Properties

Label 1274.2.n.k.753.4
Level $1274$
Weight $2$
Character 1274.753
Analytic conductor $10.173$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(753,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.753"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4,4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 753.4
Root \(-0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 1274.753
Dual form 1274.2.n.k.961.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(1.20711 - 2.09077i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.22474 + 0.707107i) q^{5} -2.41421i q^{6} -1.00000i q^{8} +(-1.41421 - 2.44949i) q^{9} +(-0.707107 + 1.22474i) q^{10} +(-4.54026 - 2.62132i) q^{11} +(-1.20711 - 2.09077i) q^{12} +(3.00000 - 2.00000i) q^{13} +3.41421i q^{15} +(-0.500000 - 0.866025i) q^{16} +(3.00000 - 5.19615i) q^{17} +(-2.44949 - 1.41421i) q^{18} +(0.210133 - 0.121320i) q^{19} +1.41421i q^{20} -5.24264 q^{22} +(0.792893 + 1.37333i) q^{23} +(-2.09077 - 1.20711i) q^{24} +(-1.50000 + 2.59808i) q^{25} +(1.59808 - 3.23205i) q^{26} +0.414214 q^{27} -7.41421 q^{29} +(1.70711 + 2.95680i) q^{30} +(-4.54026 - 2.62132i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-10.9612 + 6.32843i) q^{33} -6.00000i q^{34} -2.82843 q^{36} +(-2.30090 + 1.32843i) q^{37} +(0.121320 - 0.210133i) q^{38} +(-0.560220 - 8.68652i) q^{39} +(0.707107 + 1.22474i) q^{40} -9.00000i q^{41} +3.75736 q^{43} +(-4.54026 + 2.62132i) q^{44} +(3.46410 + 2.00000i) q^{45} +(1.37333 + 0.792893i) q^{46} +(-3.82282 + 2.20711i) q^{47} -2.41421 q^{48} +3.00000i q^{50} +(-7.24264 - 12.5446i) q^{51} +(-0.232051 - 3.59808i) q^{52} +(-0.707107 + 1.22474i) q^{53} +(0.358719 - 0.207107i) q^{54} +7.41421 q^{55} -0.585786i q^{57} +(-6.42090 + 3.70711i) q^{58} +(8.87039 + 5.12132i) q^{59} +(2.95680 + 1.70711i) q^{60} +(1.50000 + 2.59808i) q^{61} -5.24264 q^{62} -1.00000 q^{64} +(-2.26002 + 4.57081i) q^{65} +(-6.32843 + 10.9612i) q^{66} +(11.1713 + 6.44975i) q^{67} +(-3.00000 - 5.19615i) q^{68} +3.82843 q^{69} -3.75736i q^{71} +(-2.44949 + 1.41421i) q^{72} +(11.6786 + 6.74264i) q^{73} +(-1.32843 + 2.30090i) q^{74} +(3.62132 + 6.27231i) q^{75} -0.242641i q^{76} +(-4.82843 - 7.24264i) q^{78} +(-5.86396 - 10.1567i) q^{79} +(1.22474 + 0.707107i) q^{80} +(4.74264 - 8.21449i) q^{81} +(-4.50000 - 7.79423i) q^{82} -4.58579i q^{83} +8.48528i q^{85} +(3.25397 - 1.87868i) q^{86} +(-8.94975 + 15.5014i) q^{87} +(-2.62132 + 4.54026i) q^{88} +(9.79796 - 5.65685i) q^{89} +4.00000 q^{90} +1.58579 q^{92} +(-10.9612 + 6.32843i) q^{93} +(-2.20711 + 3.82282i) q^{94} +(-0.171573 + 0.297173i) q^{95} +(-2.09077 + 1.20711i) q^{96} +9.48528i q^{97} +14.8284i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 4 q^{4} - 4 q^{12} + 24 q^{13} - 4 q^{16} + 24 q^{17} - 8 q^{22} + 12 q^{23} - 12 q^{25} - 8 q^{26} - 8 q^{27} - 48 q^{29} + 8 q^{30} - 16 q^{38} + 12 q^{39} + 64 q^{43} - 8 q^{48} - 24 q^{51}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 1.20711 2.09077i 0.696923 1.20711i −0.272605 0.962126i \(-0.587885\pi\)
0.969528 0.244981i \(-0.0787816\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.22474 + 0.707107i −0.547723 + 0.316228i −0.748203 0.663470i \(-0.769083\pi\)
0.200480 + 0.979698i \(0.435750\pi\)
\(6\) 2.41421i 0.985599i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −1.41421 2.44949i −0.471405 0.816497i
\(10\) −0.707107 + 1.22474i −0.223607 + 0.387298i
\(11\) −4.54026 2.62132i −1.36894 0.790358i −0.378147 0.925745i \(-0.623439\pi\)
−0.990793 + 0.135388i \(0.956772\pi\)
\(12\) −1.20711 2.09077i −0.348462 0.603553i
\(13\) 3.00000 2.00000i 0.832050 0.554700i
\(14\) 0 0
\(15\) 3.41421i 0.881546i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.00000 5.19615i 0.727607 1.26025i −0.230285 0.973123i \(-0.573966\pi\)
0.957892 0.287129i \(-0.0927008\pi\)
\(18\) −2.44949 1.41421i −0.577350 0.333333i
\(19\) 0.210133 0.121320i 0.0482078 0.0278328i −0.475702 0.879606i \(-0.657806\pi\)
0.523910 + 0.851774i \(0.324473\pi\)
\(20\) 1.41421i 0.316228i
\(21\) 0 0
\(22\) −5.24264 −1.11773
\(23\) 0.792893 + 1.37333i 0.165330 + 0.286359i 0.936772 0.349939i \(-0.113798\pi\)
−0.771443 + 0.636299i \(0.780465\pi\)
\(24\) −2.09077 1.20711i −0.426777 0.246400i
\(25\) −1.50000 + 2.59808i −0.300000 + 0.519615i
\(26\) 1.59808 3.23205i 0.313409 0.633857i
\(27\) 0.414214 0.0797154
\(28\) 0 0
\(29\) −7.41421 −1.37678 −0.688392 0.725338i \(-0.741683\pi\)
−0.688392 + 0.725338i \(0.741683\pi\)
\(30\) 1.70711 + 2.95680i 0.311674 + 0.539835i
\(31\) −4.54026 2.62132i −0.815455 0.470803i 0.0333918 0.999442i \(-0.489369\pi\)
−0.848847 + 0.528639i \(0.822702\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) −10.9612 + 6.32843i −1.90809 + 1.10164i
\(34\) 6.00000i 1.02899i
\(35\) 0 0
\(36\) −2.82843 −0.471405
\(37\) −2.30090 + 1.32843i −0.378266 + 0.218392i −0.677064 0.735924i \(-0.736748\pi\)
0.298797 + 0.954317i \(0.403414\pi\)
\(38\) 0.121320 0.210133i 0.0196808 0.0340881i
\(39\) −0.560220 8.68652i −0.0897070 1.39096i
\(40\) 0.707107 + 1.22474i 0.111803 + 0.193649i
\(41\) 9.00000i 1.40556i −0.711405 0.702782i \(-0.751941\pi\)
0.711405 0.702782i \(-0.248059\pi\)
\(42\) 0 0
\(43\) 3.75736 0.572992 0.286496 0.958081i \(-0.407509\pi\)
0.286496 + 0.958081i \(0.407509\pi\)
\(44\) −4.54026 + 2.62132i −0.684470 + 0.395179i
\(45\) 3.46410 + 2.00000i 0.516398 + 0.298142i
\(46\) 1.37333 + 0.792893i 0.202487 + 0.116906i
\(47\) −3.82282 + 2.20711i −0.557616 + 0.321940i −0.752188 0.658949i \(-0.771001\pi\)
0.194572 + 0.980888i \(0.437668\pi\)
\(48\) −2.41421 −0.348462
\(49\) 0 0
\(50\) 3.00000i 0.424264i
\(51\) −7.24264 12.5446i −1.01417 1.75660i
\(52\) −0.232051 3.59808i −0.0321797 0.498963i
\(53\) −0.707107 + 1.22474i −0.0971286 + 0.168232i −0.910495 0.413520i \(-0.864299\pi\)
0.813366 + 0.581752i \(0.197632\pi\)
\(54\) 0.358719 0.207107i 0.0488155 0.0281837i
\(55\) 7.41421 0.999732
\(56\) 0 0
\(57\) 0.585786i 0.0775893i
\(58\) −6.42090 + 3.70711i −0.843105 + 0.486767i
\(59\) 8.87039 + 5.12132i 1.15483 + 0.666739i 0.950059 0.312072i \(-0.101023\pi\)
0.204767 + 0.978811i \(0.434356\pi\)
\(60\) 2.95680 + 1.70711i 0.381721 + 0.220387i
\(61\) 1.50000 + 2.59808i 0.192055 + 0.332650i 0.945931 0.324367i \(-0.105151\pi\)
−0.753876 + 0.657017i \(0.771818\pi\)
\(62\) −5.24264 −0.665816
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −2.26002 + 4.57081i −0.280321 + 0.566939i
\(66\) −6.32843 + 10.9612i −0.778976 + 1.34923i
\(67\) 11.1713 + 6.44975i 1.36479 + 0.787962i 0.990257 0.139251i \(-0.0444696\pi\)
0.374533 + 0.927213i \(0.377803\pi\)
\(68\) −3.00000 5.19615i −0.363803 0.630126i
\(69\) 3.82843 0.460888
\(70\) 0 0
\(71\) 3.75736i 0.445917i −0.974828 0.222958i \(-0.928429\pi\)
0.974828 0.222958i \(-0.0715714\pi\)
\(72\) −2.44949 + 1.41421i −0.288675 + 0.166667i
\(73\) 11.6786 + 6.74264i 1.36688 + 0.789166i 0.990528 0.137312i \(-0.0438462\pi\)
0.376348 + 0.926478i \(0.377180\pi\)
\(74\) −1.32843 + 2.30090i −0.154427 + 0.267475i
\(75\) 3.62132 + 6.27231i 0.418154 + 0.724264i
\(76\) 0.242641i 0.0278328i
\(77\) 0 0
\(78\) −4.82843 7.24264i −0.546712 0.820068i
\(79\) −5.86396 10.1567i −0.659747 1.14272i −0.980681 0.195614i \(-0.937330\pi\)
0.320934 0.947102i \(-0.396003\pi\)
\(80\) 1.22474 + 0.707107i 0.136931 + 0.0790569i
\(81\) 4.74264 8.21449i 0.526960 0.912722i
\(82\) −4.50000 7.79423i −0.496942 0.860729i
\(83\) 4.58579i 0.503355i −0.967811 0.251678i \(-0.919018\pi\)
0.967811 0.251678i \(-0.0809823\pi\)
\(84\) 0 0
\(85\) 8.48528i 0.920358i
\(86\) 3.25397 1.87868i 0.350884 0.202583i
\(87\) −8.94975 + 15.5014i −0.959514 + 1.66193i
\(88\) −2.62132 + 4.54026i −0.279434 + 0.483993i
\(89\) 9.79796 5.65685i 1.03858 0.599625i 0.119150 0.992876i \(-0.461983\pi\)
0.919431 + 0.393251i \(0.128650\pi\)
\(90\) 4.00000 0.421637
\(91\) 0 0
\(92\) 1.58579 0.165330
\(93\) −10.9612 + 6.32843i −1.13662 + 0.656227i
\(94\) −2.20711 + 3.82282i −0.227646 + 0.394294i
\(95\) −0.171573 + 0.297173i −0.0176030 + 0.0304893i
\(96\) −2.09077 + 1.20711i −0.213388 + 0.123200i
\(97\) 9.48528i 0.963084i 0.876423 + 0.481542i \(0.159923\pi\)
−0.876423 + 0.481542i \(0.840077\pi\)
\(98\) 0 0
\(99\) 14.8284i 1.49031i
\(100\) 1.50000 + 2.59808i 0.150000 + 0.259808i
\(101\) 4.74264 8.21449i 0.471910 0.817373i −0.527573 0.849510i \(-0.676898\pi\)
0.999483 + 0.0321369i \(0.0102312\pi\)
\(102\) −12.5446 7.24264i −1.24210 0.717128i
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) −2.00000 3.00000i −0.196116 0.294174i
\(105\) 0 0
\(106\) 1.41421i 0.137361i
\(107\) −5.12132 8.87039i −0.495097 0.857533i 0.504887 0.863185i \(-0.331534\pi\)
−0.999984 + 0.00565259i \(0.998201\pi\)
\(108\) 0.207107 0.358719i 0.0199289 0.0345178i
\(109\) 7.34847 + 4.24264i 0.703856 + 0.406371i 0.808782 0.588109i \(-0.200127\pi\)
−0.104926 + 0.994480i \(0.533461\pi\)
\(110\) 6.42090 3.70711i 0.612209 0.353459i
\(111\) 6.41421i 0.608810i
\(112\) 0 0
\(113\) 17.1421 1.61260 0.806298 0.591509i \(-0.201468\pi\)
0.806298 + 0.591509i \(0.201468\pi\)
\(114\) −0.292893 0.507306i −0.0274320 0.0475136i
\(115\) −1.94218 1.12132i −0.181110 0.104564i
\(116\) −3.70711 + 6.42090i −0.344196 + 0.596165i
\(117\) −9.14162 4.52004i −0.845143 0.417878i
\(118\) 10.2426 0.942912
\(119\) 0 0
\(120\) 3.41421 0.311674
\(121\) 8.24264 + 14.2767i 0.749331 + 1.29788i
\(122\) 2.59808 + 1.50000i 0.235219 + 0.135804i
\(123\) −18.8169 10.8640i −1.69667 0.979570i
\(124\) −4.54026 + 2.62132i −0.407727 + 0.235402i
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) −10.7574 −0.954561 −0.477281 0.878751i \(-0.658377\pi\)
−0.477281 + 0.878751i \(0.658377\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 4.53553 7.85578i 0.399331 0.691662i
\(130\) 0.328169 + 5.08845i 0.0287824 + 0.446286i
\(131\) 1.00000 + 1.73205i 0.0873704 + 0.151330i 0.906399 0.422423i \(-0.138820\pi\)
−0.819028 + 0.573753i \(0.805487\pi\)
\(132\) 12.6569i 1.10164i
\(133\) 0 0
\(134\) 12.8995 1.11435
\(135\) −0.507306 + 0.292893i −0.0436619 + 0.0252082i
\(136\) −5.19615 3.00000i −0.445566 0.257248i
\(137\) 13.8564 + 8.00000i 1.18383 + 0.683486i 0.956898 0.290424i \(-0.0937963\pi\)
0.226935 + 0.973910i \(0.427130\pi\)
\(138\) 3.31552 1.91421i 0.282235 0.162949i
\(139\) −14.1421 −1.19952 −0.599760 0.800180i \(-0.704737\pi\)
−0.599760 + 0.800180i \(0.704737\pi\)
\(140\) 0 0
\(141\) 10.6569i 0.897469i
\(142\) −1.87868 3.25397i −0.157655 0.273067i
\(143\) −18.8634 + 1.21656i −1.57744 + 0.101734i
\(144\) −1.41421 + 2.44949i −0.117851 + 0.204124i
\(145\) 9.08052 5.24264i 0.754096 0.435378i
\(146\) 13.4853 1.11605
\(147\) 0 0
\(148\) 2.65685i 0.218392i
\(149\) −16.8747 + 9.74264i −1.38243 + 0.798148i −0.992447 0.122673i \(-0.960854\pi\)
−0.389986 + 0.920821i \(0.627520\pi\)
\(150\) 6.27231 + 3.62132i 0.512132 + 0.295680i
\(151\) 17.4436 + 10.0711i 1.41954 + 0.819572i 0.996258 0.0864262i \(-0.0275447\pi\)
0.423282 + 0.905998i \(0.360878\pi\)
\(152\) −0.121320 0.210133i −0.00984038 0.0170440i
\(153\) −16.9706 −1.37199
\(154\) 0 0
\(155\) 7.41421 0.595524
\(156\) −7.80286 3.85810i −0.624729 0.308895i
\(157\) 1.50000 2.59808i 0.119713 0.207349i −0.799941 0.600079i \(-0.795136\pi\)
0.919654 + 0.392730i \(0.128469\pi\)
\(158\) −10.1567 5.86396i −0.808022 0.466512i
\(159\) 1.70711 + 2.95680i 0.135382 + 0.234489i
\(160\) 1.41421 0.111803
\(161\) 0 0
\(162\) 9.48528i 0.745234i
\(163\) 14.9941 8.65685i 1.17443 0.678057i 0.219710 0.975565i \(-0.429489\pi\)
0.954719 + 0.297508i \(0.0961555\pi\)
\(164\) −7.79423 4.50000i −0.608627 0.351391i
\(165\) 8.94975 15.5014i 0.696737 1.20678i
\(166\) −2.29289 3.97141i −0.177963 0.308241i
\(167\) 5.65685i 0.437741i −0.975754 0.218870i \(-0.929763\pi\)
0.975754 0.218870i \(-0.0702371\pi\)
\(168\) 0 0
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 4.24264 + 7.34847i 0.325396 + 0.563602i
\(171\) −0.594346 0.343146i −0.0454508 0.0262410i
\(172\) 1.87868 3.25397i 0.143248 0.248113i
\(173\) 12.2426 + 21.2049i 0.930791 + 1.61218i 0.781973 + 0.623312i \(0.214213\pi\)
0.148818 + 0.988865i \(0.452453\pi\)
\(174\) 17.8995i 1.35696i
\(175\) 0 0
\(176\) 5.24264i 0.395179i
\(177\) 21.4150 12.3640i 1.60965 0.929332i
\(178\) 5.65685 9.79796i 0.423999 0.734388i
\(179\) 5.65685 9.79796i 0.422813 0.732334i −0.573400 0.819275i \(-0.694376\pi\)
0.996213 + 0.0869415i \(0.0277093\pi\)
\(180\) 3.46410 2.00000i 0.258199 0.149071i
\(181\) 16.7990 1.24866 0.624330 0.781161i \(-0.285372\pi\)
0.624330 + 0.781161i \(0.285372\pi\)
\(182\) 0 0
\(183\) 7.24264 0.535391
\(184\) 1.37333 0.792893i 0.101243 0.0584529i
\(185\) 1.87868 3.25397i 0.138123 0.239237i
\(186\) −6.32843 + 10.9612i −0.464023 + 0.803711i
\(187\) −27.2416 + 15.7279i −1.99210 + 1.15014i
\(188\) 4.41421i 0.321940i
\(189\) 0 0
\(190\) 0.343146i 0.0248944i
\(191\) 1.41421 + 2.44949i 0.102329 + 0.177239i 0.912644 0.408756i \(-0.134037\pi\)
−0.810315 + 0.585995i \(0.800704\pi\)
\(192\) −1.20711 + 2.09077i −0.0871154 + 0.150888i
\(193\) −0.594346 0.343146i −0.0427820 0.0247002i 0.478456 0.878111i \(-0.341196\pi\)
−0.521238 + 0.853411i \(0.674530\pi\)
\(194\) 4.74264 + 8.21449i 0.340502 + 0.589766i
\(195\) 6.82843 + 10.2426i 0.488994 + 0.733491i
\(196\) 0 0
\(197\) 13.9706i 0.995361i −0.867360 0.497681i \(-0.834185\pi\)
0.867360 0.497681i \(-0.165815\pi\)
\(198\) 7.41421 + 12.8418i 0.526905 + 0.912627i
\(199\) −3.87868 + 6.71807i −0.274952 + 0.476231i −0.970123 0.242613i \(-0.921995\pi\)
0.695171 + 0.718845i \(0.255329\pi\)
\(200\) 2.59808 + 1.50000i 0.183712 + 0.106066i
\(201\) 26.9699 15.5711i 1.90231 1.09830i
\(202\) 9.48528i 0.667382i
\(203\) 0 0
\(204\) −14.4853 −1.01417
\(205\) 6.36396 + 11.0227i 0.444478 + 0.769859i
\(206\) 0 0
\(207\) 2.24264 3.88437i 0.155874 0.269982i
\(208\) −3.23205 1.59808i −0.224102 0.110807i
\(209\) −1.27208 −0.0879915
\(210\) 0 0
\(211\) −20.7279 −1.42697 −0.713485 0.700671i \(-0.752884\pi\)
−0.713485 + 0.700671i \(0.752884\pi\)
\(212\) 0.707107 + 1.22474i 0.0485643 + 0.0841158i
\(213\) −7.85578 4.53553i −0.538269 0.310770i
\(214\) −8.87039 5.12132i −0.606367 0.350086i
\(215\) −4.60181 + 2.65685i −0.313841 + 0.181196i
\(216\) 0.414214i 0.0281837i
\(217\) 0 0
\(218\) 8.48528 0.574696
\(219\) 28.1946 16.2782i 1.90522 1.09998i
\(220\) 3.70711 6.42090i 0.249933 0.432897i
\(221\) −1.39230 21.5885i −0.0936566 1.45220i
\(222\) 3.20711 + 5.55487i 0.215247 + 0.372819i
\(223\) 5.72792i 0.383570i −0.981437 0.191785i \(-0.938572\pi\)
0.981437 0.191785i \(-0.0614276\pi\)
\(224\) 0 0
\(225\) 8.48528 0.565685
\(226\) 14.8455 8.57107i 0.987510 0.570139i
\(227\) −18.0379 10.4142i −1.19722 0.691216i −0.237286 0.971440i \(-0.576258\pi\)
−0.959935 + 0.280224i \(0.909591\pi\)
\(228\) −0.507306 0.292893i −0.0335972 0.0193973i
\(229\) −19.2627 + 11.1213i −1.27291 + 0.734918i −0.975535 0.219842i \(-0.929446\pi\)
−0.297379 + 0.954760i \(0.596112\pi\)
\(230\) −2.24264 −0.147875
\(231\) 0 0
\(232\) 7.41421i 0.486767i
\(233\) 11.5711 + 20.0417i 0.758046 + 1.31297i 0.943846 + 0.330386i \(0.107179\pi\)
−0.185800 + 0.982588i \(0.559488\pi\)
\(234\) −10.1769 + 0.656339i −0.665285 + 0.0429062i
\(235\) 3.12132 5.40629i 0.203612 0.352667i
\(236\) 8.87039 5.12132i 0.577413 0.333370i
\(237\) −28.3137 −1.83917
\(238\) 0 0
\(239\) 22.4853i 1.45445i −0.686398 0.727226i \(-0.740809\pi\)
0.686398 0.727226i \(-0.259191\pi\)
\(240\) 2.95680 1.70711i 0.190860 0.110193i
\(241\) −10.8126 6.24264i −0.696499 0.402124i 0.109543 0.993982i \(-0.465061\pi\)
−0.806042 + 0.591858i \(0.798395\pi\)
\(242\) 14.2767 + 8.24264i 0.917739 + 0.529857i
\(243\) −10.8284 18.7554i −0.694644 1.20316i
\(244\) 3.00000 0.192055
\(245\) 0 0
\(246\) −21.7279 −1.38532
\(247\) 0.387758 0.784227i 0.0246725 0.0498992i
\(248\) −2.62132 + 4.54026i −0.166454 + 0.288307i
\(249\) −9.58783 5.53553i −0.607604 0.350800i
\(250\) −5.65685 9.79796i −0.357771 0.619677i
\(251\) −2.75736 −0.174043 −0.0870215 0.996206i \(-0.527735\pi\)
−0.0870215 + 0.996206i \(0.527735\pi\)
\(252\) 0 0
\(253\) 8.31371i 0.522678i
\(254\) −9.31615 + 5.37868i −0.584547 + 0.337488i
\(255\) 17.7408 + 10.2426i 1.11097 + 0.641419i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.48528 12.9649i −0.466919 0.808727i 0.532367 0.846514i \(-0.321303\pi\)
−0.999286 + 0.0377863i \(0.987969\pi\)
\(258\) 9.07107i 0.564740i
\(259\) 0 0
\(260\) 2.82843 + 4.24264i 0.175412 + 0.263117i
\(261\) 10.4853 + 18.1610i 0.649023 + 1.12414i
\(262\) 1.73205 + 1.00000i 0.107006 + 0.0617802i
\(263\) −15.8995 + 27.5387i −0.980405 + 1.69811i −0.319601 + 0.947552i \(0.603549\pi\)
−0.660804 + 0.750559i \(0.729784\pi\)
\(264\) 6.32843 + 10.9612i 0.389488 + 0.674613i
\(265\) 2.00000i 0.122859i
\(266\) 0 0
\(267\) 27.3137i 1.67157i
\(268\) 11.1713 6.44975i 0.682395 0.393981i
\(269\) 7.25736 12.5701i 0.442489 0.766413i −0.555385 0.831594i \(-0.687429\pi\)
0.997874 + 0.0651802i \(0.0207622\pi\)
\(270\) −0.292893 + 0.507306i −0.0178249 + 0.0308737i
\(271\) 28.3177 16.3492i 1.72018 0.993146i 0.801648 0.597796i \(-0.203957\pi\)
0.918531 0.395350i \(-0.129377\pi\)
\(272\) −6.00000 −0.363803
\(273\) 0 0
\(274\) 16.0000 0.966595
\(275\) 13.6208 7.86396i 0.821364 0.474215i
\(276\) 1.91421 3.31552i 0.115222 0.199571i
\(277\) −10.3640 + 17.9509i −0.622710 + 1.07857i 0.366269 + 0.930509i \(0.380635\pi\)
−0.988979 + 0.148056i \(0.952698\pi\)
\(278\) −12.2474 + 7.07107i −0.734553 + 0.424094i
\(279\) 14.8284i 0.887755i
\(280\) 0 0
\(281\) 30.7279i 1.83307i 0.399950 + 0.916537i \(0.369028\pi\)
−0.399950 + 0.916537i \(0.630972\pi\)
\(282\) 5.32843 + 9.22911i 0.317303 + 0.549585i
\(283\) 3.62132 6.27231i 0.215265 0.372850i −0.738089 0.674703i \(-0.764272\pi\)
0.953355 + 0.301853i \(0.0976051\pi\)
\(284\) −3.25397 1.87868i −0.193088 0.111479i
\(285\) 0.414214 + 0.717439i 0.0245359 + 0.0424974i
\(286\) −15.7279 + 10.4853i −0.930012 + 0.620008i
\(287\) 0 0
\(288\) 2.82843i 0.166667i
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 5.24264 9.08052i 0.307858 0.533226i
\(291\) 19.8315 + 11.4497i 1.16255 + 0.671196i
\(292\) 11.6786 6.74264i 0.683438 0.394583i
\(293\) 16.6274i 0.971384i 0.874130 + 0.485692i \(0.161432\pi\)
−0.874130 + 0.485692i \(0.838568\pi\)
\(294\) 0 0
\(295\) −14.4853 −0.843366
\(296\) 1.32843 + 2.30090i 0.0772133 + 0.133737i
\(297\) −1.88064 1.08579i −0.109126 0.0630037i
\(298\) −9.74264 + 16.8747i −0.564376 + 0.977528i
\(299\) 5.12534 + 2.53421i 0.296406 + 0.146557i
\(300\) 7.24264 0.418154
\(301\) 0 0
\(302\) 20.1421 1.15905
\(303\) −11.4497 19.8315i −0.657771 1.13929i
\(304\) −0.210133 0.121320i −0.0120520 0.00695820i
\(305\) −3.67423 2.12132i −0.210386 0.121466i
\(306\) −14.6969 + 8.48528i −0.840168 + 0.485071i
\(307\) 9.75736i 0.556882i 0.960453 + 0.278441i \(0.0898177\pi\)
−0.960453 + 0.278441i \(0.910182\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 6.42090 3.70711i 0.364682 0.210550i
\(311\) 2.12132 3.67423i 0.120289 0.208347i −0.799593 0.600543i \(-0.794951\pi\)
0.919882 + 0.392196i \(0.128285\pi\)
\(312\) −8.68652 + 0.560220i −0.491778 + 0.0317162i
\(313\) −3.17157 5.49333i −0.179268 0.310501i 0.762362 0.647151i \(-0.224040\pi\)
−0.941630 + 0.336650i \(0.890706\pi\)
\(314\) 3.00000i 0.169300i
\(315\) 0 0
\(316\) −11.7279 −0.659747
\(317\) 3.01834 1.74264i 0.169527 0.0978765i −0.412836 0.910805i \(-0.635462\pi\)
0.582363 + 0.812929i \(0.302128\pi\)
\(318\) 2.95680 + 1.70711i 0.165809 + 0.0957298i
\(319\) 33.6625 + 19.4350i 1.88474 + 1.08815i
\(320\) 1.22474 0.707107i 0.0684653 0.0395285i
\(321\) −24.7279 −1.38018
\(322\) 0 0
\(323\) 1.45584i 0.0810053i
\(324\) −4.74264 8.21449i −0.263480 0.456361i
\(325\) 0.696152 + 10.7942i 0.0386156 + 0.598756i
\(326\) 8.65685 14.9941i 0.479459 0.830447i
\(327\) 17.7408 10.2426i 0.981067 0.566419i
\(328\) −9.00000 −0.496942
\(329\) 0 0
\(330\) 17.8995i 0.985335i
\(331\) −1.96768 + 1.13604i −0.108153 + 0.0624423i −0.553101 0.833114i \(-0.686556\pi\)
0.444948 + 0.895557i \(0.353222\pi\)
\(332\) −3.97141 2.29289i −0.217959 0.125839i
\(333\) 6.50794 + 3.75736i 0.356633 + 0.205902i
\(334\) −2.82843 4.89898i −0.154765 0.268060i
\(335\) −18.2426 −0.996702
\(336\) 0 0
\(337\) 19.4853 1.06143 0.530715 0.847550i \(-0.321923\pi\)
0.530715 + 0.847550i \(0.321923\pi\)
\(338\) −1.66987 12.8923i −0.0908291 0.701249i
\(339\) 20.6924 35.8403i 1.12386 1.94658i
\(340\) 7.34847 + 4.24264i 0.398527 + 0.230089i
\(341\) 13.7426 + 23.8030i 0.744206 + 1.28900i
\(342\) −0.686292 −0.0371104
\(343\) 0 0
\(344\) 3.75736i 0.202583i
\(345\) −4.68885 + 2.70711i −0.252439 + 0.145746i
\(346\) 21.2049 + 12.2426i 1.13998 + 0.658168i
\(347\) −2.48528 + 4.30463i −0.133417 + 0.231085i −0.924992 0.379988i \(-0.875928\pi\)
0.791575 + 0.611072i \(0.209262\pi\)
\(348\) 8.94975 + 15.5014i 0.479757 + 0.830963i
\(349\) 8.72792i 0.467195i −0.972333 0.233597i \(-0.924950\pi\)
0.972333 0.233597i \(-0.0750498\pi\)
\(350\) 0 0
\(351\) 1.24264 0.828427i 0.0663273 0.0442182i
\(352\) 2.62132 + 4.54026i 0.139717 + 0.241997i
\(353\) 18.1865 + 10.5000i 0.967972 + 0.558859i 0.898617 0.438733i \(-0.144573\pi\)
0.0693543 + 0.997592i \(0.477906\pi\)
\(354\) 12.3640 21.4150i 0.657137 1.13819i
\(355\) 2.65685 + 4.60181i 0.141011 + 0.244239i
\(356\) 11.3137i 0.599625i
\(357\) 0 0
\(358\) 11.3137i 0.597948i
\(359\) 6.71807 3.87868i 0.354566 0.204709i −0.312128 0.950040i \(-0.601042\pi\)
0.666695 + 0.745331i \(0.267709\pi\)
\(360\) 2.00000 3.46410i 0.105409 0.182574i
\(361\) −9.47056 + 16.4035i −0.498451 + 0.863342i
\(362\) 14.5484 8.39949i 0.764644 0.441468i
\(363\) 39.7990 2.08891
\(364\) 0 0
\(365\) −19.0711 −0.998225
\(366\) 6.27231 3.62132i 0.327859 0.189289i
\(367\) −3.87868 + 6.71807i −0.202465 + 0.350680i −0.949322 0.314304i \(-0.898229\pi\)
0.746857 + 0.664985i \(0.231562\pi\)
\(368\) 0.792893 1.37333i 0.0413324 0.0715898i
\(369\) −22.0454 + 12.7279i −1.14764 + 0.662589i
\(370\) 3.75736i 0.195336i
\(371\) 0 0
\(372\) 12.6569i 0.656227i
\(373\) 4.36396 + 7.55860i 0.225957 + 0.391370i 0.956606 0.291384i \(-0.0941157\pi\)
−0.730649 + 0.682753i \(0.760782\pi\)
\(374\) −15.7279 + 27.2416i −0.813271 + 1.40863i
\(375\) −23.6544 13.6569i −1.22151 0.705237i
\(376\) 2.20711 + 3.82282i 0.113823 + 0.197147i
\(377\) −22.2426 + 14.8284i −1.14555 + 0.763703i
\(378\) 0 0
\(379\) 14.1421i 0.726433i 0.931705 + 0.363216i \(0.118321\pi\)
−0.931705 + 0.363216i \(0.881679\pi\)
\(380\) 0.171573 + 0.297173i 0.00880150 + 0.0152447i
\(381\) −12.9853 + 22.4912i −0.665256 + 1.15226i
\(382\) 2.44949 + 1.41421i 0.125327 + 0.0723575i
\(383\) 4.11999 2.37868i 0.210522 0.121545i −0.391032 0.920377i \(-0.627882\pi\)
0.601554 + 0.798832i \(0.294549\pi\)
\(384\) 2.41421i 0.123200i
\(385\) 0 0
\(386\) −0.686292 −0.0349313
\(387\) −5.31371 9.20361i −0.270111 0.467846i
\(388\) 8.21449 + 4.74264i 0.417028 + 0.240771i
\(389\) −9.00000 + 15.5885i −0.456318 + 0.790366i −0.998763 0.0497253i \(-0.984165\pi\)
0.542445 + 0.840091i \(0.317499\pi\)
\(390\) 11.0349 + 5.45617i 0.558774 + 0.276284i
\(391\) 9.51472 0.481180
\(392\) 0 0
\(393\) 4.82843 0.243562
\(394\) −6.98528 12.0989i −0.351913 0.609532i
\(395\) 14.3637 + 8.29289i 0.722717 + 0.417261i
\(396\) 12.8418 + 7.41421i 0.645324 + 0.372578i
\(397\) −26.8213 + 15.4853i −1.34612 + 0.777184i −0.987698 0.156375i \(-0.950019\pi\)
−0.358424 + 0.933559i \(0.616686\pi\)
\(398\) 7.75736i 0.388841i
\(399\) 0 0
\(400\) 3.00000 0.150000
\(401\) −6.24682 + 3.60660i −0.311951 + 0.180105i −0.647799 0.761811i \(-0.724310\pi\)
0.335848 + 0.941916i \(0.390977\pi\)
\(402\) 15.5711 26.9699i 0.776614 1.34514i
\(403\) −18.8634 + 1.21656i −0.939654 + 0.0606011i
\(404\) −4.74264 8.21449i −0.235955 0.408686i
\(405\) 13.4142i 0.666558i
\(406\) 0 0
\(407\) 13.9289 0.690432
\(408\) −12.5446 + 7.24264i −0.621051 + 0.358564i
\(409\) 12.1244 + 7.00000i 0.599511 + 0.346128i 0.768849 0.639430i \(-0.220830\pi\)
−0.169338 + 0.985558i \(0.554163\pi\)
\(410\) 11.0227 + 6.36396i 0.544373 + 0.314294i
\(411\) 33.4523 19.3137i 1.65008 0.952675i
\(412\) 0 0
\(413\) 0 0
\(414\) 4.48528i 0.220440i
\(415\) 3.24264 + 5.61642i 0.159175 + 0.275699i
\(416\) −3.59808 + 0.232051i −0.176410 + 0.0113772i
\(417\) −17.0711 + 29.5680i −0.835974 + 1.44795i
\(418\) −1.10165 + 0.636039i −0.0538836 + 0.0311097i
\(419\) −1.72792 −0.0844145 −0.0422073 0.999109i \(-0.513439\pi\)
−0.0422073 + 0.999109i \(0.513439\pi\)
\(420\) 0 0
\(421\) 4.02944i 0.196383i −0.995168 0.0981914i \(-0.968694\pi\)
0.995168 0.0981914i \(-0.0313057\pi\)
\(422\) −17.9509 + 10.3640i −0.873836 + 0.504510i
\(423\) 10.8126 + 6.24264i 0.525725 + 0.303528i
\(424\) 1.22474 + 0.707107i 0.0594789 + 0.0343401i
\(425\) 9.00000 + 15.5885i 0.436564 + 0.756151i
\(426\) −9.07107 −0.439495
\(427\) 0 0
\(428\) −10.2426 −0.495097
\(429\) −20.2266 + 40.9076i −0.976550 + 1.97504i
\(430\) −2.65685 + 4.60181i −0.128125 + 0.221919i
\(431\) −35.4815 20.4853i −1.70909 0.986741i −0.935694 0.352814i \(-0.885225\pi\)
−0.773392 0.633927i \(-0.781442\pi\)
\(432\) −0.207107 0.358719i −0.00996443 0.0172589i
\(433\) 28.6274 1.37575 0.687873 0.725831i \(-0.258545\pi\)
0.687873 + 0.725831i \(0.258545\pi\)
\(434\) 0 0
\(435\) 25.3137i 1.21370i
\(436\) 7.34847 4.24264i 0.351928 0.203186i
\(437\) 0.333226 + 0.192388i 0.0159404 + 0.00920317i
\(438\) 16.2782 28.1946i 0.777801 1.34719i
\(439\) −6.36396 11.0227i −0.303735 0.526085i 0.673244 0.739421i \(-0.264901\pi\)
−0.976979 + 0.213336i \(0.931567\pi\)
\(440\) 7.41421i 0.353459i
\(441\) 0 0
\(442\) −12.0000 18.0000i −0.570782 0.856173i
\(443\) 0.707107 + 1.22474i 0.0335957 + 0.0581894i 0.882334 0.470623i \(-0.155971\pi\)
−0.848739 + 0.528812i \(0.822637\pi\)
\(444\) 5.55487 + 3.20711i 0.263623 + 0.152203i
\(445\) −8.00000 + 13.8564i −0.379236 + 0.656857i
\(446\) −2.86396 4.96053i −0.135612 0.234888i
\(447\) 47.0416i 2.22499i
\(448\) 0 0
\(449\) 20.2426i 0.955309i −0.878548 0.477655i \(-0.841487\pi\)
0.878548 0.477655i \(-0.158513\pi\)
\(450\) 7.34847 4.24264i 0.346410 0.200000i
\(451\) −23.5919 + 40.8623i −1.11090 + 1.92413i
\(452\) 8.57107 14.8455i 0.403149 0.698275i
\(453\) 42.1126 24.3137i 1.97862 1.14236i
\(454\) −20.8284 −0.977527
\(455\) 0 0
\(456\) −0.585786 −0.0274320
\(457\) −1.52192 + 0.878680i −0.0711923 + 0.0411029i −0.535174 0.844742i \(-0.679754\pi\)
0.463981 + 0.885845i \(0.346420\pi\)
\(458\) −11.1213 + 19.2627i −0.519665 + 0.900086i
\(459\) 1.24264 2.15232i 0.0580015 0.100462i
\(460\) −1.94218 + 1.12132i −0.0905548 + 0.0522818i
\(461\) 10.2426i 0.477047i −0.971137 0.238524i \(-0.923337\pi\)
0.971137 0.238524i \(-0.0766635\pi\)
\(462\) 0 0
\(463\) 21.5147i 0.999874i 0.866062 + 0.499937i \(0.166643\pi\)
−0.866062 + 0.499937i \(0.833357\pi\)
\(464\) 3.70711 + 6.42090i 0.172098 + 0.298083i
\(465\) 8.94975 15.5014i 0.415035 0.718861i
\(466\) 20.0417 + 11.5711i 0.928413 + 0.536019i
\(467\) 12.7279 + 22.0454i 0.588978 + 1.02014i 0.994367 + 0.105995i \(0.0338029\pi\)
−0.405389 + 0.914144i \(0.632864\pi\)
\(468\) −8.48528 + 5.65685i −0.392232 + 0.261488i
\(469\) 0 0
\(470\) 6.24264i 0.287952i
\(471\) −3.62132 6.27231i −0.166862 0.289013i
\(472\) 5.12132 8.87039i 0.235728 0.408293i
\(473\) −17.0594 9.84924i −0.784392 0.452869i
\(474\) −24.5204 + 14.1569i −1.12626 + 0.650246i
\(475\) 0.727922i 0.0333994i
\(476\) 0 0
\(477\) 4.00000 0.183147
\(478\) −11.2426 19.4728i −0.514226 0.890666i
\(479\) −15.8856 9.17157i −0.725833 0.419060i 0.0910628 0.995845i \(-0.470974\pi\)
−0.816896 + 0.576785i \(0.804307\pi\)
\(480\) 1.70711 2.95680i 0.0779184 0.134959i
\(481\) −4.24586 + 8.58709i −0.193594 + 0.391538i
\(482\) −12.4853 −0.568689
\(483\) 0 0
\(484\) 16.4853 0.749331
\(485\) −6.70711 11.6170i −0.304554 0.527503i
\(486\) −18.7554 10.8284i −0.850762 0.491187i
\(487\) 18.3712 + 10.6066i 0.832477 + 0.480631i 0.854700 0.519122i \(-0.173741\pi\)
−0.0222228 + 0.999753i \(0.507074\pi\)
\(488\) 2.59808 1.50000i 0.117609 0.0679018i
\(489\) 41.7990i 1.89022i
\(490\) 0 0
\(491\) −44.1838 −1.99399 −0.996993 0.0774952i \(-0.975308\pi\)
−0.996993 + 0.0774952i \(0.975308\pi\)
\(492\) −18.8169 + 10.8640i −0.848333 + 0.489785i
\(493\) −22.2426 + 38.5254i −1.00176 + 1.73510i
\(494\) −0.0563050 0.873040i −0.00253328 0.0392799i
\(495\) −10.4853 18.1610i −0.471278 0.816278i
\(496\) 5.24264i 0.235402i
\(497\) 0 0
\(498\) −11.0711 −0.496106
\(499\) −16.6646 + 9.62132i −0.746011 + 0.430709i −0.824251 0.566225i \(-0.808403\pi\)
0.0782400 + 0.996935i \(0.475070\pi\)
\(500\) −9.79796 5.65685i −0.438178 0.252982i
\(501\) −11.8272 6.82843i −0.528400 0.305072i
\(502\) −2.38794 + 1.37868i −0.106579 + 0.0615335i
\(503\) 38.4853 1.71597 0.857987 0.513671i \(-0.171715\pi\)
0.857987 + 0.513671i \(0.171715\pi\)
\(504\) 0 0
\(505\) 13.4142i 0.596925i
\(506\) −4.15685 7.19988i −0.184795 0.320074i
\(507\) −19.0537 24.9391i −0.846205 1.10759i
\(508\) −5.37868 + 9.31615i −0.238640 + 0.413337i
\(509\) −19.5599 + 11.2929i −0.866976 + 0.500549i −0.866342 0.499451i \(-0.833535\pi\)
−0.000633690 1.00000i \(0.500202\pi\)
\(510\) 20.4853 0.907104
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0.0870399 0.0502525i 0.00384291 0.00221870i
\(514\) −12.9649 7.48528i −0.571857 0.330162i
\(515\) 0 0
\(516\) −4.53553 7.85578i −0.199666 0.345831i
\(517\) 23.1421 1.01779
\(518\) 0 0
\(519\) 59.1127 2.59476
\(520\) 4.57081 + 2.26002i 0.200443 + 0.0991085i
\(521\) 11.8492 20.5235i 0.519125 0.899150i −0.480628 0.876924i \(-0.659591\pi\)
0.999753 0.0222260i \(-0.00707533\pi\)
\(522\) 18.1610 + 10.4853i 0.794887 + 0.458928i
\(523\) −11.3787 19.7085i −0.497555 0.861790i 0.502441 0.864611i \(-0.332435\pi\)
−0.999996 + 0.00282104i \(0.999102\pi\)
\(524\) 2.00000 0.0873704
\(525\) 0 0
\(526\) 31.7990i 1.38650i
\(527\) −27.2416 + 15.7279i −1.18666 + 0.685119i
\(528\) 10.9612 + 6.32843i 0.477023 + 0.275409i
\(529\) 10.2426 17.7408i 0.445332 0.771338i
\(530\) −1.00000 1.73205i −0.0434372 0.0752355i
\(531\) 28.9706i 1.25722i
\(532\) 0 0
\(533\) −18.0000 27.0000i −0.779667 1.16950i
\(534\) −13.6569 23.6544i −0.590990 1.02362i
\(535\) 12.5446 + 7.24264i 0.542351 + 0.313127i
\(536\) 6.44975 11.1713i 0.278587 0.482526i
\(537\) −13.6569 23.6544i −0.589337 1.02076i
\(538\) 14.5147i 0.625774i
\(539\) 0 0
\(540\) 0.585786i 0.0252082i
\(541\) 26.2779 15.1716i 1.12978 0.652277i 0.185898 0.982569i \(-0.440481\pi\)
0.943879 + 0.330292i \(0.107147\pi\)
\(542\) 16.3492 28.3177i 0.702260 1.21635i
\(543\) 20.2782 35.1228i 0.870220 1.50726i
\(544\) −5.19615 + 3.00000i −0.222783 + 0.128624i
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) −14.7279 −0.629720 −0.314860 0.949138i \(-0.601958\pi\)
−0.314860 + 0.949138i \(0.601958\pi\)
\(548\) 13.8564 8.00000i 0.591916 0.341743i
\(549\) 4.24264 7.34847i 0.181071 0.313625i
\(550\) 7.86396 13.6208i 0.335320 0.580792i
\(551\) −1.55797 + 0.899495i −0.0663718 + 0.0383198i
\(552\) 3.82843i 0.162949i
\(553\) 0 0
\(554\) 20.7279i 0.880645i
\(555\) −4.53553 7.85578i −0.192523 0.333459i
\(556\) −7.07107 + 12.2474i −0.299880 + 0.519408i
\(557\) −19.4473 11.2279i −0.824010 0.475742i 0.0277874 0.999614i \(-0.491154\pi\)
−0.851797 + 0.523872i \(0.824487\pi\)
\(558\) 7.41421 + 12.8418i 0.313869 + 0.543637i
\(559\) 11.2721 7.51472i 0.476758 0.317839i
\(560\) 0 0
\(561\) 75.9411i 3.20624i
\(562\) 15.3640 + 26.6112i 0.648090 + 1.12252i
\(563\) 8.86396 15.3528i 0.373571 0.647045i −0.616541 0.787323i \(-0.711466\pi\)
0.990112 + 0.140278i \(0.0447997\pi\)
\(564\) 9.22911 + 5.32843i 0.388615 + 0.224367i
\(565\) −20.9947 + 12.1213i −0.883255 + 0.509948i
\(566\) 7.24264i 0.304431i
\(567\) 0 0
\(568\) −3.75736 −0.157655
\(569\) −1.32843 2.30090i −0.0556906 0.0964589i 0.836836 0.547453i \(-0.184403\pi\)
−0.892527 + 0.450995i \(0.851069\pi\)
\(570\) 0.717439 + 0.414214i 0.0300502 + 0.0173495i
\(571\) 2.87868 4.98602i 0.120469 0.208658i −0.799484 0.600688i \(-0.794893\pi\)
0.919953 + 0.392029i \(0.128227\pi\)
\(572\) −8.37814 + 16.9445i −0.350308 + 0.708484i
\(573\) 6.82843 0.285262
\(574\) 0 0
\(575\) −4.75736 −0.198396
\(576\) 1.41421 + 2.44949i 0.0589256 + 0.102062i
\(577\) −17.7408 10.2426i −0.738558 0.426407i 0.0829867 0.996551i \(-0.473554\pi\)
−0.821545 + 0.570144i \(0.806887\pi\)
\(578\) −16.4545 9.50000i −0.684416 0.395148i
\(579\) −1.43488 + 0.828427i −0.0596315 + 0.0344283i
\(580\) 10.4853i 0.435378i
\(581\) 0 0
\(582\) 22.8995 0.949215
\(583\) 6.42090 3.70711i 0.265926 0.153533i
\(584\) 6.74264 11.6786i 0.279012 0.483264i
\(585\) 14.3923 0.928203i 0.595049 0.0383765i
\(586\) 8.31371 + 14.3998i 0.343436 + 0.594849i
\(587\) 8.14214i 0.336062i −0.985782 0.168031i \(-0.946259\pi\)
0.985782 0.168031i \(-0.0537409\pi\)
\(588\) 0 0
\(589\) −1.27208 −0.0524151
\(590\) −12.5446 + 7.24264i −0.516454 + 0.298175i
\(591\) −29.2092 16.8640i −1.20151 0.693691i
\(592\) 2.30090 + 1.32843i 0.0945665 + 0.0545980i
\(593\) 14.1026 8.14214i 0.579124 0.334357i −0.181661 0.983361i \(-0.558147\pi\)
0.760785 + 0.649004i \(0.224814\pi\)
\(594\) −2.17157 −0.0891007
\(595\) 0 0
\(596\) 19.4853i 0.798148i
\(597\) 9.36396 + 16.2189i 0.383241 + 0.663794i
\(598\) 5.70578 0.367983i 0.233327 0.0150479i
\(599\) 9.27817 16.0703i 0.379096 0.656613i −0.611835 0.790985i \(-0.709568\pi\)
0.990931 + 0.134372i \(0.0429017\pi\)
\(600\) 6.27231 3.62132i 0.256066 0.147840i
\(601\) −42.0416 −1.71491 −0.857457 0.514556i \(-0.827957\pi\)
−0.857457 + 0.514556i \(0.827957\pi\)
\(602\) 0 0
\(603\) 36.4853i 1.48580i
\(604\) 17.4436 10.0711i 0.709770 0.409786i
\(605\) −20.1903 11.6569i −0.820851 0.473919i
\(606\) −19.8315 11.4497i −0.805601 0.465114i
\(607\) −10.0503 17.4075i −0.407927 0.706551i 0.586730 0.809783i \(-0.300415\pi\)
−0.994657 + 0.103232i \(0.967082\pi\)
\(608\) −0.242641 −0.00984038
\(609\) 0 0
\(610\) −4.24264 −0.171780
\(611\) −7.05425 + 14.2670i −0.285384 + 0.577180i
\(612\) −8.48528 + 14.6969i −0.342997 + 0.594089i
\(613\) 13.2876 + 7.67157i 0.536679 + 0.309852i 0.743732 0.668478i \(-0.233054\pi\)
−0.207053 + 0.978330i \(0.566387\pi\)
\(614\) 4.87868 + 8.45012i 0.196887 + 0.341019i
\(615\) 30.7279 1.23907
\(616\) 0 0
\(617\) 6.72792i 0.270856i 0.990787 + 0.135428i \(0.0432409\pi\)
−0.990787 + 0.135428i \(0.956759\pi\)
\(618\) 0 0
\(619\) 6.71807 + 3.87868i 0.270022 + 0.155897i 0.628898 0.777488i \(-0.283506\pi\)
−0.358876 + 0.933385i \(0.616840\pi\)
\(620\) 3.70711 6.42090i 0.148881 0.257869i
\(621\) 0.328427 + 0.568852i 0.0131793 + 0.0228273i
\(622\) 4.24264i 0.170114i
\(623\) 0 0
\(624\) −7.24264 + 4.82843i −0.289938 + 0.193292i
\(625\) 0.500000 + 0.866025i 0.0200000 + 0.0346410i
\(626\) −5.49333 3.17157i −0.219557 0.126762i
\(627\) −1.53553 + 2.65962i −0.0613233 + 0.106215i
\(628\) −1.50000 2.59808i −0.0598565 0.103675i
\(629\) 15.9411i 0.635614i
\(630\) 0 0
\(631\) 33.9411i 1.35117i 0.737280 + 0.675587i \(0.236110\pi\)
−0.737280 + 0.675587i \(0.763890\pi\)
\(632\) −10.1567 + 5.86396i −0.404011 + 0.233256i
\(633\) −25.0208 + 43.3373i −0.994488 + 1.72250i
\(634\) 1.74264 3.01834i 0.0692091 0.119874i
\(635\) 13.1750 7.60660i 0.522835 0.301859i
\(636\) 3.41421 0.135382
\(637\) 0 0
\(638\) 38.8701 1.53888
\(639\) −9.20361 + 5.31371i −0.364089 + 0.210207i
\(640\) 0.707107 1.22474i 0.0279508 0.0484123i
\(641\) −16.1569 + 27.9845i −0.638157 + 1.10532i 0.347679 + 0.937613i \(0.386970\pi\)
−0.985837 + 0.167708i \(0.946364\pi\)
\(642\) −21.4150 + 12.3640i −0.845183 + 0.487967i
\(643\) 9.51472i 0.375224i −0.982243 0.187612i \(-0.939925\pi\)
0.982243 0.187612i \(-0.0600747\pi\)
\(644\) 0 0
\(645\) 12.8284i 0.505119i
\(646\) −0.727922 1.26080i −0.0286397 0.0496054i
\(647\) −11.1213 + 19.2627i −0.437224 + 0.757295i −0.997474 0.0710290i \(-0.977372\pi\)
0.560250 + 0.828324i \(0.310705\pi\)
\(648\) −8.21449 4.74264i −0.322696 0.186309i
\(649\) −26.8492 46.5043i −1.05392 1.82545i
\(650\) 6.00000 + 9.00000i 0.235339 + 0.353009i
\(651\) 0 0
\(652\) 17.3137i 0.678057i
\(653\) 9.36396 + 16.2189i 0.366440 + 0.634693i 0.989006 0.147874i \(-0.0472431\pi\)
−0.622566 + 0.782567i \(0.713910\pi\)
\(654\) 10.2426 17.7408i 0.400519 0.693719i
\(655\) −2.44949 1.41421i −0.0957095 0.0552579i
\(656\) −7.79423 + 4.50000i −0.304314 + 0.175695i
\(657\) 38.1421i 1.48807i
\(658\) 0 0
\(659\) −38.8701 −1.51416 −0.757081 0.653321i \(-0.773375\pi\)
−0.757081 + 0.653321i \(0.773375\pi\)
\(660\) −8.94975 15.5014i −0.348368 0.603392i
\(661\) 34.3799 + 19.8492i 1.33722 + 0.772046i 0.986395 0.164394i \(-0.0525668\pi\)
0.350828 + 0.936440i \(0.385900\pi\)
\(662\) −1.13604 + 1.96768i −0.0441534 + 0.0764759i
\(663\) −46.8172 23.1486i −1.81823 0.899016i
\(664\) −4.58579 −0.177963
\(665\) 0 0
\(666\) 7.51472 0.291189
\(667\) −5.87868 10.1822i −0.227623 0.394255i
\(668\) −4.89898 2.82843i −0.189547 0.109435i
\(669\) −11.9758 6.91421i −0.463010 0.267319i
\(670\) −15.7986 + 9.12132i −0.610353 + 0.352387i
\(671\) 15.7279i 0.607170i
\(672\) 0 0
\(673\) 17.9706 0.692714 0.346357 0.938103i \(-0.387419\pi\)
0.346357 + 0.938103i \(0.387419\pi\)
\(674\) 16.8747 9.74264i 0.649991 0.375272i
\(675\) −0.621320 + 1.07616i −0.0239146 + 0.0414214i
\(676\) −7.89230 10.3301i −0.303550 0.397313i
\(677\) 11.7426 + 20.3389i 0.451306 + 0.781686i 0.998467 0.0553418i \(-0.0176248\pi\)
−0.547161 + 0.837027i \(0.684292\pi\)
\(678\) 41.3848i 1.58937i
\(679\) 0 0
\(680\) 8.48528 0.325396
\(681\) −43.5475 + 25.1421i −1.66874 + 0.963449i
\(682\) 23.8030 + 13.7426i 0.911462 + 0.526233i
\(683\) −10.5769 6.10660i −0.404716 0.233663i 0.283801 0.958883i \(-0.408404\pi\)
−0.688517 + 0.725221i \(0.741738\pi\)
\(684\) −0.594346 + 0.343146i −0.0227254 + 0.0131205i
\(685\) −22.6274 −0.864549
\(686\) 0 0
\(687\) 53.6985i 2.04872i
\(688\) −1.87868 3.25397i −0.0716240 0.124056i
\(689\) 0.328169 + 5.08845i 0.0125023 + 0.193854i
\(690\) −2.70711 + 4.68885i −0.103058 + 0.178501i
\(691\) −4.77589 + 2.75736i −0.181683 + 0.104895i −0.588083 0.808800i \(-0.700117\pi\)
0.406400 + 0.913695i \(0.366784\pi\)
\(692\) 24.4853 0.930791
\(693\) 0 0
\(694\) 4.97056i 0.188680i
\(695\) 17.3205 10.0000i 0.657004 0.379322i
\(696\) 15.5014 + 8.94975i 0.587580 + 0.339239i
\(697\) −46.7654 27.0000i −1.77136 1.02270i
\(698\) −4.36396 7.55860i −0.165178 0.286097i
\(699\) 55.8701 2.11320
\(700\) 0 0
\(701\) 5.61522 0.212084 0.106042 0.994362i \(-0.466182\pi\)
0.106042 + 0.994362i \(0.466182\pi\)
\(702\) 0.661945 1.33876i 0.0249835 0.0505282i
\(703\) −0.322330 + 0.558293i −0.0121569 + 0.0210564i
\(704\) 4.54026 + 2.62132i 0.171117 + 0.0987947i
\(705\) −7.53553 13.0519i −0.283805 0.491564i
\(706\) 21.0000 0.790345
\(707\) 0 0
\(708\) 24.7279i 0.929332i
\(709\) 9.64937 5.57107i 0.362390 0.209226i −0.307739 0.951471i \(-0.599572\pi\)
0.670129 + 0.742245i \(0.266239\pi\)
\(710\) 4.60181 + 2.65685i 0.172703 + 0.0997100i
\(711\) −16.5858 + 28.7274i −0.622016 + 1.07736i
\(712\) −5.65685 9.79796i −0.212000 0.367194i
\(713\) 8.31371i 0.311351i
\(714\) 0 0
\(715\) 22.2426 14.8284i 0.831828 0.554552i
\(716\) −5.65685 9.79796i −0.211407 0.366167i
\(717\) −47.0116 27.1421i −1.75568 1.01364i
\(718\) 3.87868 6.71807i 0.144751 0.250716i
\(719\) −18.0000 31.1769i −0.671287 1.16270i −0.977539 0.210752i \(-0.932409\pi\)
0.306253 0.951950i \(-0.400925\pi\)
\(720\) 4.00000i 0.149071i
\(721\) 0 0
\(722\) 18.9411i 0.704916i
\(723\) −26.1039 + 15.0711i −0.970813 + 0.560499i
\(724\) 8.39949 14.5484i 0.312165 0.540685i
\(725\) 11.1213 19.2627i 0.413035 0.715398i
\(726\) 34.4669 19.8995i 1.27919 0.738540i
\(727\) 37.7990 1.40189 0.700943 0.713217i \(-0.252763\pi\)
0.700943 + 0.713217i \(0.252763\pi\)
\(728\) 0 0
\(729\) −23.8284 −0.882534
\(730\) −16.5160 + 9.53553i −0.611286 + 0.352926i
\(731\) 11.2721 19.5238i 0.416913 0.722114i
\(732\) 3.62132 6.27231i 0.133848 0.231831i
\(733\) −32.0174 + 18.4853i −1.18259 + 0.682769i −0.956613 0.291363i \(-0.905891\pi\)
−0.225979 + 0.974132i \(0.572558\pi\)
\(734\) 7.75736i 0.286329i
\(735\) 0 0
\(736\) 1.58579i 0.0584529i
\(737\) −33.8137 58.5671i −1.24554 2.15735i
\(738\) −12.7279 + 22.0454i −0.468521 + 0.811503i
\(739\) 22.6398 + 13.0711i 0.832817 + 0.480827i 0.854816 0.518931i \(-0.173670\pi\)
−0.0219993 + 0.999758i \(0.507003\pi\)
\(740\) −1.87868 3.25397i −0.0690616 0.119618i
\(741\) −1.17157 1.75736i −0.0430388 0.0645582i
\(742\) 0 0
\(743\) 35.4558i 1.30075i −0.759614 0.650374i \(-0.774612\pi\)
0.759614 0.650374i \(-0.225388\pi\)
\(744\) 6.32843 + 10.9612i 0.232011 + 0.401856i
\(745\) 13.7782 23.8645i 0.504793 0.874328i
\(746\) 7.55860 + 4.36396i 0.276740 + 0.159776i
\(747\) −11.2328 + 6.48528i −0.410988 + 0.237284i
\(748\) 31.4558i 1.15014i
\(749\) 0 0
\(750\) −27.3137 −0.997356
\(751\) 25.1066 + 43.4859i 0.916153 + 1.58682i 0.805205 + 0.592997i \(0.202055\pi\)
0.110948 + 0.993826i \(0.464611\pi\)
\(752\) 3.82282 + 2.20711i 0.139404 + 0.0804849i
\(753\) −3.32843 + 5.76500i −0.121295 + 0.210088i
\(754\) −11.8485 + 23.9631i −0.431496 + 0.872685i
\(755\) −28.4853 −1.03669
\(756\) 0 0
\(757\) −2.97056 −0.107967 −0.0539835 0.998542i \(-0.517192\pi\)
−0.0539835 + 0.998542i \(0.517192\pi\)
\(758\) 7.07107 + 12.2474i 0.256833 + 0.444847i
\(759\) −17.3821 10.0355i −0.630929 0.364267i
\(760\) 0.297173 + 0.171573i 0.0107796 + 0.00622360i
\(761\) −11.5045 + 6.64214i −0.417038 + 0.240777i −0.693809 0.720159i \(-0.744069\pi\)
0.276771 + 0.960936i \(0.410736\pi\)
\(762\) 25.9706i 0.940814i
\(763\) 0 0
\(764\) 2.82843 0.102329
\(765\) 20.7846 12.0000i 0.751469 0.433861i
\(766\) 2.37868 4.11999i 0.0859452 0.148861i
\(767\) 36.8538 2.37681i 1.33071 0.0858217i
\(768\) 1.20711 + 2.09077i 0.0435577 + 0.0754442i
\(769\) 7.00000i 0.252426i −0.992003 0.126213i \(-0.959718\pi\)
0.992003 0.126213i \(-0.0402824\pi\)
\(770\) 0 0
\(771\) −36.1421 −1.30163
\(772\) −0.594346 + 0.343146i −0.0213910 + 0.0123501i
\(773\) 10.6895 + 6.17157i 0.384474 + 0.221976i 0.679763 0.733432i \(-0.262083\pi\)
−0.295289 + 0.955408i \(0.595416\pi\)
\(774\) −9.20361 5.31371i −0.330817 0.190997i
\(775\) 13.6208 7.86396i 0.489273 0.282482i
\(776\) 9.48528 0.340502
\(777\) 0 0
\(778\) 18.0000i 0.645331i
\(779\) −1.09188 1.89120i −0.0391208 0.0677592i
\(780\) 12.2846 0.792271i 0.439859 0.0283679i
\(781\) −9.84924 + 17.0594i −0.352434 + 0.610433i
\(782\) 8.23999 4.75736i 0.294661 0.170123i
\(783\) −3.07107 −0.109751
\(784\) 0 0
\(785\) 4.24264i 0.151426i
\(786\) 4.18154 2.41421i 0.149151 0.0861121i
\(787\) −12.0734 6.97056i −0.430369 0.248474i 0.269135 0.963103i \(-0.413262\pi\)
−0.699504 + 0.714629i \(0.746596\pi\)
\(788\) −12.0989 6.98528i −0.431004 0.248840i
\(789\) 38.3848 + 66.4844i 1.36653 + 2.36691i
\(790\) 16.5858 0.590096
\(791\) 0 0
\(792\) 14.8284 0.526905
\(793\) 9.69615 + 4.79423i 0.344320 + 0.170248i
\(794\) −15.4853 + 26.8213i −0.549552 + 0.951852i
\(795\) −4.18154 2.41421i −0.148304 0.0856233i
\(796\) 3.87868 + 6.71807i 0.137476 + 0.238116i
\(797\) −8.45584 −0.299521 −0.149761 0.988722i \(-0.547850\pi\)
−0.149761 + 0.988722i \(0.547850\pi\)
\(798\) 0 0
\(799\) 26.4853i 0.936982i
\(800\) 2.59808 1.50000i 0.0918559 0.0530330i
\(801\) −27.7128 16.0000i −0.979184 0.565332i
\(802\) −3.60660 + 6.24682i −0.127354 + 0.220583i
\(803\) −35.3492 61.2267i −1.24745 2.16064i
\(804\) 31.1421i 1.09830i
\(805\) 0 0
\(806\) −15.7279 + 10.4853i −0.553992 + 0.369328i
\(807\) −17.5208 30.3469i −0.616762 1.06826i
\(808\) −8.21449 4.74264i −0.288985 0.166846i
\(809\) −7.41421 + 12.8418i −0.260670 + 0.451493i −0.966420 0.256967i \(-0.917277\pi\)
0.705750 + 0.708461i \(0.250610\pi\)
\(810\) 6.70711 + 11.6170i 0.235664 + 0.408182i
\(811\) 16.0000i 0.561836i 0.959732 + 0.280918i \(0.0906389\pi\)
−0.959732 + 0.280918i \(0.909361\pi\)
\(812\) 0 0
\(813\) 78.9411i 2.76859i
\(814\) 12.0628 6.96447i 0.422801 0.244104i
\(815\) −12.2426 + 21.2049i −0.428841 + 0.742774i
\(816\) −7.24264 + 12.5446i −0.253543 + 0.439150i
\(817\) 0.789545 0.455844i 0.0276227 0.0159480i
\(818\) 14.0000 0.489499
\(819\) 0 0
\(820\) 12.7279 0.444478
\(821\) 2.62357 1.51472i 0.0915632 0.0528640i −0.453519 0.891246i \(-0.649832\pi\)
0.545082 + 0.838382i \(0.316498\pi\)
\(822\) 19.3137 33.4523i 0.673643 1.16678i
\(823\) 26.5919 46.0585i 0.926935 1.60550i 0.138515 0.990360i \(-0.455767\pi\)
0.788420 0.615138i \(-0.210900\pi\)
\(824\) 0 0
\(825\) 37.9706i 1.32197i
\(826\) 0 0
\(827\) 37.9411i 1.31934i −0.751554 0.659671i \(-0.770696\pi\)
0.751554 0.659671i \(-0.229304\pi\)
\(828\) −2.24264 3.88437i −0.0779372 0.134991i
\(829\) 4.24264 7.34847i 0.147353 0.255223i −0.782895 0.622153i \(-0.786258\pi\)
0.930248 + 0.366931i \(0.119591\pi\)
\(830\) 5.61642 + 3.24264i 0.194949 + 0.112554i
\(831\) 25.0208 + 43.3373i 0.867962 + 1.50336i
\(832\) −3.00000 + 2.00000i −0.104006 + 0.0693375i
\(833\) 0 0
\(834\) 34.1421i 1.18225i
\(835\) 4.00000 + 6.92820i 0.138426 + 0.239760i
\(836\) −0.636039 + 1.10165i −0.0219979 + 0.0381014i
\(837\) −1.88064 1.08579i −0.0650043 0.0375303i
\(838\) −1.49642 + 0.863961i −0.0516931 + 0.0298450i
\(839\) 54.8995i 1.89534i 0.319250 + 0.947671i \(0.396569\pi\)
−0.319250 + 0.947671i \(0.603431\pi\)
\(840\) 0 0
\(841\) 25.9706 0.895537
\(842\) −2.01472 3.48960i −0.0694318 0.120259i
\(843\) 64.2450 + 37.0919i 2.21272 + 1.27751i
\(844\) −10.3640 + 17.9509i −0.356742 + 0.617896i
\(845\) 2.36156 + 18.2325i 0.0812400 + 0.627216i
\(846\) 12.4853 0.429253
\(847\) 0 0
\(848\) 1.41421 0.0485643
\(849\) −8.74264 15.1427i −0.300047 0.519696i
\(850\) 15.5885 + 9.00000i 0.534680 + 0.308697i
\(851\) −3.64874 2.10660i −0.125077 0.0722134i
\(852\) −7.85578 + 4.53553i −0.269134 + 0.155385i
\(853\) 38.7279i 1.32602i −0.748611 0.663009i \(-0.769279\pi\)
0.748611 0.663009i \(-0.230721\pi\)
\(854\) 0 0
\(855\) 0.970563 0.0331925
\(856\) −8.87039 + 5.12132i −0.303184 + 0.175043i
\(857\) −11.8492 + 20.5235i −0.404762 + 0.701069i −0.994294 0.106676i \(-0.965979\pi\)
0.589531 + 0.807745i \(0.299312\pi\)
\(858\) 2.93703 + 45.5403i 0.100269 + 1.55472i
\(859\) 9.96447 + 17.2590i 0.339983 + 0.588868i 0.984429 0.175782i \(-0.0562453\pi\)
−0.644446 + 0.764650i \(0.722912\pi\)
\(860\) 5.31371i 0.181196i
\(861\) 0 0
\(862\) −40.9706 −1.39546
\(863\) −29.0246 + 16.7574i −0.988009 + 0.570427i −0.904679 0.426095i \(-0.859889\pi\)
−0.0833303 + 0.996522i \(0.526556\pi\)
\(864\) −0.358719 0.207107i −0.0122039 0.00704592i
\(865\) −29.9882 17.3137i −1.01963 0.588684i
\(866\) 24.7921 14.3137i 0.842469 0.486400i
\(867\) −45.8701 −1.55783
\(868\) 0 0
\(869\) 61.4853i 2.08575i
\(870\) −12.6569 21.9223i −0.429108 0.743236i
\(871\) 46.4134 2.99334i 1.57266 0.101425i
\(872\) 4.24264 7.34847i 0.143674 0.248851i
\(873\) 23.2341 13.4142i 0.786355 0.454002i
\(874\) 0.384776 0.0130153
\(875\) 0 0
\(876\) 32.5563i 1.09998i
\(877\) −31.9920 + 18.4706i −1.08029 + 0.623707i −0.930975 0.365083i \(-0.881041\pi\)
−0.149316 + 0.988789i \(0.547707\pi\)
\(878\) −11.0227 6.36396i −0.371998 0.214773i
\(879\) 34.7641 + 20.0711i 1.17256 + 0.676980i
\(880\) −3.70711 6.42090i −0.124967 0.216448i
\(881\) −16.0000 −0.539054 −0.269527 0.962993i \(-0.586867\pi\)
−0.269527 + 0.962993i \(0.586867\pi\)
\(882\) 0 0
\(883\) −45.9411 −1.54604 −0.773021 0.634380i \(-0.781255\pi\)
−0.773021 + 0.634380i \(0.781255\pi\)
\(884\) −19.3923 9.58846i −0.652234 0.322495i
\(885\) −17.4853 + 30.2854i −0.587761 + 1.01803i
\(886\) 1.22474 + 0.707107i 0.0411461 + 0.0237557i
\(887\) 21.0919 + 36.5322i 0.708196 + 1.22663i 0.965526 + 0.260308i \(0.0838241\pi\)
−0.257330 + 0.966324i \(0.582843\pi\)
\(888\) 6.41421 0.215247
\(889\) 0 0
\(890\) 16.0000i 0.536321i
\(891\) −43.0656 + 24.8640i −1.44275 + 0.832974i
\(892\) −4.96053 2.86396i −0.166091 0.0958925i
\(893\) −0.535534 + 0.927572i −0.0179210 + 0.0310400i
\(894\) 23.5208 + 40.7392i 0.786654 + 1.36252i
\(895\) 16.0000i 0.534821i
\(896\) 0 0
\(897\) 11.4853 7.65685i 0.383482 0.255655i
\(898\) −10.1213 17.5306i −0.337753 0.585005i
\(899\) 33.6625 + 19.4350i 1.12271 + 0.648195i
\(900\) 4.24264 7.34847i 0.141421 0.244949i
\(901\) 4.24264 + 7.34847i 0.141343 + 0.244813i
\(902\) 47.1838i 1.57105i
\(903\) 0 0
\(904\) 17.1421i 0.570139i
\(905\) −20.5745 + 11.8787i −0.683919 + 0.394861i
\(906\) 24.3137 42.1126i 0.807769 1.39910i
\(907\) −8.00000 + 13.8564i −0.265636 + 0.460094i −0.967730 0.251990i \(-0.918915\pi\)
0.702094 + 0.712084i \(0.252248\pi\)
\(908\) −18.0379 + 10.4142i −0.598610 + 0.345608i
\(909\) −26.8284 −0.889843
\(910\) 0 0
\(911\) −28.2843 −0.937100 −0.468550 0.883437i \(-0.655223\pi\)
−0.468550 + 0.883437i \(0.655223\pi\)
\(912\) −0.507306 + 0.292893i −0.0167986 + 0.00969866i
\(913\) −12.0208 + 20.8207i −0.397831 + 0.689063i
\(914\) −0.878680 + 1.52192i −0.0290641 + 0.0503406i
\(915\) −8.87039 + 5.12132i −0.293246 + 0.169306i
\(916\) 22.2426i 0.734918i
\(917\) 0 0
\(918\) 2.48528i 0.0820265i
\(919\) 6.10660 + 10.5769i 0.201438 + 0.348901i 0.948992 0.315300i \(-0.102105\pi\)
−0.747554 + 0.664201i \(0.768772\pi\)
\(920\) −1.12132 + 1.94218i −0.0369688 + 0.0640319i
\(921\) 20.4004 + 11.7782i 0.672216 + 0.388104i
\(922\) −5.12132 8.87039i −0.168662 0.292131i
\(923\) −7.51472 11.2721i −0.247350 0.371025i
\(924\) 0 0
\(925\) 7.97056i 0.262070i
\(926\) 10.7574 + 18.6323i 0.353509 + 0.612295i
\(927\) 0 0
\(928\) 6.42090 + 3.70711i 0.210776 + 0.121692i
\(929\) 5.93908 3.42893i 0.194855 0.112500i −0.399398 0.916777i \(-0.630781\pi\)
0.594253 + 0.804278i \(0.297448\pi\)
\(930\) 17.8995i 0.586948i
\(931\) 0 0
\(932\) 23.1421 0.758046
\(933\) −5.12132 8.87039i −0.167665 0.290403i
\(934\) 22.0454 + 12.7279i 0.721348 + 0.416470i
\(935\) 22.2426 38.5254i 0.727412 1.25991i
\(936\) −4.52004 + 9.14162i −0.147742 + 0.298803i
\(937\) −11.6569 −0.380813 −0.190406 0.981705i \(-0.560981\pi\)
−0.190406 + 0.981705i \(0.560981\pi\)
\(938\) 0 0
\(939\) −15.3137 −0.499744
\(940\) −3.12132 5.40629i −0.101806 0.176334i
\(941\) −7.68170 4.43503i −0.250416 0.144578i 0.369539 0.929215i \(-0.379516\pi\)
−0.619955 + 0.784638i \(0.712849\pi\)
\(942\) −6.27231 3.62132i −0.204363 0.117989i
\(943\) 12.3600 7.13604i 0.402496 0.232381i
\(944\) 10.2426i 0.333370i
\(945\) 0 0
\(946\) −19.6985 −0.640453
\(947\) 21.2049 12.2426i 0.689066 0.397832i −0.114196 0.993458i \(-0.536429\pi\)
0.803262 + 0.595626i \(0.203096\pi\)
\(948\) −14.1569 + 24.5204i −0.459793 + 0.796385i
\(949\) 48.5211 3.12927i 1.57506 0.101580i
\(950\) 0.363961 + 0.630399i 0.0118085 + 0.0204528i
\(951\) 8.41421i 0.272850i
\(952\) 0 0
\(953\) 9.17157 0.297096 0.148548 0.988905i \(-0.452540\pi\)
0.148548 + 0.988905i \(0.452540\pi\)
\(954\) 3.46410 2.00000i 0.112154 0.0647524i
\(955\) −3.46410 2.00000i −0.112096 0.0647185i
\(956\) −19.4728 11.2426i −0.629796 0.363613i
\(957\) 81.2684 46.9203i 2.62703 1.51672i
\(958\) −18.3431 −0.592640
\(959\) 0 0
\(960\) 3.41421i 0.110193i
\(961\) −1.75736 3.04384i −0.0566890 0.0981882i
\(962\) 0.616525 + 9.55956i 0.0198776 + 0.308213i
\(963\) −14.4853 + 25.0892i −0.466782 + 0.808490i
\(964\) −10.8126 + 6.24264i −0.348249 + 0.201062i
\(965\) 0.970563 0.0312435
\(966\) 0 0
\(967\) 42.3431i 1.36166i −0.732440 0.680832i \(-0.761618\pi\)
0.732440 0.680832i \(-0.238382\pi\)
\(968\) 14.2767 8.24264i 0.458870 0.264929i
\(969\) −3.04384 1.75736i −0.0977821 0.0564545i
\(970\) −11.6170 6.70711i −0.373001 0.215352i
\(971\) −21.8345 37.8185i −0.700703 1.21365i −0.968220 0.250100i \(-0.919536\pi\)
0.267517 0.963553i \(-0.413797\pi\)
\(972\) −21.6569 −0.694644
\(973\) 0 0
\(974\) 21.2132 0.679715
\(975\) 23.4086 + 11.5743i 0.749675 + 0.370674i
\(976\) 1.50000 2.59808i 0.0480138 0.0831624i
\(977\) 6.03668 + 3.48528i 0.193131 + 0.111504i 0.593447 0.804873i \(-0.297767\pi\)
−0.400317 + 0.916377i \(0.631100\pi\)
\(978\) −20.8995 36.1990i −0.668292 1.15752i
\(979\) −59.3137 −1.89567
\(980\) 0 0
\(981\) 24.0000i 0.766261i
\(982\) −38.2643 + 22.0919i −1.22106 + 0.704980i
\(983\) 35.1844 + 20.3137i 1.12221 + 0.647907i 0.941964 0.335715i \(-0.108978\pi\)
0.180244 + 0.983622i \(0.442311\pi\)
\(984\) −10.8640 + 18.8169i −0.346330 + 0.599862i
\(985\) 9.87868 + 17.1104i 0.314761 + 0.545182i
\(986\) 44.4853i 1.41670i
\(987\) 0 0
\(988\) −0.485281 0.727922i −0.0154389 0.0231583i
\(989\) 2.97918 + 5.16010i 0.0947326 + 0.164082i
\(990\) −18.1610 10.4853i −0.577196 0.333244i
\(991\) −2.37868 + 4.11999i −0.0755612 + 0.130876i −0.901330 0.433133i \(-0.857408\pi\)
0.825769 + 0.564009i \(0.190742\pi\)
\(992\) 2.62132 + 4.54026i 0.0832270 + 0.144153i
\(993\) 5.48528i 0.174070i
\(994\) 0 0
\(995\) 10.9706i 0.347790i
\(996\) −9.58783 + 5.53553i −0.303802 + 0.175400i
\(997\) −12.9853 + 22.4912i −0.411248 + 0.712302i −0.995027 0.0996105i \(-0.968240\pi\)
0.583779 + 0.811913i \(0.301574\pi\)
\(998\) −9.62132 + 16.6646i −0.304558 + 0.527509i
\(999\) −0.953065 + 0.550253i −0.0301537 + 0.0174092i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.n.k.753.4 8
7.2 even 3 inner 1274.2.n.k.961.2 8
7.3 odd 6 1274.2.d.j.883.4 yes 4
7.4 even 3 1274.2.d.g.883.3 yes 4
7.5 odd 6 1274.2.n.h.961.1 8
7.6 odd 2 1274.2.n.h.753.3 8
13.12 even 2 inner 1274.2.n.k.753.2 8
91.12 odd 6 1274.2.n.h.961.3 8
91.25 even 6 1274.2.d.g.883.1 4
91.38 odd 6 1274.2.d.j.883.2 yes 4
91.51 even 6 inner 1274.2.n.k.961.4 8
91.90 odd 2 1274.2.n.h.753.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1274.2.d.g.883.1 4 91.25 even 6
1274.2.d.g.883.3 yes 4 7.4 even 3
1274.2.d.j.883.2 yes 4 91.38 odd 6
1274.2.d.j.883.4 yes 4 7.3 odd 6
1274.2.n.h.753.1 8 91.90 odd 2
1274.2.n.h.753.3 8 7.6 odd 2
1274.2.n.h.961.1 8 7.5 odd 6
1274.2.n.h.961.3 8 91.12 odd 6
1274.2.n.k.753.2 8 13.12 even 2 inner
1274.2.n.k.753.4 8 1.1 even 1 trivial
1274.2.n.k.961.2 8 7.2 even 3 inner
1274.2.n.k.961.4 8 91.51 even 6 inner