\(957\) 5.10067 0.164881
\(958\) −89.5397 −2.89290
\(959\) 42.7305i 1.37984i
\(960\) 0 0
\(961\) −58.3552 −1.88243
\(962\) 33.4282 1.07777
\(963\) 2.31765 0.0746852
\(964\) 72.7120i 2.34190i
\(965\) 0 0
\(966\) 75.2690i 2.42174i
\(967\) 11.5698i 0.372060i −0.982544 0.186030i \(-0.940438\pi\)
0.982544 0.186030i \(-0.0595621\pi\)
\(968\) 48.4674i 1.55780i
\(969\) −15.2686 + 22.4444i −0.490497 + 0.721017i
\(970\) 0 0
\(971\) −51.3311 −1.64729 −0.823647 0.567103i \(-0.808064\pi\)
−0.823647 + 0.567103i \(0.808064\pi\)
\(972\) 5.14207 0.164932
\(973\) 0.869284i 0.0278680i
\(974\) 3.77789i 0.121051i
\(975\) 0 0
\(976\) 182.458i 5.84032i
\(977\) 21.4460i 0.686117i 0.939314 + 0.343059i \(0.111463\pi\)
−0.939314 + 0.343059i \(0.888537\pi\)
\(978\) 50.9363i 1.62876i
\(979\) 10.7891i 0.344822i
\(980\) 0 0
\(981\) 1.14870i 0.0366752i
\(982\) 75.0559i 2.39513i
\(983\) 29.9981 0.956791 0.478396 0.878144i \(-0.341219\pi\)
0.478396 + 0.878144i \(0.341219\pi\)
\(984\) 12.8382 0.409268
\(985\) 0 0
\(986\) 13.8259 20.3237i 0.440306 0.647238i
\(987\) 14.2985i 0.455126i
\(988\) 64.4327i 2.04988i
\(989\) 30.3736i 0.965825i
\(990\) 0 0
\(991\) 48.6469i 1.54532i −0.634820 0.772660i \(-0.718926\pi\)
0.634820 0.772660i \(-0.281074\pi\)
\(992\) −148.355 −4.71028
\(993\) −34.7988 −1.10431
\(994\) 96.8423 3.07165
\(995\) 0 0
\(996\) 19.8117i 0.627756i
\(997\) 5.63747 0.178541 0.0892703 0.996007i \(-0.471547\pi\)
0.0892703 + 0.996007i \(0.471547\pi\)
\(998\) −115.254 −3.64830
\(999\) 6.57214 0.207933
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.2.d.i.424.1 12
5.2 odd 4 1275.2.g.f.526.12 yes 12
5.3 odd 4 1275.2.g.e.526.1 12
5.4 even 2 1275.2.d.j.424.12 12
17.16 even 2 1275.2.d.j.424.1 12
85.33 odd 4 1275.2.g.e.526.2 yes 12
85.67 odd 4 1275.2.g.f.526.11 yes 12
85.84 even 2 inner 1275.2.d.i.424.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1275.2.d.i.424.1 12 1.1 even 1 trivial
1275.2.d.i.424.12 12 85.84 even 2 inner
1275.2.d.j.424.1 12 17.16 even 2
1275.2.d.j.424.12 12 5.4 even 2
1275.2.g.e.526.1 12 5.3 odd 4
1275.2.g.e.526.2 yes 12 85.33 odd 4
1275.2.g.f.526.11 yes 12 85.67 odd 4
1275.2.g.f.526.12 yes 12 5.2 odd 4