Properties

Label 1274.2.n.j.961.2
Level $1274$
Weight $2$
Character 1274.961
Analytic conductor $10.173$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(753,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.753"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4,0,0,0,0,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 961.2
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1274.961
Dual form 1274.2.n.j.753.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.707107 + 1.22474i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.22474 - 0.707107i) q^{5} -1.41421i q^{6} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(0.707107 + 1.22474i) q^{10} +(-3.46410 + 2.00000i) q^{11} +(-0.707107 + 1.22474i) q^{12} +(3.53553 - 0.707107i) q^{13} -2.00000i q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.41421 - 2.44949i) q^{17} +(-0.866025 + 0.500000i) q^{18} +(-3.67423 - 2.12132i) q^{19} -1.41421i q^{20} +4.00000 q^{22} +(1.22474 - 0.707107i) q^{24} +(-1.50000 - 2.59808i) q^{25} +(-3.41542 - 1.15539i) q^{26} +5.65685 q^{27} -2.00000 q^{29} +(-1.00000 + 1.73205i) q^{30} +(7.34847 - 4.24264i) q^{31} +(0.866025 - 0.500000i) q^{32} +(-4.89898 - 2.82843i) q^{33} +2.82843i q^{34} +1.00000 q^{36} +(1.73205 + 1.00000i) q^{37} +(2.12132 + 3.67423i) q^{38} +(3.36603 + 3.83013i) q^{39} +(-0.707107 + 1.22474i) q^{40} -5.65685i q^{41} -8.00000 q^{43} +(-3.46410 - 2.00000i) q^{44} +(-1.22474 + 0.707107i) q^{45} +(-2.44949 - 1.41421i) q^{47} -1.41421 q^{48} +3.00000i q^{50} +(2.00000 - 3.46410i) q^{51} +(2.38014 + 2.70831i) q^{52} +(-5.00000 - 8.66025i) q^{53} +(-4.89898 - 2.82843i) q^{54} +5.65685 q^{55} -6.00000i q^{57} +(1.73205 + 1.00000i) q^{58} +(6.12372 - 3.53553i) q^{59} +(1.73205 - 1.00000i) q^{60} +(-0.707107 + 1.22474i) q^{61} -8.48528 q^{62} -1.00000 q^{64} +(-4.83013 - 1.63397i) q^{65} +(2.82843 + 4.89898i) q^{66} +(3.46410 - 2.00000i) q^{67} +(1.41421 - 2.44949i) q^{68} +8.00000i q^{71} +(-0.866025 - 0.500000i) q^{72} +(12.2474 - 7.07107i) q^{73} +(-1.00000 - 1.73205i) q^{74} +(2.12132 - 3.67423i) q^{75} -4.24264i q^{76} +(-1.00000 - 5.00000i) q^{78} +(1.00000 - 1.73205i) q^{79} +(1.22474 - 0.707107i) q^{80} +(2.50000 + 4.33013i) q^{81} +(-2.82843 + 4.89898i) q^{82} +1.41421i q^{83} +4.00000i q^{85} +(6.92820 + 4.00000i) q^{86} +(-1.41421 - 2.44949i) q^{87} +(2.00000 + 3.46410i) q^{88} +(-7.34847 - 4.24264i) q^{89} +1.41421 q^{90} +(10.3923 + 6.00000i) q^{93} +(1.41421 + 2.44949i) q^{94} +(3.00000 + 5.19615i) q^{95} +(1.22474 + 0.707107i) q^{96} -5.65685i q^{97} +4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 4 q^{9} - 4 q^{16} + 32 q^{22} - 12 q^{25} - 16 q^{29} - 8 q^{30} + 8 q^{36} + 20 q^{39} - 64 q^{43} + 16 q^{51} - 40 q^{53} - 8 q^{64} - 4 q^{65} - 8 q^{74} - 8 q^{78} + 8 q^{79} + 20 q^{81}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0.707107 + 1.22474i 0.408248 + 0.707107i 0.994694 0.102882i \(-0.0328064\pi\)
−0.586445 + 0.809989i \(0.699473\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.22474 0.707107i −0.547723 0.316228i 0.200480 0.979698i \(-0.435750\pi\)
−0.748203 + 0.663470i \(0.769083\pi\)
\(6\) 1.41421i 0.577350i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0.707107 + 1.22474i 0.223607 + 0.387298i
\(11\) −3.46410 + 2.00000i −1.04447 + 0.603023i −0.921095 0.389338i \(-0.872704\pi\)
−0.123371 + 0.992361i \(0.539370\pi\)
\(12\) −0.707107 + 1.22474i −0.204124 + 0.353553i
\(13\) 3.53553 0.707107i 0.980581 0.196116i
\(14\) 0 0
\(15\) 2.00000i 0.516398i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.41421 2.44949i −0.342997 0.594089i 0.641991 0.766712i \(-0.278109\pi\)
−0.984988 + 0.172624i \(0.944775\pi\)
\(18\) −0.866025 + 0.500000i −0.204124 + 0.117851i
\(19\) −3.67423 2.12132i −0.842927 0.486664i 0.0153309 0.999882i \(-0.495120\pi\)
−0.858258 + 0.513218i \(0.828453\pi\)
\(20\) 1.41421i 0.316228i
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 1.22474 0.707107i 0.250000 0.144338i
\(25\) −1.50000 2.59808i −0.300000 0.519615i
\(26\) −3.41542 1.15539i −0.669818 0.226592i
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) −1.00000 + 1.73205i −0.182574 + 0.316228i
\(31\) 7.34847 4.24264i 1.31982 0.762001i 0.336124 0.941818i \(-0.390884\pi\)
0.983700 + 0.179817i \(0.0575506\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) −4.89898 2.82843i −0.852803 0.492366i
\(34\) 2.82843i 0.485071i
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 1.73205 + 1.00000i 0.284747 + 0.164399i 0.635571 0.772043i \(-0.280765\pi\)
−0.350823 + 0.936442i \(0.614098\pi\)
\(38\) 2.12132 + 3.67423i 0.344124 + 0.596040i
\(39\) 3.36603 + 3.83013i 0.538995 + 0.613311i
\(40\) −0.707107 + 1.22474i −0.111803 + 0.193649i
\(41\) 5.65685i 0.883452i −0.897150 0.441726i \(-0.854366\pi\)
0.897150 0.441726i \(-0.145634\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) −3.46410 2.00000i −0.522233 0.301511i
\(45\) −1.22474 + 0.707107i −0.182574 + 0.105409i
\(46\) 0 0
\(47\) −2.44949 1.41421i −0.357295 0.206284i 0.310599 0.950541i \(-0.399470\pi\)
−0.667893 + 0.744257i \(0.732804\pi\)
\(48\) −1.41421 −0.204124
\(49\) 0 0
\(50\) 3.00000i 0.424264i
\(51\) 2.00000 3.46410i 0.280056 0.485071i
\(52\) 2.38014 + 2.70831i 0.330066 + 0.375575i
\(53\) −5.00000 8.66025i −0.686803 1.18958i −0.972867 0.231367i \(-0.925680\pi\)
0.286064 0.958211i \(-0.407653\pi\)
\(54\) −4.89898 2.82843i −0.666667 0.384900i
\(55\) 5.65685 0.762770
\(56\) 0 0
\(57\) 6.00000i 0.794719i
\(58\) 1.73205 + 1.00000i 0.227429 + 0.131306i
\(59\) 6.12372 3.53553i 0.797241 0.460287i −0.0452645 0.998975i \(-0.514413\pi\)
0.842506 + 0.538688i \(0.181080\pi\)
\(60\) 1.73205 1.00000i 0.223607 0.129099i
\(61\) −0.707107 + 1.22474i −0.0905357 + 0.156813i −0.907737 0.419540i \(-0.862191\pi\)
0.817201 + 0.576353i \(0.195525\pi\)
\(62\) −8.48528 −1.07763
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −4.83013 1.63397i −0.599104 0.202670i
\(66\) 2.82843 + 4.89898i 0.348155 + 0.603023i
\(67\) 3.46410 2.00000i 0.423207 0.244339i −0.273241 0.961946i \(-0.588096\pi\)
0.696449 + 0.717607i \(0.254762\pi\)
\(68\) 1.41421 2.44949i 0.171499 0.297044i
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000i 0.949425i 0.880141 + 0.474713i \(0.157448\pi\)
−0.880141 + 0.474713i \(0.842552\pi\)
\(72\) −0.866025 0.500000i −0.102062 0.0589256i
\(73\) 12.2474 7.07107i 1.43346 0.827606i 0.436073 0.899911i \(-0.356369\pi\)
0.997383 + 0.0723054i \(0.0230356\pi\)
\(74\) −1.00000 1.73205i −0.116248 0.201347i
\(75\) 2.12132 3.67423i 0.244949 0.424264i
\(76\) 4.24264i 0.486664i
\(77\) 0 0
\(78\) −1.00000 5.00000i −0.113228 0.566139i
\(79\) 1.00000 1.73205i 0.112509 0.194871i −0.804272 0.594261i \(-0.797445\pi\)
0.916781 + 0.399390i \(0.130778\pi\)
\(80\) 1.22474 0.707107i 0.136931 0.0790569i
\(81\) 2.50000 + 4.33013i 0.277778 + 0.481125i
\(82\) −2.82843 + 4.89898i −0.312348 + 0.541002i
\(83\) 1.41421i 0.155230i 0.996983 + 0.0776151i \(0.0247305\pi\)
−0.996983 + 0.0776151i \(0.975269\pi\)
\(84\) 0 0
\(85\) 4.00000i 0.433861i
\(86\) 6.92820 + 4.00000i 0.747087 + 0.431331i
\(87\) −1.41421 2.44949i −0.151620 0.262613i
\(88\) 2.00000 + 3.46410i 0.213201 + 0.369274i
\(89\) −7.34847 4.24264i −0.778936 0.449719i 0.0571170 0.998367i \(-0.481809\pi\)
−0.836053 + 0.548648i \(0.815143\pi\)
\(90\) 1.41421 0.149071
\(91\) 0 0
\(92\) 0 0
\(93\) 10.3923 + 6.00000i 1.07763 + 0.622171i
\(94\) 1.41421 + 2.44949i 0.145865 + 0.252646i
\(95\) 3.00000 + 5.19615i 0.307794 + 0.533114i
\(96\) 1.22474 + 0.707107i 0.125000 + 0.0721688i
\(97\) 5.65685i 0.574367i −0.957876 0.287183i \(-0.907281\pi\)
0.957876 0.287183i \(-0.0927189\pi\)
\(98\) 0 0
\(99\) 4.00000i 0.402015i
\(100\) 1.50000 2.59808i 0.150000 0.259808i
\(101\) −7.77817 13.4722i −0.773957 1.34053i −0.935379 0.353648i \(-0.884941\pi\)
0.161421 0.986886i \(-0.448392\pi\)
\(102\) −3.46410 + 2.00000i −0.342997 + 0.198030i
\(103\) 9.89949 17.1464i 0.975426 1.68949i 0.296905 0.954907i \(-0.404046\pi\)
0.678521 0.734581i \(-0.262621\pi\)
\(104\) −0.707107 3.53553i −0.0693375 0.346688i
\(105\) 0 0
\(106\) 10.0000i 0.971286i
\(107\) −4.00000 + 6.92820i −0.386695 + 0.669775i −0.992003 0.126217i \(-0.959717\pi\)
0.605308 + 0.795991i \(0.293050\pi\)
\(108\) 2.82843 + 4.89898i 0.272166 + 0.471405i
\(109\) 8.66025 5.00000i 0.829502 0.478913i −0.0241802 0.999708i \(-0.507698\pi\)
0.853682 + 0.520794i \(0.174364\pi\)
\(110\) −4.89898 2.82843i −0.467099 0.269680i
\(111\) 2.82843i 0.268462i
\(112\) 0 0
\(113\) 12.0000 1.12887 0.564433 0.825479i \(-0.309095\pi\)
0.564433 + 0.825479i \(0.309095\pi\)
\(114\) −3.00000 + 5.19615i −0.280976 + 0.486664i
\(115\) 0 0
\(116\) −1.00000 1.73205i −0.0928477 0.160817i
\(117\) 1.15539 3.41542i 0.106816 0.315755i
\(118\) −7.07107 −0.650945
\(119\) 0 0
\(120\) −2.00000 −0.182574
\(121\) 2.50000 4.33013i 0.227273 0.393648i
\(122\) 1.22474 0.707107i 0.110883 0.0640184i
\(123\) 6.92820 4.00000i 0.624695 0.360668i
\(124\) 7.34847 + 4.24264i 0.659912 + 0.381000i
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −5.65685 9.79796i −0.498058 0.862662i
\(130\) 3.36603 + 3.83013i 0.295220 + 0.335924i
\(131\) −2.12132 + 3.67423i −0.185341 + 0.321019i −0.943691 0.330827i \(-0.892672\pi\)
0.758351 + 0.651847i \(0.226006\pi\)
\(132\) 5.65685i 0.492366i
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) −6.92820 4.00000i −0.596285 0.344265i
\(136\) −2.44949 + 1.41421i −0.210042 + 0.121268i
\(137\) 10.3923 6.00000i 0.887875 0.512615i 0.0146279 0.999893i \(-0.495344\pi\)
0.873247 + 0.487278i \(0.162010\pi\)
\(138\) 0 0
\(139\) 4.24264 0.359856 0.179928 0.983680i \(-0.442414\pi\)
0.179928 + 0.983680i \(0.442414\pi\)
\(140\) 0 0
\(141\) 4.00000i 0.336861i
\(142\) 4.00000 6.92820i 0.335673 0.581402i
\(143\) −10.8332 + 9.52056i −0.905921 + 0.796149i
\(144\) 0.500000 + 0.866025i 0.0416667 + 0.0721688i
\(145\) 2.44949 + 1.41421i 0.203419 + 0.117444i
\(146\) −14.1421 −1.17041
\(147\) 0 0
\(148\) 2.00000i 0.164399i
\(149\) −5.19615 3.00000i −0.425685 0.245770i 0.271821 0.962348i \(-0.412374\pi\)
−0.697507 + 0.716578i \(0.745707\pi\)
\(150\) −3.67423 + 2.12132i −0.300000 + 0.173205i
\(151\) −19.0526 + 11.0000i −1.55048 + 0.895167i −0.552372 + 0.833597i \(0.686277\pi\)
−0.998103 + 0.0615699i \(0.980389\pi\)
\(152\) −2.12132 + 3.67423i −0.172062 + 0.298020i
\(153\) −2.82843 −0.228665
\(154\) 0 0
\(155\) −12.0000 −0.963863
\(156\) −1.63397 + 4.83013i −0.130823 + 0.386720i
\(157\) −0.707107 1.22474i −0.0564333 0.0977453i 0.836429 0.548076i \(-0.184639\pi\)
−0.892862 + 0.450331i \(0.851306\pi\)
\(158\) −1.73205 + 1.00000i −0.137795 + 0.0795557i
\(159\) 7.07107 12.2474i 0.560772 0.971286i
\(160\) −1.41421 −0.111803
\(161\) 0 0
\(162\) 5.00000i 0.392837i
\(163\) −13.8564 8.00000i −1.08532 0.626608i −0.152992 0.988227i \(-0.548891\pi\)
−0.932326 + 0.361619i \(0.882224\pi\)
\(164\) 4.89898 2.82843i 0.382546 0.220863i
\(165\) 4.00000 + 6.92820i 0.311400 + 0.539360i
\(166\) 0.707107 1.22474i 0.0548821 0.0950586i
\(167\) 14.1421i 1.09435i −0.837018 0.547176i \(-0.815703\pi\)
0.837018 0.547176i \(-0.184297\pi\)
\(168\) 0 0
\(169\) 12.0000 5.00000i 0.923077 0.384615i
\(170\) 2.00000 3.46410i 0.153393 0.265684i
\(171\) −3.67423 + 2.12132i −0.280976 + 0.162221i
\(172\) −4.00000 6.92820i −0.304997 0.528271i
\(173\) −6.36396 + 11.0227i −0.483843 + 0.838041i −0.999828 0.0185571i \(-0.994093\pi\)
0.515985 + 0.856598i \(0.327426\pi\)
\(174\) 2.82843i 0.214423i
\(175\) 0 0
\(176\) 4.00000i 0.301511i
\(177\) 8.66025 + 5.00000i 0.650945 + 0.375823i
\(178\) 4.24264 + 7.34847i 0.317999 + 0.550791i
\(179\) −2.00000 3.46410i −0.149487 0.258919i 0.781551 0.623841i \(-0.214429\pi\)
−0.931038 + 0.364922i \(0.881096\pi\)
\(180\) −1.22474 0.707107i −0.0912871 0.0527046i
\(181\) −18.3848 −1.36653 −0.683265 0.730171i \(-0.739441\pi\)
−0.683265 + 0.730171i \(0.739441\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) −1.41421 2.44949i −0.103975 0.180090i
\(186\) −6.00000 10.3923i −0.439941 0.762001i
\(187\) 9.79796 + 5.65685i 0.716498 + 0.413670i
\(188\) 2.82843i 0.206284i
\(189\) 0 0
\(190\) 6.00000i 0.435286i
\(191\) −11.0000 + 19.0526i −0.795932 + 1.37859i 0.126314 + 0.991990i \(0.459685\pi\)
−0.922246 + 0.386604i \(0.873648\pi\)
\(192\) −0.707107 1.22474i −0.0510310 0.0883883i
\(193\) −22.5167 + 13.0000i −1.62078 + 0.935760i −0.634074 + 0.773272i \(0.718619\pi\)
−0.986710 + 0.162488i \(0.948048\pi\)
\(194\) −2.82843 + 4.89898i −0.203069 + 0.351726i
\(195\) −1.41421 7.07107i −0.101274 0.506370i
\(196\) 0 0
\(197\) 2.00000i 0.142494i 0.997459 + 0.0712470i \(0.0226979\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 2.00000 3.46410i 0.142134 0.246183i
\(199\) −4.24264 7.34847i −0.300753 0.520919i 0.675554 0.737311i \(-0.263905\pi\)
−0.976307 + 0.216391i \(0.930571\pi\)
\(200\) −2.59808 + 1.50000i −0.183712 + 0.106066i
\(201\) 4.89898 + 2.82843i 0.345547 + 0.199502i
\(202\) 15.5563i 1.09454i
\(203\) 0 0
\(204\) 4.00000 0.280056
\(205\) −4.00000 + 6.92820i −0.279372 + 0.483887i
\(206\) −17.1464 + 9.89949i −1.19465 + 0.689730i
\(207\) 0 0
\(208\) −1.15539 + 3.41542i −0.0801122 + 0.236816i
\(209\) 16.9706 1.17388
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 5.00000 8.66025i 0.343401 0.594789i
\(213\) −9.79796 + 5.65685i −0.671345 + 0.387601i
\(214\) 6.92820 4.00000i 0.473602 0.273434i
\(215\) 9.79796 + 5.65685i 0.668215 + 0.385794i
\(216\) 5.65685i 0.384900i
\(217\) 0 0
\(218\) −10.0000 −0.677285
\(219\) 17.3205 + 10.0000i 1.17041 + 0.675737i
\(220\) 2.82843 + 4.89898i 0.190693 + 0.330289i
\(221\) −6.73205 7.66025i −0.452847 0.515284i
\(222\) 1.41421 2.44949i 0.0949158 0.164399i
\(223\) 22.6274i 1.51524i 0.652694 + 0.757622i \(0.273639\pi\)
−0.652694 + 0.757622i \(0.726361\pi\)
\(224\) 0 0
\(225\) −3.00000 −0.200000
\(226\) −10.3923 6.00000i −0.691286 0.399114i
\(227\) −18.3712 + 10.6066i −1.21934 + 0.703985i −0.964776 0.263072i \(-0.915264\pi\)
−0.254561 + 0.967057i \(0.581931\pi\)
\(228\) 5.19615 3.00000i 0.344124 0.198680i
\(229\) 23.2702 + 13.4350i 1.53773 + 0.887812i 0.998971 + 0.0453550i \(0.0144419\pi\)
0.538764 + 0.842457i \(0.318891\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.00000i 0.131306i
\(233\) 9.00000 15.5885i 0.589610 1.02123i −0.404674 0.914461i \(-0.632615\pi\)
0.994283 0.106773i \(-0.0340517\pi\)
\(234\) −2.70831 + 2.38014i −0.177048 + 0.155595i
\(235\) 2.00000 + 3.46410i 0.130466 + 0.225973i
\(236\) 6.12372 + 3.53553i 0.398621 + 0.230144i
\(237\) 2.82843 0.183726
\(238\) 0 0
\(239\) 18.0000i 1.16432i −0.813073 0.582162i \(-0.802207\pi\)
0.813073 0.582162i \(-0.197793\pi\)
\(240\) 1.73205 + 1.00000i 0.111803 + 0.0645497i
\(241\) 19.5959 11.3137i 1.26228 0.728780i 0.288768 0.957399i \(-0.406754\pi\)
0.973516 + 0.228619i \(0.0734210\pi\)
\(242\) −4.33013 + 2.50000i −0.278351 + 0.160706i
\(243\) 4.94975 8.57321i 0.317526 0.549972i
\(244\) −1.41421 −0.0905357
\(245\) 0 0
\(246\) −8.00000 −0.510061
\(247\) −14.4904 4.90192i −0.922001 0.311902i
\(248\) −4.24264 7.34847i −0.269408 0.466628i
\(249\) −1.73205 + 1.00000i −0.109764 + 0.0633724i
\(250\) 5.65685 9.79796i 0.357771 0.619677i
\(251\) 15.5563 0.981908 0.490954 0.871185i \(-0.336648\pi\)
0.490954 + 0.871185i \(0.336648\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −6.92820 4.00000i −0.434714 0.250982i
\(255\) −4.89898 + 2.82843i −0.306786 + 0.177123i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −8.48528 + 14.6969i −0.529297 + 0.916770i 0.470119 + 0.882603i \(0.344211\pi\)
−0.999416 + 0.0341667i \(0.989122\pi\)
\(258\) 11.3137i 0.704361i
\(259\) 0 0
\(260\) −1.00000 5.00000i −0.0620174 0.310087i
\(261\) −1.00000 + 1.73205i −0.0618984 + 0.107211i
\(262\) 3.67423 2.12132i 0.226995 0.131056i
\(263\) 1.00000 + 1.73205i 0.0616626 + 0.106803i 0.895209 0.445647i \(-0.147026\pi\)
−0.833546 + 0.552450i \(0.813693\pi\)
\(264\) −2.82843 + 4.89898i −0.174078 + 0.301511i
\(265\) 14.1421i 0.868744i
\(266\) 0 0
\(267\) 12.0000i 0.734388i
\(268\) 3.46410 + 2.00000i 0.211604 + 0.122169i
\(269\) −7.77817 13.4722i −0.474244 0.821414i 0.525321 0.850904i \(-0.323945\pi\)
−0.999565 + 0.0294897i \(0.990612\pi\)
\(270\) 4.00000 + 6.92820i 0.243432 + 0.421637i
\(271\) 9.79796 + 5.65685i 0.595184 + 0.343629i 0.767144 0.641474i \(-0.221677\pi\)
−0.171961 + 0.985104i \(0.555010\pi\)
\(272\) 2.82843 0.171499
\(273\) 0 0
\(274\) −12.0000 −0.724947
\(275\) 10.3923 + 6.00000i 0.626680 + 0.361814i
\(276\) 0 0
\(277\) −7.00000 12.1244i −0.420589 0.728482i 0.575408 0.817867i \(-0.304843\pi\)
−0.995997 + 0.0893846i \(0.971510\pi\)
\(278\) −3.67423 2.12132i −0.220366 0.127228i
\(279\) 8.48528i 0.508001i
\(280\) 0 0
\(281\) 24.0000i 1.43172i 0.698244 + 0.715860i \(0.253965\pi\)
−0.698244 + 0.715860i \(0.746035\pi\)
\(282\) −2.00000 + 3.46410i −0.119098 + 0.206284i
\(283\) 12.0208 + 20.8207i 0.714563 + 1.23766i 0.963128 + 0.269045i \(0.0867079\pi\)
−0.248564 + 0.968615i \(0.579959\pi\)
\(284\) −6.92820 + 4.00000i −0.411113 + 0.237356i
\(285\) −4.24264 + 7.34847i −0.251312 + 0.435286i
\(286\) 14.1421 2.82843i 0.836242 0.167248i
\(287\) 0 0
\(288\) 1.00000i 0.0589256i
\(289\) 4.50000 7.79423i 0.264706 0.458484i
\(290\) −1.41421 2.44949i −0.0830455 0.143839i
\(291\) 6.92820 4.00000i 0.406138 0.234484i
\(292\) 12.2474 + 7.07107i 0.716728 + 0.413803i
\(293\) 9.89949i 0.578335i 0.957279 + 0.289167i \(0.0933784\pi\)
−0.957279 + 0.289167i \(0.906622\pi\)
\(294\) 0 0
\(295\) −10.0000 −0.582223
\(296\) 1.00000 1.73205i 0.0581238 0.100673i
\(297\) −19.5959 + 11.3137i −1.13707 + 0.656488i
\(298\) 3.00000 + 5.19615i 0.173785 + 0.301005i
\(299\) 0 0
\(300\) 4.24264 0.244949
\(301\) 0 0
\(302\) 22.0000 1.26596
\(303\) 11.0000 19.0526i 0.631933 1.09454i
\(304\) 3.67423 2.12132i 0.210732 0.121666i
\(305\) 1.73205 1.00000i 0.0991769 0.0572598i
\(306\) 2.44949 + 1.41421i 0.140028 + 0.0808452i
\(307\) 24.0416i 1.37213i 0.727541 + 0.686064i \(0.240663\pi\)
−0.727541 + 0.686064i \(0.759337\pi\)
\(308\) 0 0
\(309\) 28.0000 1.59286
\(310\) 10.3923 + 6.00000i 0.590243 + 0.340777i
\(311\) 2.82843 + 4.89898i 0.160385 + 0.277796i 0.935007 0.354629i \(-0.115393\pi\)
−0.774622 + 0.632425i \(0.782060\pi\)
\(312\) 3.83013 3.36603i 0.216838 0.190564i
\(313\) −9.89949 + 17.1464i −0.559553 + 0.969173i 0.437981 + 0.898984i \(0.355694\pi\)
−0.997534 + 0.0701893i \(0.977640\pi\)
\(314\) 1.41421i 0.0798087i
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) −29.4449 17.0000i −1.65379 0.954815i −0.975494 0.220024i \(-0.929386\pi\)
−0.678294 0.734791i \(-0.737280\pi\)
\(318\) −12.2474 + 7.07107i −0.686803 + 0.396526i
\(319\) 6.92820 4.00000i 0.387905 0.223957i
\(320\) 1.22474 + 0.707107i 0.0684653 + 0.0395285i
\(321\) −11.3137 −0.631470
\(322\) 0 0
\(323\) 12.0000i 0.667698i
\(324\) −2.50000 + 4.33013i −0.138889 + 0.240563i
\(325\) −7.14042 8.12493i −0.396079 0.450690i
\(326\) 8.00000 + 13.8564i 0.443079 + 0.767435i
\(327\) 12.2474 + 7.07107i 0.677285 + 0.391031i
\(328\) −5.65685 −0.312348
\(329\) 0 0
\(330\) 8.00000i 0.440386i
\(331\) 13.8564 + 8.00000i 0.761617 + 0.439720i 0.829876 0.557948i \(-0.188411\pi\)
−0.0682590 + 0.997668i \(0.521744\pi\)
\(332\) −1.22474 + 0.707107i −0.0672166 + 0.0388075i
\(333\) 1.73205 1.00000i 0.0949158 0.0547997i
\(334\) −7.07107 + 12.2474i −0.386912 + 0.670151i
\(335\) −5.65685 −0.309067
\(336\) 0 0
\(337\) −20.0000 −1.08947 −0.544735 0.838608i \(-0.683370\pi\)
−0.544735 + 0.838608i \(0.683370\pi\)
\(338\) −12.8923 1.66987i −0.701249 0.0908291i
\(339\) 8.48528 + 14.6969i 0.460857 + 0.798228i
\(340\) −3.46410 + 2.00000i −0.187867 + 0.108465i
\(341\) −16.9706 + 29.3939i −0.919007 + 1.59177i
\(342\) 4.24264 0.229416
\(343\) 0 0
\(344\) 8.00000i 0.431331i
\(345\) 0 0
\(346\) 11.0227 6.36396i 0.592584 0.342129i
\(347\) 16.0000 + 27.7128i 0.858925 + 1.48770i 0.872955 + 0.487800i \(0.162201\pi\)
−0.0140303 + 0.999902i \(0.504466\pi\)
\(348\) 1.41421 2.44949i 0.0758098 0.131306i
\(349\) 4.24264i 0.227103i 0.993532 + 0.113552i \(0.0362227\pi\)
−0.993532 + 0.113552i \(0.963777\pi\)
\(350\) 0 0
\(351\) 20.0000 4.00000i 1.06752 0.213504i
\(352\) −2.00000 + 3.46410i −0.106600 + 0.184637i
\(353\) −17.1464 + 9.89949i −0.912612 + 0.526897i −0.881271 0.472612i \(-0.843311\pi\)
−0.0313416 + 0.999509i \(0.509978\pi\)
\(354\) −5.00000 8.66025i −0.265747 0.460287i
\(355\) 5.65685 9.79796i 0.300235 0.520022i
\(356\) 8.48528i 0.449719i
\(357\) 0 0
\(358\) 4.00000i 0.211407i
\(359\) 15.5885 + 9.00000i 0.822727 + 0.475002i 0.851356 0.524588i \(-0.175781\pi\)
−0.0286287 + 0.999590i \(0.509114\pi\)
\(360\) 0.707107 + 1.22474i 0.0372678 + 0.0645497i
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) 15.9217 + 9.19239i 0.836825 + 0.483141i
\(363\) 7.07107 0.371135
\(364\) 0 0
\(365\) −20.0000 −1.04685
\(366\) 1.73205 + 1.00000i 0.0905357 + 0.0522708i
\(367\) 5.65685 + 9.79796i 0.295285 + 0.511449i 0.975051 0.221980i \(-0.0712519\pi\)
−0.679766 + 0.733429i \(0.737919\pi\)
\(368\) 0 0
\(369\) −4.89898 2.82843i −0.255031 0.147242i
\(370\) 2.82843i 0.147043i
\(371\) 0 0
\(372\) 12.0000i 0.622171i
\(373\) −13.0000 + 22.5167i −0.673114 + 1.16587i 0.303902 + 0.952703i \(0.401711\pi\)
−0.977016 + 0.213165i \(0.931623\pi\)
\(374\) −5.65685 9.79796i −0.292509 0.506640i
\(375\) −13.8564 + 8.00000i −0.715542 + 0.413118i
\(376\) −1.41421 + 2.44949i −0.0729325 + 0.126323i
\(377\) −7.07107 + 1.41421i −0.364179 + 0.0728357i
\(378\) 0 0
\(379\) 16.0000i 0.821865i 0.911666 + 0.410932i \(0.134797\pi\)
−0.911666 + 0.410932i \(0.865203\pi\)
\(380\) −3.00000 + 5.19615i −0.153897 + 0.266557i
\(381\) 5.65685 + 9.79796i 0.289809 + 0.501965i
\(382\) 19.0526 11.0000i 0.974814 0.562809i
\(383\) −17.1464 9.89949i −0.876142 0.505841i −0.00675728 0.999977i \(-0.502151\pi\)
−0.869384 + 0.494137i \(0.835484\pi\)
\(384\) 1.41421i 0.0721688i
\(385\) 0 0
\(386\) 26.0000 1.32337
\(387\) −4.00000 + 6.92820i −0.203331 + 0.352180i
\(388\) 4.89898 2.82843i 0.248708 0.143592i
\(389\) −9.00000 15.5885i −0.456318 0.790366i 0.542445 0.840091i \(-0.317499\pi\)
−0.998763 + 0.0497253i \(0.984165\pi\)
\(390\) −2.31079 + 6.83083i −0.117011 + 0.345893i
\(391\) 0 0
\(392\) 0 0
\(393\) −6.00000 −0.302660
\(394\) 1.00000 1.73205i 0.0503793 0.0872595i
\(395\) −2.44949 + 1.41421i −0.123247 + 0.0711568i
\(396\) −3.46410 + 2.00000i −0.174078 + 0.100504i
\(397\) 11.0227 + 6.36396i 0.553214 + 0.319398i 0.750417 0.660965i \(-0.229853\pi\)
−0.197203 + 0.980363i \(0.563186\pi\)
\(398\) 8.48528i 0.425329i
\(399\) 0 0
\(400\) 3.00000 0.150000
\(401\) 32.9090 + 19.0000i 1.64340 + 0.948815i 0.979614 + 0.200888i \(0.0643827\pi\)
0.663781 + 0.747927i \(0.268951\pi\)
\(402\) −2.82843 4.89898i −0.141069 0.244339i
\(403\) 22.9808 20.1962i 1.14475 1.00604i
\(404\) 7.77817 13.4722i 0.386979 0.670267i
\(405\) 7.07107i 0.351364i
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) −3.46410 2.00000i −0.171499 0.0990148i
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 6.92820 4.00000i 0.342160 0.197546i
\(411\) 14.6969 + 8.48528i 0.724947 + 0.418548i
\(412\) 19.7990 0.975426
\(413\) 0 0
\(414\) 0 0
\(415\) 1.00000 1.73205i 0.0490881 0.0850230i
\(416\) 2.70831 2.38014i 0.132786 0.116696i
\(417\) 3.00000 + 5.19615i 0.146911 + 0.254457i
\(418\) −14.6969 8.48528i −0.718851 0.415029i
\(419\) 24.0416 1.17451 0.587255 0.809402i \(-0.300208\pi\)
0.587255 + 0.809402i \(0.300208\pi\)
\(420\) 0 0
\(421\) 6.00000i 0.292422i −0.989253 0.146211i \(-0.953292\pi\)
0.989253 0.146211i \(-0.0467079\pi\)
\(422\) 0 0
\(423\) −2.44949 + 1.41421i −0.119098 + 0.0687614i
\(424\) −8.66025 + 5.00000i −0.420579 + 0.242821i
\(425\) −4.24264 + 7.34847i −0.205798 + 0.356453i
\(426\) 11.3137 0.548151
\(427\) 0 0
\(428\) −8.00000 −0.386695
\(429\) −19.3205 6.53590i −0.932803 0.315556i
\(430\) −5.65685 9.79796i −0.272798 0.472500i
\(431\) −8.66025 + 5.00000i −0.417150 + 0.240842i −0.693857 0.720113i \(-0.744090\pi\)
0.276707 + 0.960954i \(0.410757\pi\)
\(432\) −2.82843 + 4.89898i −0.136083 + 0.235702i
\(433\) −25.4558 −1.22333 −0.611665 0.791117i \(-0.709500\pi\)
−0.611665 + 0.791117i \(0.709500\pi\)
\(434\) 0 0
\(435\) 4.00000i 0.191785i
\(436\) 8.66025 + 5.00000i 0.414751 + 0.239457i
\(437\) 0 0
\(438\) −10.0000 17.3205i −0.477818 0.827606i
\(439\) 11.3137 19.5959i 0.539974 0.935262i −0.458931 0.888472i \(-0.651767\pi\)
0.998905 0.0467902i \(-0.0148992\pi\)
\(440\) 5.65685i 0.269680i
\(441\) 0 0
\(442\) 2.00000 + 10.0000i 0.0951303 + 0.475651i
\(443\) 12.0000 20.7846i 0.570137 0.987507i −0.426414 0.904528i \(-0.640223\pi\)
0.996551 0.0829786i \(-0.0264433\pi\)
\(444\) −2.44949 + 1.41421i −0.116248 + 0.0671156i
\(445\) 6.00000 + 10.3923i 0.284427 + 0.492642i
\(446\) 11.3137 19.5959i 0.535720 0.927894i
\(447\) 8.48528i 0.401340i
\(448\) 0 0
\(449\) 4.00000i 0.188772i −0.995536 0.0943858i \(-0.969911\pi\)
0.995536 0.0943858i \(-0.0300887\pi\)
\(450\) 2.59808 + 1.50000i 0.122474 + 0.0707107i
\(451\) 11.3137 + 19.5959i 0.532742 + 0.922736i
\(452\) 6.00000 + 10.3923i 0.282216 + 0.488813i
\(453\) −26.9444 15.5563i −1.26596 0.730901i
\(454\) 21.2132 0.995585
\(455\) 0 0
\(456\) −6.00000 −0.280976
\(457\) −8.66025 5.00000i −0.405110 0.233890i 0.283577 0.958950i \(-0.408479\pi\)
−0.688686 + 0.725059i \(0.741812\pi\)
\(458\) −13.4350 23.2702i −0.627778 1.08734i
\(459\) −8.00000 13.8564i −0.373408 0.646762i
\(460\) 0 0
\(461\) 32.5269i 1.51493i −0.652876 0.757465i \(-0.726438\pi\)
0.652876 0.757465i \(-0.273562\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i −0.928316 0.371792i \(-0.878744\pi\)
0.928316 0.371792i \(-0.121256\pi\)
\(464\) 1.00000 1.73205i 0.0464238 0.0804084i
\(465\) −8.48528 14.6969i −0.393496 0.681554i
\(466\) −15.5885 + 9.00000i −0.722121 + 0.416917i
\(467\) 2.12132 3.67423i 0.0981630 0.170023i −0.812761 0.582597i \(-0.802037\pi\)
0.910924 + 0.412574i \(0.135370\pi\)
\(468\) 3.53553 0.707107i 0.163430 0.0326860i
\(469\) 0 0
\(470\) 4.00000i 0.184506i
\(471\) 1.00000 1.73205i 0.0460776 0.0798087i
\(472\) −3.53553 6.12372i −0.162736 0.281867i
\(473\) 27.7128 16.0000i 1.27424 0.735681i
\(474\) −2.44949 1.41421i −0.112509 0.0649570i
\(475\) 12.7279i 0.583997i
\(476\) 0 0
\(477\) −10.0000 −0.457869
\(478\) −9.00000 + 15.5885i −0.411650 + 0.712999i
\(479\) 12.2474 7.07107i 0.559600 0.323085i −0.193385 0.981123i \(-0.561947\pi\)
0.752985 + 0.658038i \(0.228613\pi\)
\(480\) −1.00000 1.73205i −0.0456435 0.0790569i
\(481\) 6.83083 + 2.31079i 0.311459 + 0.105363i
\(482\) −22.6274 −1.03065
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) −4.00000 + 6.92820i −0.181631 + 0.314594i
\(486\) −8.57321 + 4.94975i −0.388889 + 0.224525i
\(487\) 15.5885 9.00000i 0.706380 0.407829i −0.103339 0.994646i \(-0.532953\pi\)
0.809719 + 0.586817i \(0.199619\pi\)
\(488\) 1.22474 + 0.707107i 0.0554416 + 0.0320092i
\(489\) 22.6274i 1.02325i
\(490\) 0 0
\(491\) 4.00000 0.180517 0.0902587 0.995918i \(-0.471231\pi\)
0.0902587 + 0.995918i \(0.471231\pi\)
\(492\) 6.92820 + 4.00000i 0.312348 + 0.180334i
\(493\) 2.82843 + 4.89898i 0.127386 + 0.220639i
\(494\) 10.0981 + 11.4904i 0.454334 + 0.516977i
\(495\) 2.82843 4.89898i 0.127128 0.220193i
\(496\) 8.48528i 0.381000i
\(497\) 0 0
\(498\) 2.00000 0.0896221
\(499\) −27.7128 16.0000i −1.24060 0.716258i −0.271380 0.962472i \(-0.587480\pi\)
−0.969216 + 0.246214i \(0.920813\pi\)
\(500\) −9.79796 + 5.65685i −0.438178 + 0.252982i
\(501\) 17.3205 10.0000i 0.773823 0.446767i
\(502\) −13.4722 7.77817i −0.601293 0.347157i
\(503\) −22.6274 −1.00891 −0.504453 0.863439i \(-0.668306\pi\)
−0.504453 + 0.863439i \(0.668306\pi\)
\(504\) 0 0
\(505\) 22.0000i 0.978987i
\(506\) 0 0
\(507\) 14.6090 + 11.1614i 0.648809 + 0.495695i
\(508\) 4.00000 + 6.92820i 0.177471 + 0.307389i
\(509\) −8.57321 4.94975i −0.380001 0.219394i 0.297818 0.954623i \(-0.403741\pi\)
−0.677819 + 0.735229i \(0.737075\pi\)
\(510\) 5.65685 0.250490
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) −20.7846 12.0000i −0.917663 0.529813i
\(514\) 14.6969 8.48528i 0.648254 0.374270i
\(515\) −24.2487 + 14.0000i −1.06853 + 0.616914i
\(516\) 5.65685 9.79796i 0.249029 0.431331i
\(517\) 11.3137 0.497576
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) −1.63397 + 4.83013i −0.0716545 + 0.211815i
\(521\) 1.41421 + 2.44949i 0.0619578 + 0.107314i 0.895340 0.445382i \(-0.146932\pi\)
−0.833383 + 0.552696i \(0.813599\pi\)
\(522\) 1.73205 1.00000i 0.0758098 0.0437688i
\(523\) −10.6066 + 18.3712i −0.463794 + 0.803315i −0.999146 0.0413138i \(-0.986846\pi\)
0.535352 + 0.844629i \(0.320179\pi\)
\(524\) −4.24264 −0.185341
\(525\) 0 0
\(526\) 2.00000i 0.0872041i
\(527\) −20.7846 12.0000i −0.905392 0.522728i
\(528\) 4.89898 2.82843i 0.213201 0.123091i
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 7.07107 12.2474i 0.307148 0.531995i
\(531\) 7.07107i 0.306858i
\(532\) 0 0
\(533\) −4.00000 20.0000i −0.173259 0.866296i
\(534\) −6.00000 + 10.3923i −0.259645 + 0.449719i
\(535\) 9.79796 5.65685i 0.423603 0.244567i
\(536\) −2.00000 3.46410i −0.0863868 0.149626i
\(537\) 2.82843 4.89898i 0.122056 0.211407i
\(538\) 15.5563i 0.670682i
\(539\) 0 0
\(540\) 8.00000i 0.344265i
\(541\) 39.8372 + 23.0000i 1.71273 + 0.988847i 0.930834 + 0.365444i \(0.119083\pi\)
0.781900 + 0.623404i \(0.214251\pi\)
\(542\) −5.65685 9.79796i −0.242983 0.420858i
\(543\) −13.0000 22.5167i −0.557883 0.966282i
\(544\) −2.44949 1.41421i −0.105021 0.0606339i
\(545\) −14.1421 −0.605783
\(546\) 0 0
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) 10.3923 + 6.00000i 0.443937 + 0.256307i
\(549\) 0.707107 + 1.22474i 0.0301786 + 0.0522708i
\(550\) −6.00000 10.3923i −0.255841 0.443129i
\(551\) 7.34847 + 4.24264i 0.313055 + 0.180743i
\(552\) 0 0
\(553\) 0 0
\(554\) 14.0000i 0.594803i
\(555\) 2.00000 3.46410i 0.0848953 0.147043i
\(556\) 2.12132 + 3.67423i 0.0899640 + 0.155822i
\(557\) −22.5167 + 13.0000i −0.954062 + 0.550828i −0.894340 0.447387i \(-0.852355\pi\)
−0.0597213 + 0.998215i \(0.519021\pi\)
\(558\) −4.24264 + 7.34847i −0.179605 + 0.311086i
\(559\) −28.2843 + 5.65685i −1.19630 + 0.239259i
\(560\) 0 0
\(561\) 16.0000i 0.675521i
\(562\) 12.0000 20.7846i 0.506189 0.876746i
\(563\) 10.6066 + 18.3712i 0.447015 + 0.774253i 0.998190 0.0601369i \(-0.0191537\pi\)
−0.551175 + 0.834390i \(0.685820\pi\)
\(564\) 3.46410 2.00000i 0.145865 0.0842152i
\(565\) −14.6969 8.48528i −0.618305 0.356978i
\(566\) 24.0416i 1.01055i
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) 20.0000 34.6410i 0.838444 1.45223i −0.0527519 0.998608i \(-0.516799\pi\)
0.891196 0.453619i \(-0.149867\pi\)
\(570\) 7.34847 4.24264i 0.307794 0.177705i
\(571\) −10.0000 17.3205i −0.418487 0.724841i 0.577301 0.816532i \(-0.304106\pi\)
−0.995788 + 0.0916910i \(0.970773\pi\)
\(572\) −13.6617 4.62158i −0.571223 0.193238i
\(573\) −31.1127 −1.29975
\(574\) 0 0
\(575\) 0 0
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 22.0454 12.7279i 0.917762 0.529870i 0.0348418 0.999393i \(-0.488907\pi\)
0.882921 + 0.469523i \(0.155574\pi\)
\(578\) −7.79423 + 4.50000i −0.324197 + 0.187175i
\(579\) −31.8434 18.3848i −1.32337 0.764045i
\(580\) 2.82843i 0.117444i
\(581\) 0 0
\(582\) −8.00000 −0.331611
\(583\) 34.6410 + 20.0000i 1.43468 + 0.828315i
\(584\) −7.07107 12.2474i −0.292603 0.506803i
\(585\) −3.83013 + 3.36603i −0.158356 + 0.139168i
\(586\) 4.94975 8.57321i 0.204472 0.354156i
\(587\) 38.1838i 1.57601i −0.615667 0.788006i \(-0.711113\pi\)
0.615667 0.788006i \(-0.288887\pi\)
\(588\) 0 0
\(589\) −36.0000 −1.48335
\(590\) 8.66025 + 5.00000i 0.356537 + 0.205847i
\(591\) −2.44949 + 1.41421i −0.100759 + 0.0581730i
\(592\) −1.73205 + 1.00000i −0.0711868 + 0.0410997i
\(593\) −31.8434 18.3848i −1.30765 0.754972i −0.325947 0.945388i \(-0.605683\pi\)
−0.981704 + 0.190416i \(0.939016\pi\)
\(594\) 22.6274 0.928414
\(595\) 0 0
\(596\) 6.00000i 0.245770i
\(597\) 6.00000 10.3923i 0.245564 0.425329i
\(598\) 0 0
\(599\) −17.0000 29.4449i −0.694601 1.20308i −0.970315 0.241845i \(-0.922248\pi\)
0.275714 0.961240i \(-0.411086\pi\)
\(600\) −3.67423 2.12132i −0.150000 0.0866025i
\(601\) −16.9706 −0.692244 −0.346122 0.938190i \(-0.612502\pi\)
−0.346122 + 0.938190i \(0.612502\pi\)
\(602\) 0 0
\(603\) 4.00000i 0.162893i
\(604\) −19.0526 11.0000i −0.775238 0.447584i
\(605\) −6.12372 + 3.53553i −0.248965 + 0.143740i
\(606\) −19.0526 + 11.0000i −0.773957 + 0.446844i
\(607\) 16.9706 29.3939i 0.688814 1.19306i −0.283408 0.958999i \(-0.591465\pi\)
0.972222 0.234061i \(-0.0752016\pi\)
\(608\) −4.24264 −0.172062
\(609\) 0 0
\(610\) −2.00000 −0.0809776
\(611\) −9.66025 3.26795i −0.390812 0.132207i
\(612\) −1.41421 2.44949i −0.0571662 0.0990148i
\(613\) −25.9808 + 15.0000i −1.04935 + 0.605844i −0.922468 0.386073i \(-0.873831\pi\)
−0.126885 + 0.991917i \(0.540498\pi\)
\(614\) 12.0208 20.8207i 0.485121 0.840254i
\(615\) −11.3137 −0.456213
\(616\) 0 0
\(617\) 42.0000i 1.69086i −0.534089 0.845428i \(-0.679345\pi\)
0.534089 0.845428i \(-0.320655\pi\)
\(618\) −24.2487 14.0000i −0.975426 0.563163i
\(619\) 18.3712 10.6066i 0.738400 0.426315i −0.0830874 0.996542i \(-0.526478\pi\)
0.821487 + 0.570227i \(0.193145\pi\)
\(620\) −6.00000 10.3923i −0.240966 0.417365i
\(621\) 0 0
\(622\) 5.65685i 0.226819i
\(623\) 0 0
\(624\) −5.00000 + 1.00000i −0.200160 + 0.0400320i
\(625\) 0.500000 0.866025i 0.0200000 0.0346410i
\(626\) 17.1464 9.89949i 0.685309 0.395663i
\(627\) 12.0000 + 20.7846i 0.479234 + 0.830057i
\(628\) 0.707107 1.22474i 0.0282166 0.0488726i
\(629\) 5.65685i 0.225554i
\(630\) 0 0
\(631\) 40.0000i 1.59237i −0.605050 0.796187i \(-0.706847\pi\)
0.605050 0.796187i \(-0.293153\pi\)
\(632\) −1.73205 1.00000i −0.0688973 0.0397779i
\(633\) 0 0
\(634\) 17.0000 + 29.4449i 0.675156 + 1.16940i
\(635\) −9.79796 5.65685i −0.388820 0.224485i
\(636\) 14.1421 0.560772
\(637\) 0 0
\(638\) −8.00000 −0.316723
\(639\) 6.92820 + 4.00000i 0.274075 + 0.158238i
\(640\) −0.707107 1.22474i −0.0279508 0.0484123i
\(641\) 16.0000 + 27.7128i 0.631962 + 1.09459i 0.987150 + 0.159795i \(0.0510835\pi\)
−0.355188 + 0.934795i \(0.615583\pi\)
\(642\) 9.79796 + 5.65685i 0.386695 + 0.223258i
\(643\) 29.6985i 1.17119i 0.810602 + 0.585597i \(0.199140\pi\)
−0.810602 + 0.585597i \(0.800860\pi\)
\(644\) 0 0
\(645\) 16.0000i 0.629999i
\(646\) 6.00000 10.3923i 0.236067 0.408880i
\(647\) 21.2132 + 36.7423i 0.833977 + 1.44449i 0.894861 + 0.446346i \(0.147275\pi\)
−0.0608835 + 0.998145i \(0.519392\pi\)
\(648\) 4.33013 2.50000i 0.170103 0.0982093i
\(649\) −14.1421 + 24.4949i −0.555127 + 0.961509i
\(650\) 2.12132 + 10.6066i 0.0832050 + 0.416025i
\(651\) 0 0
\(652\) 16.0000i 0.626608i
\(653\) −15.0000 + 25.9808i −0.586995 + 1.01671i 0.407628 + 0.913148i \(0.366356\pi\)
−0.994623 + 0.103558i \(0.966977\pi\)
\(654\) −7.07107 12.2474i −0.276501 0.478913i
\(655\) 5.19615 3.00000i 0.203030 0.117220i
\(656\) 4.89898 + 2.82843i 0.191273 + 0.110432i
\(657\) 14.1421i 0.551737i
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) −4.00000 + 6.92820i −0.155700 + 0.269680i
\(661\) 35.5176 20.5061i 1.38147 0.797595i 0.389140 0.921178i \(-0.372772\pi\)
0.992334 + 0.123584i \(0.0394387\pi\)
\(662\) −8.00000 13.8564i −0.310929 0.538545i
\(663\) 4.62158 13.6617i 0.179487 0.530575i
\(664\) 1.41421 0.0548821
\(665\) 0 0
\(666\) −2.00000 −0.0774984
\(667\) 0 0
\(668\) 12.2474 7.07107i 0.473868 0.273588i
\(669\) −27.7128 + 16.0000i −1.07144 + 0.618596i
\(670\) 4.89898 + 2.82843i 0.189264 + 0.109272i
\(671\) 5.65685i 0.218380i
\(672\) 0 0
\(673\) 30.0000 1.15642 0.578208 0.815890i \(-0.303752\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) 17.3205 + 10.0000i 0.667161 + 0.385186i
\(675\) −8.48528 14.6969i −0.326599 0.565685i
\(676\) 10.3301 + 7.89230i 0.397313 + 0.303550i
\(677\) 2.12132 3.67423i 0.0815290 0.141212i −0.822378 0.568942i \(-0.807353\pi\)
0.903907 + 0.427729i \(0.140686\pi\)
\(678\) 16.9706i 0.651751i
\(679\) 0 0
\(680\) 4.00000 0.153393
\(681\) −25.9808 15.0000i −0.995585 0.574801i
\(682\) 29.3939 16.9706i 1.12555 0.649836i
\(683\) 6.92820 4.00000i 0.265100 0.153056i −0.361559 0.932349i \(-0.617755\pi\)
0.626659 + 0.779294i \(0.284422\pi\)
\(684\) −3.67423 2.12132i −0.140488 0.0811107i
\(685\) −16.9706 −0.648412
\(686\) 0 0
\(687\) 38.0000i 1.44979i
\(688\) 4.00000 6.92820i 0.152499 0.264135i
\(689\) −23.8014 27.0831i −0.906761 1.03178i
\(690\) 0 0
\(691\) −1.22474 0.707107i −0.0465915 0.0268996i 0.476523 0.879162i \(-0.341897\pi\)
−0.523115 + 0.852262i \(0.675230\pi\)
\(692\) −12.7279 −0.483843
\(693\) 0 0
\(694\) 32.0000i 1.21470i
\(695\) −5.19615 3.00000i −0.197101 0.113796i
\(696\) −2.44949 + 1.41421i −0.0928477 + 0.0536056i
\(697\) −13.8564 + 8.00000i −0.524849 + 0.303022i
\(698\) 2.12132 3.67423i 0.0802932 0.139072i
\(699\) 25.4558 0.962828
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) −19.3205 6.53590i −0.729206 0.246682i
\(703\) −4.24264 7.34847i −0.160014 0.277153i
\(704\) 3.46410 2.00000i 0.130558 0.0753778i
\(705\) −2.82843 + 4.89898i −0.106525 + 0.184506i
\(706\) 19.7990 0.745145
\(707\) 0 0
\(708\) 10.0000i 0.375823i
\(709\) −29.4449 17.0000i −1.10583 0.638448i −0.168080 0.985773i \(-0.553757\pi\)
−0.937745 + 0.347325i \(0.887090\pi\)
\(710\) −9.79796 + 5.65685i −0.367711 + 0.212298i
\(711\) −1.00000 1.73205i −0.0375029 0.0649570i
\(712\) −4.24264 + 7.34847i −0.159000 + 0.275396i
\(713\) 0 0
\(714\) 0 0
\(715\) 20.0000 4.00000i 0.747958 0.149592i
\(716\) 2.00000 3.46410i 0.0747435 0.129460i
\(717\) 22.0454 12.7279i 0.823301 0.475333i
\(718\) −9.00000 15.5885i −0.335877 0.581756i
\(719\) 18.3848 31.8434i 0.685636 1.18756i −0.287600 0.957751i \(-0.592857\pi\)
0.973236 0.229807i \(-0.0738093\pi\)
\(720\) 1.41421i 0.0527046i
\(721\) 0 0
\(722\) 1.00000i 0.0372161i
\(723\) 27.7128 + 16.0000i 1.03065 + 0.595046i
\(724\) −9.19239 15.9217i −0.341632 0.591725i
\(725\) 3.00000 + 5.19615i 0.111417 + 0.192980i
\(726\) −6.12372 3.53553i −0.227273 0.131216i
\(727\) −8.48528 −0.314702 −0.157351 0.987543i \(-0.550295\pi\)
−0.157351 + 0.987543i \(0.550295\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 17.3205 + 10.0000i 0.641061 + 0.370117i
\(731\) 11.3137 + 19.5959i 0.418453 + 0.724781i
\(732\) −1.00000 1.73205i −0.0369611 0.0640184i
\(733\) −25.7196 14.8492i −0.949977 0.548469i −0.0569030 0.998380i \(-0.518123\pi\)
−0.893074 + 0.449910i \(0.851456\pi\)
\(734\) 11.3137i 0.417597i
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 + 13.8564i −0.294684 + 0.510407i
\(738\) 2.82843 + 4.89898i 0.104116 + 0.180334i
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 1.41421 2.44949i 0.0519875 0.0900450i
\(741\) −4.24264 21.2132i −0.155857 0.779287i
\(742\) 0 0
\(743\) 6.00000i 0.220119i 0.993925 + 0.110059i \(0.0351041\pi\)
−0.993925 + 0.110059i \(0.964896\pi\)
\(744\) 6.00000 10.3923i 0.219971 0.381000i
\(745\) 4.24264 + 7.34847i 0.155438 + 0.269227i
\(746\) 22.5167 13.0000i 0.824394 0.475964i
\(747\) 1.22474 + 0.707107i 0.0448111 + 0.0258717i
\(748\) 11.3137i 0.413670i
\(749\) 0 0
\(750\) 16.0000 0.584237
\(751\) −12.0000 + 20.7846i −0.437886 + 0.758441i −0.997526 0.0702946i \(-0.977606\pi\)
0.559640 + 0.828736i \(0.310939\pi\)
\(752\) 2.44949 1.41421i 0.0893237 0.0515711i
\(753\) 11.0000 + 19.0526i 0.400862 + 0.694314i
\(754\) 6.83083 + 2.31079i 0.248764 + 0.0841540i
\(755\) 31.1127 1.13231
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 8.00000 13.8564i 0.290573 0.503287i
\(759\) 0 0
\(760\) 5.19615 3.00000i 0.188484 0.108821i
\(761\) −9.79796 5.65685i −0.355176 0.205061i 0.311787 0.950152i \(-0.399073\pi\)
−0.666962 + 0.745091i \(0.732406\pi\)
\(762\) 11.3137i 0.409852i
\(763\) 0 0
\(764\) −22.0000 −0.795932
\(765\) 3.46410 + 2.00000i 0.125245 + 0.0723102i
\(766\) 9.89949 + 17.1464i 0.357683 + 0.619526i
\(767\) 19.1506 16.8301i 0.691489 0.607701i
\(768\) 0.707107 1.22474i 0.0255155 0.0441942i
\(769\) 39.5980i 1.42794i 0.700176 + 0.713970i \(0.253105\pi\)
−0.700176 + 0.713970i \(0.746895\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) −22.5167 13.0000i −0.810392 0.467880i
\(773\) 28.1691 16.2635i 1.01317 0.584956i 0.101054 0.994881i \(-0.467778\pi\)
0.912119 + 0.409925i \(0.134445\pi\)
\(774\) 6.92820 4.00000i 0.249029 0.143777i
\(775\) −22.0454 12.7279i −0.791894 0.457200i
\(776\) −5.65685 −0.203069
\(777\) 0 0
\(778\) 18.0000i 0.645331i
\(779\) −12.0000 + 20.7846i −0.429945 + 0.744686i
\(780\) 5.41662 4.76028i 0.193946 0.170445i
\(781\) −16.0000 27.7128i −0.572525 0.991642i
\(782\) 0 0
\(783\) −11.3137 −0.404319
\(784\) 0 0
\(785\) 2.00000i 0.0713831i
\(786\) 5.19615 + 3.00000i 0.185341 + 0.107006i
\(787\) −1.22474 + 0.707107i −0.0436574 + 0.0252056i −0.521670 0.853147i \(-0.674691\pi\)
0.478012 + 0.878353i \(0.341357\pi\)
\(788\) −1.73205 + 1.00000i −0.0617018 + 0.0356235i
\(789\) −1.41421 + 2.44949i −0.0503473 + 0.0872041i
\(790\) 2.82843 0.100631
\(791\) 0 0
\(792\) 4.00000 0.142134
\(793\) −1.63397 + 4.83013i −0.0580241 + 0.171523i
\(794\) −6.36396 11.0227i −0.225849 0.391181i
\(795\) −17.3205 + 10.0000i −0.614295 + 0.354663i
\(796\) 4.24264 7.34847i 0.150376 0.260460i
\(797\) 4.24264 0.150282 0.0751410 0.997173i \(-0.476059\pi\)
0.0751410 + 0.997173i \(0.476059\pi\)
\(798\) 0 0
\(799\) 8.00000i 0.283020i
\(800\) −2.59808 1.50000i −0.0918559 0.0530330i
\(801\) −7.34847 + 4.24264i −0.259645 + 0.149906i
\(802\) −19.0000 32.9090i −0.670913 1.16206i
\(803\) −28.2843 + 48.9898i −0.998130 + 1.72881i
\(804\) 5.65685i 0.199502i
\(805\) 0 0
\(806\) −30.0000 + 6.00000i −1.05670 + 0.211341i
\(807\) 11.0000 19.0526i 0.387218 0.670682i
\(808\) −13.4722 + 7.77817i −0.473950 + 0.273635i
\(809\) 12.0000 + 20.7846i 0.421898 + 0.730748i 0.996125 0.0879478i \(-0.0280309\pi\)
−0.574228 + 0.818696i \(0.694698\pi\)
\(810\) −3.53553 + 6.12372i −0.124226 + 0.215166i
\(811\) 24.0416i 0.844216i −0.906546 0.422108i \(-0.861290\pi\)
0.906546 0.422108i \(-0.138710\pi\)
\(812\) 0 0
\(813\) 16.0000i 0.561144i
\(814\) 6.92820 + 4.00000i 0.242833 + 0.140200i
\(815\) 11.3137 + 19.5959i 0.396302 + 0.686415i
\(816\) 2.00000 + 3.46410i 0.0700140 + 0.121268i
\(817\) 29.3939 + 16.9706i 1.02836 + 0.593725i
\(818\) 0 0
\(819\) 0 0
\(820\) −8.00000 −0.279372
\(821\) 25.9808 + 15.0000i 0.906735 + 0.523504i 0.879379 0.476122i \(-0.157958\pi\)
0.0273557 + 0.999626i \(0.491291\pi\)
\(822\) −8.48528 14.6969i −0.295958 0.512615i
\(823\) 13.0000 + 22.5167i 0.453152 + 0.784881i 0.998580 0.0532760i \(-0.0169663\pi\)
−0.545428 + 0.838157i \(0.683633\pi\)
\(824\) −17.1464 9.89949i −0.597324 0.344865i
\(825\) 16.9706i 0.590839i
\(826\) 0 0
\(827\) 8.00000i 0.278187i 0.990279 + 0.139094i \(0.0444189\pi\)
−0.990279 + 0.139094i \(0.955581\pi\)
\(828\) 0 0
\(829\) 10.6066 + 18.3712i 0.368383 + 0.638057i 0.989313 0.145809i \(-0.0465784\pi\)
−0.620930 + 0.783866i \(0.713245\pi\)
\(830\) −1.73205 + 1.00000i −0.0601204 + 0.0347105i
\(831\) 9.89949 17.1464i 0.343410 0.594803i
\(832\) −3.53553 + 0.707107i −0.122573 + 0.0245145i
\(833\) 0 0
\(834\) 6.00000i 0.207763i
\(835\) −10.0000 + 17.3205i −0.346064 + 0.599401i
\(836\) 8.48528 + 14.6969i 0.293470 + 0.508304i
\(837\) 41.5692 24.0000i 1.43684 0.829561i
\(838\) −20.8207 12.0208i −0.719238 0.415252i
\(839\) 31.1127i 1.07413i −0.843541 0.537065i \(-0.819533\pi\)
0.843541 0.537065i \(-0.180467\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −3.00000 + 5.19615i −0.103387 + 0.179071i
\(843\) −29.3939 + 16.9706i −1.01238 + 0.584497i
\(844\) 0 0
\(845\) −18.2325 2.36156i −0.627216 0.0812400i
\(846\) 2.82843 0.0972433
\(847\) 0 0
\(848\) 10.0000 0.343401
\(849\) −17.0000 + 29.4449i −0.583438 + 1.01055i
\(850\) 7.34847 4.24264i 0.252050 0.145521i
\(851\) 0 0
\(852\) −9.79796 5.65685i −0.335673 0.193801i
\(853\) 1.41421i 0.0484218i −0.999707 0.0242109i \(-0.992293\pi\)
0.999707 0.0242109i \(-0.00770731\pi\)
\(854\) 0 0
\(855\) 6.00000 0.205196
\(856\) 6.92820 + 4.00000i 0.236801 + 0.136717i
\(857\) 18.3848 + 31.8434i 0.628012 + 1.08775i 0.987950 + 0.154773i \(0.0494645\pi\)
−0.359938 + 0.932976i \(0.617202\pi\)
\(858\) 13.4641 + 15.3205i 0.459657 + 0.523034i
\(859\) 12.0208 20.8207i 0.410145 0.710392i −0.584760 0.811206i \(-0.698811\pi\)
0.994905 + 0.100814i \(0.0321448\pi\)
\(860\) 11.3137i 0.385794i
\(861\) 0 0
\(862\) 10.0000 0.340601
\(863\) −27.7128 16.0000i −0.943355 0.544646i −0.0523446 0.998629i \(-0.516669\pi\)
−0.891010 + 0.453983i \(0.850003\pi\)
\(864\) 4.89898 2.82843i 0.166667 0.0962250i
\(865\) 15.5885 9.00000i 0.530023 0.306009i
\(866\) 22.0454 + 12.7279i 0.749133 + 0.432512i
\(867\) 12.7279 0.432263
\(868\) 0 0
\(869\) 8.00000i 0.271381i
\(870\) 2.00000 3.46410i 0.0678064 0.117444i
\(871\) 10.8332 9.52056i 0.367070 0.322592i
\(872\) −5.00000 8.66025i −0.169321 0.293273i
\(873\) −4.89898 2.82843i −0.165805 0.0957278i
\(874\) 0 0
\(875\) 0 0
\(876\) 20.0000i 0.675737i
\(877\) 22.5167 + 13.0000i 0.760334 + 0.438979i 0.829416 0.558632i \(-0.188674\pi\)
−0.0690819 + 0.997611i \(0.522007\pi\)
\(878\) −19.5959 + 11.3137i −0.661330 + 0.381819i
\(879\) −12.1244 + 7.00000i −0.408944 + 0.236104i
\(880\) −2.82843 + 4.89898i −0.0953463 + 0.165145i
\(881\) 33.9411 1.14351 0.571753 0.820426i \(-0.306264\pi\)
0.571753 + 0.820426i \(0.306264\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) 3.26795 9.66025i 0.109913 0.324910i
\(885\) −7.07107 12.2474i −0.237691 0.411693i
\(886\) −20.7846 + 12.0000i −0.698273 + 0.403148i
\(887\) 1.41421 2.44949i 0.0474846 0.0822458i −0.841306 0.540559i \(-0.818213\pi\)
0.888791 + 0.458313i \(0.151546\pi\)
\(888\) 2.82843 0.0949158
\(889\) 0 0
\(890\) 12.0000i 0.402241i
\(891\) −17.3205 10.0000i −0.580259 0.335013i
\(892\) −19.5959 + 11.3137i −0.656120 + 0.378811i
\(893\) 6.00000 + 10.3923i 0.200782 + 0.347765i
\(894\) −4.24264 + 7.34847i −0.141895 + 0.245770i
\(895\) 5.65685i 0.189088i
\(896\) 0 0
\(897\) 0 0
\(898\) −2.00000 + 3.46410i −0.0667409 + 0.115599i
\(899\) −14.6969 + 8.48528i −0.490170 + 0.283000i
\(900\) −1.50000 2.59808i −0.0500000 0.0866025i
\(901\) −14.1421 + 24.4949i −0.471143 + 0.816043i
\(902\) 22.6274i 0.753411i
\(903\) 0 0
\(904\) 12.0000i 0.399114i
\(905\) 22.5167 + 13.0000i 0.748479 + 0.432135i
\(906\) 15.5563 + 26.9444i 0.516825 + 0.895167i
\(907\) −22.0000 38.1051i −0.730498 1.26526i −0.956671 0.291172i \(-0.905955\pi\)
0.226173 0.974087i \(-0.427379\pi\)
\(908\) −18.3712 10.6066i −0.609669 0.351992i
\(909\) −15.5563 −0.515972
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 5.19615 + 3.00000i 0.172062 + 0.0993399i
\(913\) −2.82843 4.89898i −0.0936073 0.162133i
\(914\) 5.00000 + 8.66025i 0.165385 + 0.286456i
\(915\) 2.44949 + 1.41421i 0.0809776 + 0.0467525i
\(916\) 26.8701i 0.887812i
\(917\) 0 0
\(918\) 16.0000i 0.528079i
\(919\) 11.0000 19.0526i 0.362857 0.628486i −0.625573 0.780165i \(-0.715135\pi\)
0.988430 + 0.151680i \(0.0484682\pi\)
\(920\) 0 0
\(921\) −29.4449 + 17.0000i −0.970241 + 0.560169i
\(922\) −16.2635 + 28.1691i −0.535608 + 0.927701i
\(923\) 5.65685 + 28.2843i 0.186198 + 0.930988i
\(924\) 0 0
\(925\) 6.00000i 0.197279i
\(926\) −8.00000 + 13.8564i −0.262896 + 0.455350i
\(927\) −9.89949 17.1464i −0.325142 0.563163i
\(928\) −1.73205 + 1.00000i −0.0568574 + 0.0328266i
\(929\) 39.1918 + 22.6274i 1.28584 + 0.742381i 0.977910 0.209027i \(-0.0670296\pi\)
0.307932 + 0.951408i \(0.400363\pi\)
\(930\) 16.9706i 0.556487i
\(931\) 0 0
\(932\) 18.0000 0.589610
\(933\) −4.00000 + 6.92820i −0.130954 + 0.226819i
\(934\) −3.67423 + 2.12132i −0.120225 + 0.0694117i
\(935\) −8.00000 13.8564i −0.261628 0.453153i
\(936\) −3.41542 1.15539i −0.111636 0.0377653i
\(937\) −11.3137 −0.369603 −0.184801 0.982776i \(-0.559164\pi\)
−0.184801 + 0.982776i \(0.559164\pi\)
\(938\) 0 0
\(939\) −28.0000 −0.913745
\(940\) −2.00000 + 3.46410i −0.0652328 + 0.112987i
\(941\) −15.9217 + 9.19239i −0.519032 + 0.299663i −0.736539 0.676396i \(-0.763541\pi\)
0.217506 + 0.976059i \(0.430208\pi\)
\(942\) −1.73205 + 1.00000i −0.0564333 + 0.0325818i
\(943\) 0 0
\(944\) 7.07107i 0.230144i
\(945\) 0 0
\(946\) −32.0000 −1.04041
\(947\) 31.1769 + 18.0000i 1.01311 + 0.584921i 0.912102 0.409964i \(-0.134459\pi\)
0.101012 + 0.994885i \(0.467792\pi\)
\(948\) 1.41421 + 2.44949i 0.0459315 + 0.0795557i
\(949\) 38.3013 33.6603i 1.24331 1.09266i
\(950\) 6.36396 11.0227i 0.206474 0.357624i
\(951\) 48.0833i 1.55921i
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 8.66025 + 5.00000i 0.280386 + 0.161881i
\(955\) 26.9444 15.5563i 0.871900 0.503392i
\(956\) 15.5885 9.00000i 0.504167 0.291081i
\(957\) 9.79796 + 5.65685i 0.316723 + 0.182860i
\(958\) −14.1421 −0.456912
\(959\) 0 0
\(960\) 2.00000i 0.0645497i
\(961\) 20.5000 35.5070i 0.661290 1.14539i
\(962\) −4.76028 5.41662i −0.153478 0.174639i
\(963\) 4.00000 + 6.92820i 0.128898 + 0.223258i
\(964\) 19.5959 + 11.3137i 0.631142 + 0.364390i
\(965\) 36.7696 1.18365
\(966\) 0 0
\(967\) 6.00000i 0.192947i 0.995336 + 0.0964735i \(0.0307563\pi\)
−0.995336 + 0.0964735i \(0.969244\pi\)
\(968\) −4.33013 2.50000i −0.139176 0.0803530i
\(969\) −14.6969 + 8.48528i −0.472134 + 0.272587i
\(970\) 6.92820 4.00000i 0.222451 0.128432i
\(971\) −21.9203 + 37.9671i −0.703456 + 1.21842i 0.263790 + 0.964580i \(0.415028\pi\)
−0.967246 + 0.253842i \(0.918306\pi\)
\(972\) 9.89949 0.317526
\(973\) 0 0
\(974\) −18.0000 −0.576757
\(975\) 4.90192 14.4904i 0.156987 0.464064i
\(976\) −0.707107 1.22474i −0.0226339 0.0392031i
\(977\) −10.3923 + 6.00000i −0.332479 + 0.191957i −0.656941 0.753942i \(-0.728150\pi\)
0.324462 + 0.945899i \(0.394817\pi\)
\(978\) −11.3137 + 19.5959i −0.361773 + 0.626608i
\(979\) 33.9411 1.08476
\(980\) 0 0
\(981\) 10.0000i 0.319275i
\(982\) −3.46410 2.00000i −0.110544 0.0638226i
\(983\) −41.6413 + 24.0416i −1.32815 + 0.766809i −0.985014 0.172476i \(-0.944823\pi\)
−0.343138 + 0.939285i \(0.611490\pi\)
\(984\) −4.00000 6.92820i −0.127515 0.220863i
\(985\) 1.41421 2.44949i 0.0450606 0.0780472i
\(986\) 5.65685i 0.180151i
\(987\) 0 0
\(988\) −3.00000 15.0000i −0.0954427 0.477214i
\(989\) 0 0
\(990\) −4.89898 + 2.82843i −0.155700 + 0.0898933i
\(991\) 7.00000 + 12.1244i 0.222362 + 0.385143i 0.955525 0.294911i \(-0.0952899\pi\)
−0.733163 + 0.680053i \(0.761957\pi\)
\(992\) 4.24264 7.34847i 0.134704 0.233314i
\(993\) 22.6274i 0.718059i
\(994\) 0 0
\(995\) 12.0000i 0.380426i
\(996\) −1.73205 1.00000i −0.0548821 0.0316862i
\(997\) −19.0919 33.0681i −0.604646 1.04728i −0.992107 0.125392i \(-0.959981\pi\)
0.387461 0.921886i \(-0.373352\pi\)
\(998\) 16.0000 + 27.7128i 0.506471 + 0.877234i
\(999\) 9.79796 + 5.65685i 0.309994 + 0.178975i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.n.j.961.2 8
7.2 even 3 1274.2.d.h.883.3 yes 4
7.3 odd 6 inner 1274.2.n.j.753.3 8
7.4 even 3 inner 1274.2.n.j.753.4 8
7.5 odd 6 1274.2.d.h.883.4 yes 4
7.6 odd 2 inner 1274.2.n.j.961.1 8
13.12 even 2 inner 1274.2.n.j.961.4 8
91.12 odd 6 1274.2.d.h.883.2 yes 4
91.25 even 6 inner 1274.2.n.j.753.2 8
91.38 odd 6 inner 1274.2.n.j.753.1 8
91.51 even 6 1274.2.d.h.883.1 4
91.90 odd 2 inner 1274.2.n.j.961.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1274.2.d.h.883.1 4 91.51 even 6
1274.2.d.h.883.2 yes 4 91.12 odd 6
1274.2.d.h.883.3 yes 4 7.2 even 3
1274.2.d.h.883.4 yes 4 7.5 odd 6
1274.2.n.j.753.1 8 91.38 odd 6 inner
1274.2.n.j.753.2 8 91.25 even 6 inner
1274.2.n.j.753.3 8 7.3 odd 6 inner
1274.2.n.j.753.4 8 7.4 even 3 inner
1274.2.n.j.961.1 8 7.6 odd 2 inner
1274.2.n.j.961.2 8 1.1 even 1 trivial
1274.2.n.j.961.3 8 91.90 odd 2 inner
1274.2.n.j.961.4 8 13.12 even 2 inner