Properties

Label 1274.2.a.u.1.3
Level $1274$
Weight $2$
Character 1274.1
Self dual yes
Analytic conductor $10.173$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(1,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,2,4,0,-2,0,-4,6,0,-6,2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.16448.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.18398\) of defining polynomial
Character \(\chi\) \(=\) 1274.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.18398 q^{3} +1.00000 q^{4} +3.08861 q^{5} -2.18398 q^{6} -1.00000 q^{8} +1.76977 q^{9} -3.08861 q^{10} +1.85838 q^{11} +2.18398 q^{12} +1.00000 q^{13} +6.74547 q^{15} +1.00000 q^{16} -6.50283 q^{17} -1.76977 q^{18} +4.58579 q^{19} +3.08861 q^{20} -1.85838 q^{22} +1.02995 q^{23} -2.18398 q^{24} +4.53953 q^{25} -1.00000 q^{26} -2.68681 q^{27} +8.74547 q^{29} -6.74547 q^{30} +0.141621 q^{31} -1.00000 q^{32} +4.05866 q^{33} +6.50283 q^{34} +1.76977 q^{36} -3.23023 q^{37} -4.58579 q^{38} +2.18398 q^{39} -3.08861 q^{40} +9.64055 q^{41} +4.10777 q^{43} +1.85838 q^{44} +5.46612 q^{45} -1.02995 q^{46} -11.0548 q^{47} +2.18398 q^{48} -4.53953 q^{50} -14.2020 q^{51} +1.00000 q^{52} -2.43741 q^{53} +2.68681 q^{54} +5.73981 q^{55} +10.0153 q^{57} -8.74547 q^{58} +9.84208 q^{59} +6.74547 q^{60} +8.11857 q^{61} -0.141621 q^{62} +1.00000 q^{64} +3.08861 q^{65} -4.05866 q^{66} -12.2263 q^{67} -6.50283 q^{68} +2.24939 q^{69} -8.65296 q^{71} -1.76977 q^{72} -11.2974 q^{73} +3.23023 q^{74} +9.91424 q^{75} +4.58579 q^{76} -2.18398 q^{78} -0.877538 q^{79} +3.08861 q^{80} -11.1772 q^{81} -9.64055 q^{82} -8.78783 q^{83} -20.0847 q^{85} -4.10777 q^{86} +19.0999 q^{87} -1.85838 q^{88} -12.4103 q^{89} -5.46612 q^{90} +1.02995 q^{92} +0.309297 q^{93} +11.0548 q^{94} +14.1637 q^{95} -2.18398 q^{96} +5.79296 q^{97} +3.28890 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 2 q^{3} + 4 q^{4} - 2 q^{6} - 4 q^{8} + 6 q^{9} - 6 q^{11} + 2 q^{12} + 4 q^{13} - 8 q^{15} + 4 q^{16} - 8 q^{17} - 6 q^{18} + 24 q^{19} + 6 q^{22} + 2 q^{23} - 2 q^{24} + 16 q^{25} - 4 q^{26}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.18398 1.26092 0.630461 0.776221i \(-0.282866\pi\)
0.630461 + 0.776221i \(0.282866\pi\)
\(4\) 1.00000 0.500000
\(5\) 3.08861 1.38127 0.690635 0.723204i \(-0.257331\pi\)
0.690635 + 0.723204i \(0.257331\pi\)
\(6\) −2.18398 −0.891606
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 1.76977 0.589922
\(10\) −3.08861 −0.976705
\(11\) 1.85838 0.560322 0.280161 0.959953i \(-0.409612\pi\)
0.280161 + 0.959953i \(0.409612\pi\)
\(12\) 2.18398 0.630461
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 6.74547 1.74167
\(16\) 1.00000 0.250000
\(17\) −6.50283 −1.57717 −0.788584 0.614928i \(-0.789185\pi\)
−0.788584 + 0.614928i \(0.789185\pi\)
\(18\) −1.76977 −0.417138
\(19\) 4.58579 1.05205 0.526026 0.850469i \(-0.323682\pi\)
0.526026 + 0.850469i \(0.323682\pi\)
\(20\) 3.08861 0.690635
\(21\) 0 0
\(22\) −1.85838 −0.396208
\(23\) 1.02995 0.214760 0.107380 0.994218i \(-0.465754\pi\)
0.107380 + 0.994218i \(0.465754\pi\)
\(24\) −2.18398 −0.445803
\(25\) 4.53953 0.907906
\(26\) −1.00000 −0.196116
\(27\) −2.68681 −0.517076
\(28\) 0 0
\(29\) 8.74547 1.62399 0.811996 0.583663i \(-0.198381\pi\)
0.811996 + 0.583663i \(0.198381\pi\)
\(30\) −6.74547 −1.23155
\(31\) 0.141621 0.0254359 0.0127179 0.999919i \(-0.495952\pi\)
0.0127179 + 0.999919i \(0.495952\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.05866 0.706522
\(34\) 6.50283 1.11523
\(35\) 0 0
\(36\) 1.76977 0.294961
\(37\) −3.23023 −0.531047 −0.265524 0.964104i \(-0.585545\pi\)
−0.265524 + 0.964104i \(0.585545\pi\)
\(38\) −4.58579 −0.743913
\(39\) 2.18398 0.349717
\(40\) −3.08861 −0.488353
\(41\) 9.64055 1.50560 0.752801 0.658249i \(-0.228702\pi\)
0.752801 + 0.658249i \(0.228702\pi\)
\(42\) 0 0
\(43\) 4.10777 0.626429 0.313215 0.949682i \(-0.398594\pi\)
0.313215 + 0.949682i \(0.398594\pi\)
\(44\) 1.85838 0.280161
\(45\) 5.46612 0.814841
\(46\) −1.02995 −0.151858
\(47\) −11.0548 −1.61250 −0.806252 0.591573i \(-0.798507\pi\)
−0.806252 + 0.591573i \(0.798507\pi\)
\(48\) 2.18398 0.315230
\(49\) 0 0
\(50\) −4.53953 −0.641987
\(51\) −14.2020 −1.98868
\(52\) 1.00000 0.138675
\(53\) −2.43741 −0.334804 −0.167402 0.985889i \(-0.553538\pi\)
−0.167402 + 0.985889i \(0.553538\pi\)
\(54\) 2.68681 0.365628
\(55\) 5.73981 0.773956
\(56\) 0 0
\(57\) 10.0153 1.32655
\(58\) −8.74547 −1.14834
\(59\) 9.84208 1.28133 0.640665 0.767821i \(-0.278659\pi\)
0.640665 + 0.767821i \(0.278659\pi\)
\(60\) 6.74547 0.870836
\(61\) 8.11857 1.03948 0.519738 0.854326i \(-0.326030\pi\)
0.519738 + 0.854326i \(0.326030\pi\)
\(62\) −0.141621 −0.0179859
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.08861 0.383095
\(66\) −4.05866 −0.499587
\(67\) −12.2263 −1.49368 −0.746842 0.665001i \(-0.768431\pi\)
−0.746842 + 0.665001i \(0.768431\pi\)
\(68\) −6.50283 −0.788584
\(69\) 2.24939 0.270795
\(70\) 0 0
\(71\) −8.65296 −1.02692 −0.513459 0.858114i \(-0.671636\pi\)
−0.513459 + 0.858114i \(0.671636\pi\)
\(72\) −1.76977 −0.208569
\(73\) −11.2974 −1.32226 −0.661131 0.750271i \(-0.729923\pi\)
−0.661131 + 0.750271i \(0.729923\pi\)
\(74\) 3.23023 0.375507
\(75\) 9.91424 1.14480
\(76\) 4.58579 0.526026
\(77\) 0 0
\(78\) −2.18398 −0.247287
\(79\) −0.877538 −0.0987308 −0.0493654 0.998781i \(-0.515720\pi\)
−0.0493654 + 0.998781i \(0.515720\pi\)
\(80\) 3.08861 0.345317
\(81\) −11.1772 −1.24191
\(82\) −9.64055 −1.06462
\(83\) −8.78783 −0.964589 −0.482295 0.876009i \(-0.660197\pi\)
−0.482295 + 0.876009i \(0.660197\pi\)
\(84\) 0 0
\(85\) −20.0847 −2.17849
\(86\) −4.10777 −0.442953
\(87\) 19.0999 2.04773
\(88\) −1.85838 −0.198104
\(89\) −12.4103 −1.31549 −0.657745 0.753240i \(-0.728490\pi\)
−0.657745 + 0.753240i \(0.728490\pi\)
\(90\) −5.46612 −0.576180
\(91\) 0 0
\(92\) 1.02995 0.107380
\(93\) 0.309297 0.0320726
\(94\) 11.0548 1.14021
\(95\) 14.1637 1.45317
\(96\) −2.18398 −0.222901
\(97\) 5.79296 0.588186 0.294093 0.955777i \(-0.404982\pi\)
0.294093 + 0.955777i \(0.404982\pi\)
\(98\) 0 0
\(99\) 3.28890 0.330546
\(100\) 4.53953 0.453953
\(101\) 0.900594 0.0896125 0.0448062 0.998996i \(-0.485733\pi\)
0.0448062 + 0.998996i \(0.485733\pi\)
\(102\) 14.2020 1.40621
\(103\) 19.6817 1.93929 0.969646 0.244512i \(-0.0786279\pi\)
0.969646 + 0.244512i \(0.0786279\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) 2.43741 0.236742
\(107\) −10.9961 −1.06303 −0.531517 0.847048i \(-0.678378\pi\)
−0.531517 + 0.847048i \(0.678378\pi\)
\(108\) −2.68681 −0.258538
\(109\) −14.8532 −1.42268 −0.711341 0.702847i \(-0.751912\pi\)
−0.711341 + 0.702847i \(0.751912\pi\)
\(110\) −5.73981 −0.547270
\(111\) −7.05476 −0.669609
\(112\) 0 0
\(113\) 5.75061 0.540972 0.270486 0.962724i \(-0.412816\pi\)
0.270486 + 0.962724i \(0.412816\pi\)
\(114\) −10.0153 −0.938015
\(115\) 3.18112 0.296641
\(116\) 8.74547 0.811996
\(117\) 1.76977 0.163615
\(118\) −9.84208 −0.906037
\(119\) 0 0
\(120\) −6.74547 −0.615774
\(121\) −7.54643 −0.686039
\(122\) −8.11857 −0.735020
\(123\) 21.0548 1.89844
\(124\) 0.141621 0.0127179
\(125\) −1.42221 −0.127206
\(126\) 0 0
\(127\) 10.6868 0.948301 0.474150 0.880444i \(-0.342755\pi\)
0.474150 + 0.880444i \(0.342755\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 8.97129 0.789878
\(130\) −3.08861 −0.270889
\(131\) 14.1597 1.23714 0.618569 0.785731i \(-0.287713\pi\)
0.618569 + 0.785731i \(0.287713\pi\)
\(132\) 4.05866 0.353261
\(133\) 0 0
\(134\) 12.2263 1.05619
\(135\) −8.29850 −0.714222
\(136\) 6.50283 0.557613
\(137\) −11.1964 −0.956572 −0.478286 0.878204i \(-0.658742\pi\)
−0.478286 + 0.878204i \(0.658742\pi\)
\(138\) −2.24939 −0.191481
\(139\) 14.3121 1.21394 0.606968 0.794726i \(-0.292386\pi\)
0.606968 + 0.794726i \(0.292386\pi\)
\(140\) 0 0
\(141\) −24.1434 −2.03324
\(142\) 8.65296 0.726140
\(143\) 1.85838 0.155405
\(144\) 1.76977 0.147480
\(145\) 27.0114 2.24317
\(146\) 11.2974 0.934980
\(147\) 0 0
\(148\) −3.23023 −0.265524
\(149\) 21.9910 1.80157 0.900785 0.434265i \(-0.142992\pi\)
0.900785 + 0.434265i \(0.142992\pi\)
\(150\) −9.91424 −0.809495
\(151\) −5.38712 −0.438397 −0.219199 0.975680i \(-0.570344\pi\)
−0.219199 + 0.975680i \(0.570344\pi\)
\(152\) −4.58579 −0.371956
\(153\) −11.5085 −0.930405
\(154\) 0 0
\(155\) 0.437413 0.0351338
\(156\) 2.18398 0.174858
\(157\) −1.40746 −0.112328 −0.0561638 0.998422i \(-0.517887\pi\)
−0.0561638 + 0.998422i \(0.517887\pi\)
\(158\) 0.877538 0.0698132
\(159\) −5.32326 −0.422162
\(160\) −3.08861 −0.244176
\(161\) 0 0
\(162\) 11.1772 0.878166
\(163\) 6.08472 0.476592 0.238296 0.971193i \(-0.423411\pi\)
0.238296 + 0.971193i \(0.423411\pi\)
\(164\) 9.64055 0.752801
\(165\) 12.5356 0.975898
\(166\) 8.78783 0.682068
\(167\) 1.52603 0.118087 0.0590437 0.998255i \(-0.481195\pi\)
0.0590437 + 0.998255i \(0.481195\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 20.0847 1.54043
\(171\) 8.11577 0.620628
\(172\) 4.10777 0.313215
\(173\) −19.5892 −1.48934 −0.744668 0.667435i \(-0.767392\pi\)
−0.744668 + 0.667435i \(0.767392\pi\)
\(174\) −19.0999 −1.44796
\(175\) 0 0
\(176\) 1.85838 0.140081
\(177\) 21.4949 1.61565
\(178\) 12.4103 0.930193
\(179\) −24.8071 −1.85417 −0.927086 0.374849i \(-0.877695\pi\)
−0.927086 + 0.374849i \(0.877695\pi\)
\(180\) 5.46612 0.407421
\(181\) 1.17282 0.0871747 0.0435873 0.999050i \(-0.486121\pi\)
0.0435873 + 0.999050i \(0.486121\pi\)
\(182\) 0 0
\(183\) 17.7308 1.31070
\(184\) −1.02995 −0.0759291
\(185\) −9.97694 −0.733520
\(186\) −0.309297 −0.0226788
\(187\) −12.0847 −0.883722
\(188\) −11.0548 −0.806252
\(189\) 0 0
\(190\) −14.1637 −1.02754
\(191\) 8.48528 0.613973 0.306987 0.951714i \(-0.400679\pi\)
0.306987 + 0.951714i \(0.400679\pi\)
\(192\) 2.18398 0.157615
\(193\) 7.43352 0.535076 0.267538 0.963547i \(-0.413790\pi\)
0.267538 + 0.963547i \(0.413790\pi\)
\(194\) −5.79296 −0.415911
\(195\) 6.74547 0.483053
\(196\) 0 0
\(197\) −20.5688 −1.46546 −0.732732 0.680518i \(-0.761755\pi\)
−0.732732 + 0.680518i \(0.761755\pi\)
\(198\) −3.28890 −0.233732
\(199\) −10.3449 −0.733331 −0.366665 0.930353i \(-0.619501\pi\)
−0.366665 + 0.930353i \(0.619501\pi\)
\(200\) −4.53953 −0.320993
\(201\) −26.7021 −1.88342
\(202\) −0.900594 −0.0633656
\(203\) 0 0
\(204\) −14.2020 −0.994342
\(205\) 29.7759 2.07964
\(206\) −19.6817 −1.37129
\(207\) 1.82277 0.126692
\(208\) 1.00000 0.0693375
\(209\) 8.52213 0.589488
\(210\) 0 0
\(211\) −4.41583 −0.303998 −0.151999 0.988381i \(-0.548571\pi\)
−0.151999 + 0.988381i \(0.548571\pi\)
\(212\) −2.43741 −0.167402
\(213\) −18.8979 −1.29486
\(214\) 10.9961 0.751678
\(215\) 12.6873 0.865268
\(216\) 2.68681 0.182814
\(217\) 0 0
\(218\) 14.8532 1.00599
\(219\) −24.6733 −1.66727
\(220\) 5.73981 0.386978
\(221\) −6.50283 −0.437427
\(222\) 7.05476 0.473485
\(223\) 20.5592 1.37675 0.688373 0.725357i \(-0.258325\pi\)
0.688373 + 0.725357i \(0.258325\pi\)
\(224\) 0 0
\(225\) 8.03391 0.535594
\(226\) −5.75061 −0.382525
\(227\) 22.0073 1.46067 0.730337 0.683087i \(-0.239363\pi\)
0.730337 + 0.683087i \(0.239363\pi\)
\(228\) 10.0153 0.663277
\(229\) −0.996103 −0.0658244 −0.0329122 0.999458i \(-0.510478\pi\)
−0.0329122 + 0.999458i \(0.510478\pi\)
\(230\) −3.18112 −0.209757
\(231\) 0 0
\(232\) −8.74547 −0.574168
\(233\) 15.7403 1.03118 0.515592 0.856834i \(-0.327572\pi\)
0.515592 + 0.856834i \(0.327572\pi\)
\(234\) −1.76977 −0.115693
\(235\) −34.1439 −2.22730
\(236\) 9.84208 0.640665
\(237\) −1.91653 −0.124492
\(238\) 0 0
\(239\) 1.10388 0.0714038 0.0357019 0.999362i \(-0.488633\pi\)
0.0357019 + 0.999362i \(0.488633\pi\)
\(240\) 6.74547 0.435418
\(241\) −4.68005 −0.301469 −0.150734 0.988574i \(-0.548164\pi\)
−0.150734 + 0.988574i \(0.548164\pi\)
\(242\) 7.54643 0.485103
\(243\) −16.3504 −1.04888
\(244\) 8.11857 0.519738
\(245\) 0 0
\(246\) −21.0548 −1.34240
\(247\) 4.58579 0.291787
\(248\) −0.141621 −0.00899294
\(249\) −19.1924 −1.21627
\(250\) 1.42221 0.0899484
\(251\) 7.84083 0.494909 0.247455 0.968900i \(-0.420406\pi\)
0.247455 + 0.968900i \(0.420406\pi\)
\(252\) 0 0
\(253\) 1.91404 0.120335
\(254\) −10.6868 −0.670550
\(255\) −43.8646 −2.74691
\(256\) 1.00000 0.0625000
\(257\) −25.8516 −1.61258 −0.806290 0.591520i \(-0.798528\pi\)
−0.806290 + 0.591520i \(0.798528\pi\)
\(258\) −8.97129 −0.558528
\(259\) 0 0
\(260\) 3.08861 0.191548
\(261\) 15.4774 0.958029
\(262\) −14.1597 −0.874788
\(263\) −15.3488 −0.946448 −0.473224 0.880942i \(-0.656910\pi\)
−0.473224 + 0.880942i \(0.656910\pi\)
\(264\) −4.05866 −0.249793
\(265\) −7.52822 −0.462455
\(266\) 0 0
\(267\) −27.1039 −1.65873
\(268\) −12.2263 −0.746842
\(269\) −23.3997 −1.42670 −0.713351 0.700806i \(-0.752824\pi\)
−0.713351 + 0.700806i \(0.752824\pi\)
\(270\) 8.29850 0.505031
\(271\) 6.75450 0.410307 0.205153 0.978730i \(-0.434231\pi\)
0.205153 + 0.978730i \(0.434231\pi\)
\(272\) −6.50283 −0.394292
\(273\) 0 0
\(274\) 11.1964 0.676398
\(275\) 8.43617 0.508720
\(276\) 2.24939 0.135398
\(277\) 15.5955 0.937042 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(278\) −14.3121 −0.858382
\(279\) 0.250636 0.0150052
\(280\) 0 0
\(281\) −20.2499 −1.20801 −0.604004 0.796981i \(-0.706429\pi\)
−0.604004 + 0.796981i \(0.706429\pi\)
\(282\) 24.1434 1.43772
\(283\) 24.0103 1.42726 0.713631 0.700522i \(-0.247049\pi\)
0.713631 + 0.700522i \(0.247049\pi\)
\(284\) −8.65296 −0.513459
\(285\) 30.9333 1.83233
\(286\) −1.85838 −0.109888
\(287\) 0 0
\(288\) −1.76977 −0.104284
\(289\) 25.2868 1.48746
\(290\) −27.0114 −1.58616
\(291\) 12.6517 0.741657
\(292\) −11.2974 −0.661131
\(293\) −19.9266 −1.16412 −0.582062 0.813144i \(-0.697754\pi\)
−0.582062 + 0.813144i \(0.697754\pi\)
\(294\) 0 0
\(295\) 30.3984 1.76986
\(296\) 3.23023 0.187754
\(297\) −4.99310 −0.289729
\(298\) −21.9910 −1.27390
\(299\) 1.02995 0.0595637
\(300\) 9.91424 0.572399
\(301\) 0 0
\(302\) 5.38712 0.309994
\(303\) 1.96688 0.112994
\(304\) 4.58579 0.263013
\(305\) 25.0751 1.43580
\(306\) 11.5085 0.657896
\(307\) −16.6570 −0.950665 −0.475333 0.879806i \(-0.657672\pi\)
−0.475333 + 0.879806i \(0.657672\pi\)
\(308\) 0 0
\(309\) 42.9844 2.44529
\(310\) −0.437413 −0.0248434
\(311\) −26.5931 −1.50795 −0.753977 0.656901i \(-0.771867\pi\)
−0.753977 + 0.656901i \(0.771867\pi\)
\(312\) −2.18398 −0.123643
\(313\) −6.53543 −0.369405 −0.184702 0.982795i \(-0.559132\pi\)
−0.184702 + 0.982795i \(0.559132\pi\)
\(314\) 1.40746 0.0794276
\(315\) 0 0
\(316\) −0.877538 −0.0493654
\(317\) −27.7676 −1.55959 −0.779793 0.626038i \(-0.784676\pi\)
−0.779793 + 0.626038i \(0.784676\pi\)
\(318\) 5.32326 0.298514
\(319\) 16.2524 0.909959
\(320\) 3.08861 0.172659
\(321\) −24.0153 −1.34040
\(322\) 0 0
\(323\) −29.8206 −1.65926
\(324\) −11.1772 −0.620957
\(325\) 4.53953 0.251808
\(326\) −6.08472 −0.337001
\(327\) −32.4392 −1.79389
\(328\) −9.64055 −0.532310
\(329\) 0 0
\(330\) −12.5356 −0.690064
\(331\) 1.92608 0.105867 0.0529334 0.998598i \(-0.483143\pi\)
0.0529334 + 0.998598i \(0.483143\pi\)
\(332\) −8.78783 −0.482295
\(333\) −5.71676 −0.313276
\(334\) −1.52603 −0.0835004
\(335\) −37.7624 −2.06318
\(336\) 0 0
\(337\) 16.5361 0.900781 0.450391 0.892832i \(-0.351285\pi\)
0.450391 + 0.892832i \(0.351285\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 12.5592 0.682122
\(340\) −20.0847 −1.08925
\(341\) 0.263186 0.0142523
\(342\) −8.11577 −0.438850
\(343\) 0 0
\(344\) −4.10777 −0.221476
\(345\) 6.94751 0.374041
\(346\) 19.5892 1.05312
\(347\) −6.50687 −0.349307 −0.174653 0.984630i \(-0.555881\pi\)
−0.174653 + 0.984630i \(0.555881\pi\)
\(348\) 19.0999 1.02386
\(349\) −20.0266 −1.07200 −0.535999 0.844219i \(-0.680065\pi\)
−0.535999 + 0.844219i \(0.680065\pi\)
\(350\) 0 0
\(351\) −2.68681 −0.143411
\(352\) −1.85838 −0.0990519
\(353\) 19.2162 1.02278 0.511388 0.859350i \(-0.329132\pi\)
0.511388 + 0.859350i \(0.329132\pi\)
\(354\) −21.4949 −1.14244
\(355\) −26.7256 −1.41845
\(356\) −12.4103 −0.657745
\(357\) 0 0
\(358\) 24.8071 1.31110
\(359\) −18.5795 −0.980591 −0.490296 0.871556i \(-0.663111\pi\)
−0.490296 + 0.871556i \(0.663111\pi\)
\(360\) −5.46612 −0.288090
\(361\) 2.02944 0.106812
\(362\) −1.17282 −0.0616418
\(363\) −16.4812 −0.865041
\(364\) 0 0
\(365\) −34.8933 −1.82640
\(366\) −17.7308 −0.926803
\(367\) 11.5356 0.602152 0.301076 0.953600i \(-0.402654\pi\)
0.301076 + 0.953600i \(0.402654\pi\)
\(368\) 1.02995 0.0536900
\(369\) 17.0615 0.888187
\(370\) 9.97694 0.518677
\(371\) 0 0
\(372\) 0.309297 0.0160363
\(373\) −31.7433 −1.64361 −0.821804 0.569771i \(-0.807032\pi\)
−0.821804 + 0.569771i \(0.807032\pi\)
\(374\) 12.0847 0.624886
\(375\) −3.10607 −0.160397
\(376\) 11.0548 0.570106
\(377\) 8.74547 0.450414
\(378\) 0 0
\(379\) −9.75185 −0.500919 −0.250459 0.968127i \(-0.580582\pi\)
−0.250459 + 0.968127i \(0.580582\pi\)
\(380\) 14.1637 0.726584
\(381\) 23.3398 1.19573
\(382\) −8.48528 −0.434145
\(383\) −11.3571 −0.580321 −0.290161 0.956978i \(-0.593709\pi\)
−0.290161 + 0.956978i \(0.593709\pi\)
\(384\) −2.18398 −0.111451
\(385\) 0 0
\(386\) −7.43352 −0.378356
\(387\) 7.26980 0.369544
\(388\) 5.79296 0.294093
\(389\) 3.80927 0.193138 0.0965688 0.995326i \(-0.469213\pi\)
0.0965688 + 0.995326i \(0.469213\pi\)
\(390\) −6.74547 −0.341570
\(391\) −6.69760 −0.338712
\(392\) 0 0
\(393\) 30.9245 1.55993
\(394\) 20.5688 1.03624
\(395\) −2.71038 −0.136374
\(396\) 3.28890 0.165273
\(397\) 20.8916 1.04852 0.524259 0.851559i \(-0.324343\pi\)
0.524259 + 0.851559i \(0.324343\pi\)
\(398\) 10.3449 0.518543
\(399\) 0 0
\(400\) 4.53953 0.226977
\(401\) −19.8596 −0.991742 −0.495871 0.868396i \(-0.665151\pi\)
−0.495871 + 0.868396i \(0.665151\pi\)
\(402\) 26.7021 1.33178
\(403\) 0.141621 0.00705464
\(404\) 0.900594 0.0448062
\(405\) −34.5221 −1.71542
\(406\) 0 0
\(407\) −6.00300 −0.297558
\(408\) 14.2020 0.703106
\(409\) 26.7896 1.32466 0.662330 0.749212i \(-0.269568\pi\)
0.662330 + 0.749212i \(0.269568\pi\)
\(410\) −29.7759 −1.47053
\(411\) −24.4527 −1.20616
\(412\) 19.6817 0.969646
\(413\) 0 0
\(414\) −1.82277 −0.0895844
\(415\) −27.1422 −1.33236
\(416\) −1.00000 −0.0490290
\(417\) 31.2573 1.53068
\(418\) −8.52213 −0.416831
\(419\) 18.6884 0.912986 0.456493 0.889727i \(-0.349105\pi\)
0.456493 + 0.889727i \(0.349105\pi\)
\(420\) 0 0
\(421\) −22.7269 −1.10764 −0.553820 0.832636i \(-0.686831\pi\)
−0.553820 + 0.832636i \(0.686831\pi\)
\(422\) 4.41583 0.214959
\(423\) −19.5643 −0.951251
\(424\) 2.43741 0.118371
\(425\) −29.5198 −1.43192
\(426\) 18.8979 0.915605
\(427\) 0 0
\(428\) −10.9961 −0.531517
\(429\) 4.05866 0.195954
\(430\) −12.6873 −0.611837
\(431\) 11.6817 0.562686 0.281343 0.959607i \(-0.409220\pi\)
0.281343 + 0.959607i \(0.409220\pi\)
\(432\) −2.68681 −0.129269
\(433\) −0.728650 −0.0350167 −0.0175083 0.999847i \(-0.505573\pi\)
−0.0175083 + 0.999847i \(0.505573\pi\)
\(434\) 0 0
\(435\) 58.9923 2.82846
\(436\) −14.8532 −0.711341
\(437\) 4.72314 0.225938
\(438\) 24.6733 1.17894
\(439\) 38.4271 1.83403 0.917014 0.398856i \(-0.130593\pi\)
0.917014 + 0.398856i \(0.130593\pi\)
\(440\) −5.73981 −0.273635
\(441\) 0 0
\(442\) 6.50283 0.309308
\(443\) −23.7511 −1.12845 −0.564225 0.825621i \(-0.690825\pi\)
−0.564225 + 0.825621i \(0.690825\pi\)
\(444\) −7.05476 −0.334804
\(445\) −38.3307 −1.81705
\(446\) −20.5592 −0.973507
\(447\) 48.0278 2.27164
\(448\) 0 0
\(449\) −14.7398 −0.695612 −0.347806 0.937567i \(-0.613073\pi\)
−0.347806 + 0.937567i \(0.613073\pi\)
\(450\) −8.03391 −0.378722
\(451\) 17.9158 0.843622
\(452\) 5.75061 0.270486
\(453\) −11.7654 −0.552785
\(454\) −22.0073 −1.03285
\(455\) 0 0
\(456\) −10.0153 −0.469008
\(457\) 37.3619 1.74771 0.873857 0.486183i \(-0.161611\pi\)
0.873857 + 0.486183i \(0.161611\pi\)
\(458\) 0.996103 0.0465449
\(459\) 17.4718 0.815515
\(460\) 3.18112 0.148321
\(461\) −25.8709 −1.20493 −0.602465 0.798146i \(-0.705815\pi\)
−0.602465 + 0.798146i \(0.705815\pi\)
\(462\) 0 0
\(463\) 24.4041 1.13415 0.567077 0.823665i \(-0.308074\pi\)
0.567077 + 0.823665i \(0.308074\pi\)
\(464\) 8.74547 0.405998
\(465\) 0.955300 0.0443010
\(466\) −15.7403 −0.729157
\(467\) 36.5660 1.69207 0.846035 0.533127i \(-0.178983\pi\)
0.846035 + 0.533127i \(0.178983\pi\)
\(468\) 1.76977 0.0818075
\(469\) 0 0
\(470\) 34.1439 1.57494
\(471\) −3.07386 −0.141636
\(472\) −9.84208 −0.453018
\(473\) 7.63380 0.351002
\(474\) 1.91653 0.0880289
\(475\) 20.8173 0.955164
\(476\) 0 0
\(477\) −4.31365 −0.197508
\(478\) −1.10388 −0.0504901
\(479\) −5.50693 −0.251618 −0.125809 0.992054i \(-0.540153\pi\)
−0.125809 + 0.992054i \(0.540153\pi\)
\(480\) −6.74547 −0.307887
\(481\) −3.23023 −0.147286
\(482\) 4.68005 0.213171
\(483\) 0 0
\(484\) −7.54643 −0.343019
\(485\) 17.8922 0.812444
\(486\) 16.3504 0.741670
\(487\) −15.1981 −0.688694 −0.344347 0.938843i \(-0.611900\pi\)
−0.344347 + 0.938843i \(0.611900\pi\)
\(488\) −8.11857 −0.367510
\(489\) 13.2889 0.600945
\(490\) 0 0
\(491\) −41.7930 −1.88609 −0.943045 0.332666i \(-0.892052\pi\)
−0.943045 + 0.332666i \(0.892052\pi\)
\(492\) 21.0548 0.949222
\(493\) −56.8703 −2.56131
\(494\) −4.58579 −0.206324
\(495\) 10.1581 0.456574
\(496\) 0.141621 0.00635897
\(497\) 0 0
\(498\) 19.1924 0.860033
\(499\) 6.54790 0.293124 0.146562 0.989201i \(-0.453179\pi\)
0.146562 + 0.989201i \(0.453179\pi\)
\(500\) −1.42221 −0.0636031
\(501\) 3.33281 0.148899
\(502\) −7.84083 −0.349954
\(503\) −0.920937 −0.0410625 −0.0205313 0.999789i \(-0.506536\pi\)
−0.0205313 + 0.999789i \(0.506536\pi\)
\(504\) 0 0
\(505\) 2.78159 0.123779
\(506\) −1.91404 −0.0850895
\(507\) 2.18398 0.0969939
\(508\) 10.6868 0.474150
\(509\) 5.23323 0.231959 0.115980 0.993252i \(-0.462999\pi\)
0.115980 + 0.993252i \(0.462999\pi\)
\(510\) 43.8646 1.94236
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −12.3211 −0.543991
\(514\) 25.8516 1.14027
\(515\) 60.7891 2.67869
\(516\) 8.97129 0.394939
\(517\) −20.5439 −0.903522
\(518\) 0 0
\(519\) −42.7823 −1.87794
\(520\) −3.08861 −0.135445
\(521\) 36.3465 1.59237 0.796184 0.605055i \(-0.206849\pi\)
0.796184 + 0.605055i \(0.206849\pi\)
\(522\) −15.4774 −0.677429
\(523\) −7.01812 −0.306881 −0.153440 0.988158i \(-0.549035\pi\)
−0.153440 + 0.988158i \(0.549035\pi\)
\(524\) 14.1597 0.618569
\(525\) 0 0
\(526\) 15.3488 0.669239
\(527\) −0.920937 −0.0401166
\(528\) 4.05866 0.176631
\(529\) −21.9392 −0.953878
\(530\) 7.52822 0.327005
\(531\) 17.4182 0.755884
\(532\) 0 0
\(533\) 9.64055 0.417579
\(534\) 27.1039 1.17290
\(535\) −33.9627 −1.46834
\(536\) 12.2263 0.528097
\(537\) −54.1783 −2.33796
\(538\) 23.3997 1.00883
\(539\) 0 0
\(540\) −8.29850 −0.357111
\(541\) −0.329640 −0.0141723 −0.00708616 0.999975i \(-0.502256\pi\)
−0.00708616 + 0.999975i \(0.502256\pi\)
\(542\) −6.75450 −0.290131
\(543\) 2.56140 0.109920
\(544\) 6.50283 0.278806
\(545\) −45.8759 −1.96511
\(546\) 0 0
\(547\) 37.5335 1.60482 0.802408 0.596776i \(-0.203552\pi\)
0.802408 + 0.596776i \(0.203552\pi\)
\(548\) −11.1964 −0.478286
\(549\) 14.3680 0.613210
\(550\) −8.43617 −0.359720
\(551\) 40.1048 1.70852
\(552\) −2.24939 −0.0957406
\(553\) 0 0
\(554\) −15.5955 −0.662588
\(555\) −21.7894 −0.924910
\(556\) 14.3121 0.606968
\(557\) −16.7587 −0.710091 −0.355045 0.934849i \(-0.615535\pi\)
−0.355045 + 0.934849i \(0.615535\pi\)
\(558\) −0.250636 −0.0106103
\(559\) 4.10777 0.173740
\(560\) 0 0
\(561\) −26.3928 −1.11430
\(562\) 20.2499 0.854191
\(563\) 20.4785 0.863067 0.431534 0.902097i \(-0.357973\pi\)
0.431534 + 0.902097i \(0.357973\pi\)
\(564\) −24.1434 −1.01662
\(565\) 17.7614 0.747228
\(566\) −24.0103 −1.00923
\(567\) 0 0
\(568\) 8.65296 0.363070
\(569\) −10.7290 −0.449781 −0.224891 0.974384i \(-0.572203\pi\)
−0.224891 + 0.974384i \(0.572203\pi\)
\(570\) −30.9333 −1.29565
\(571\) 5.00712 0.209542 0.104771 0.994496i \(-0.466589\pi\)
0.104771 + 0.994496i \(0.466589\pi\)
\(572\) 1.85838 0.0777027
\(573\) 18.5317 0.774172
\(574\) 0 0
\(575\) 4.67550 0.194982
\(576\) 1.76977 0.0737402
\(577\) 11.8133 0.491794 0.245897 0.969296i \(-0.420917\pi\)
0.245897 + 0.969296i \(0.420917\pi\)
\(578\) −25.2868 −1.05179
\(579\) 16.2346 0.674689
\(580\) 27.0114 1.12159
\(581\) 0 0
\(582\) −12.6517 −0.524430
\(583\) −4.52964 −0.187598
\(584\) 11.2974 0.467490
\(585\) 5.46612 0.225996
\(586\) 19.9266 0.823160
\(587\) 31.6010 1.30431 0.652156 0.758085i \(-0.273865\pi\)
0.652156 + 0.758085i \(0.273865\pi\)
\(588\) 0 0
\(589\) 0.649444 0.0267599
\(590\) −30.3984 −1.25148
\(591\) −44.9217 −1.84783
\(592\) −3.23023 −0.132762
\(593\) 7.07282 0.290446 0.145223 0.989399i \(-0.453610\pi\)
0.145223 + 0.989399i \(0.453610\pi\)
\(594\) 4.99310 0.204870
\(595\) 0 0
\(596\) 21.9910 0.900785
\(597\) −22.5931 −0.924672
\(598\) −1.02995 −0.0421179
\(599\) 18.5344 0.757295 0.378647 0.925541i \(-0.376389\pi\)
0.378647 + 0.925541i \(0.376389\pi\)
\(600\) −9.91424 −0.404747
\(601\) 28.8126 1.17529 0.587646 0.809118i \(-0.300055\pi\)
0.587646 + 0.809118i \(0.300055\pi\)
\(602\) 0 0
\(603\) −21.6378 −0.881157
\(604\) −5.38712 −0.219199
\(605\) −23.3080 −0.947605
\(606\) −1.96688 −0.0798990
\(607\) 0.840462 0.0341133 0.0170567 0.999855i \(-0.494570\pi\)
0.0170567 + 0.999855i \(0.494570\pi\)
\(608\) −4.58579 −0.185978
\(609\) 0 0
\(610\) −25.0751 −1.01526
\(611\) −11.0548 −0.447228
\(612\) −11.5085 −0.465203
\(613\) −0.434413 −0.0175458 −0.00877289 0.999962i \(-0.502793\pi\)
−0.00877289 + 0.999962i \(0.502793\pi\)
\(614\) 16.6570 0.672222
\(615\) 65.0300 2.62226
\(616\) 0 0
\(617\) −8.42713 −0.339264 −0.169632 0.985508i \(-0.554258\pi\)
−0.169632 + 0.985508i \(0.554258\pi\)
\(618\) −42.9844 −1.72908
\(619\) −14.0306 −0.563938 −0.281969 0.959424i \(-0.590988\pi\)
−0.281969 + 0.959424i \(0.590988\pi\)
\(620\) 0.437413 0.0175669
\(621\) −2.76728 −0.111047
\(622\) 26.5931 1.06628
\(623\) 0 0
\(624\) 2.18398 0.0874291
\(625\) −27.0903 −1.08361
\(626\) 6.53543 0.261208
\(627\) 18.6122 0.743298
\(628\) −1.40746 −0.0561638
\(629\) 21.0057 0.837550
\(630\) 0 0
\(631\) −18.4144 −0.733064 −0.366532 0.930405i \(-0.619455\pi\)
−0.366532 + 0.930405i \(0.619455\pi\)
\(632\) 0.877538 0.0349066
\(633\) −9.64408 −0.383318
\(634\) 27.7676 1.10279
\(635\) 33.0074 1.30986
\(636\) −5.32326 −0.211081
\(637\) 0 0
\(638\) −16.2524 −0.643438
\(639\) −15.3137 −0.605801
\(640\) −3.08861 −0.122088
\(641\) 28.6996 1.13357 0.566783 0.823867i \(-0.308188\pi\)
0.566783 + 0.823867i \(0.308188\pi\)
\(642\) 24.0153 0.947807
\(643\) 21.2363 0.837476 0.418738 0.908107i \(-0.362473\pi\)
0.418738 + 0.908107i \(0.362473\pi\)
\(644\) 0 0
\(645\) 27.7088 1.09103
\(646\) 29.8206 1.17327
\(647\) 18.0592 0.709979 0.354990 0.934870i \(-0.384484\pi\)
0.354990 + 0.934870i \(0.384484\pi\)
\(648\) 11.1772 0.439083
\(649\) 18.2903 0.717957
\(650\) −4.53953 −0.178055
\(651\) 0 0
\(652\) 6.08472 0.238296
\(653\) 2.53772 0.0993085 0.0496542 0.998766i \(-0.484188\pi\)
0.0496542 + 0.998766i \(0.484188\pi\)
\(654\) 32.4392 1.26847
\(655\) 43.7338 1.70882
\(656\) 9.64055 0.376400
\(657\) −19.9938 −0.780031
\(658\) 0 0
\(659\) 46.3562 1.80578 0.902891 0.429870i \(-0.141441\pi\)
0.902891 + 0.429870i \(0.141441\pi\)
\(660\) 12.5356 0.487949
\(661\) 6.02877 0.234492 0.117246 0.993103i \(-0.462593\pi\)
0.117246 + 0.993103i \(0.462593\pi\)
\(662\) −1.92608 −0.0748591
\(663\) −14.2020 −0.551562
\(664\) 8.78783 0.341034
\(665\) 0 0
\(666\) 5.71676 0.221520
\(667\) 9.00741 0.348768
\(668\) 1.52603 0.0590437
\(669\) 44.9009 1.73597
\(670\) 37.7624 1.45889
\(671\) 15.0874 0.582441
\(672\) 0 0
\(673\) −26.9122 −1.03739 −0.518694 0.854960i \(-0.673582\pi\)
−0.518694 + 0.854960i \(0.673582\pi\)
\(674\) −16.5361 −0.636949
\(675\) −12.1968 −0.469457
\(676\) 1.00000 0.0384615
\(677\) −20.7021 −0.795645 −0.397823 0.917462i \(-0.630234\pi\)
−0.397823 + 0.917462i \(0.630234\pi\)
\(678\) −12.5592 −0.482333
\(679\) 0 0
\(680\) 20.0847 0.770214
\(681\) 48.0634 1.84179
\(682\) −0.263186 −0.0100779
\(683\) 33.0987 1.26649 0.633243 0.773953i \(-0.281723\pi\)
0.633243 + 0.773953i \(0.281723\pi\)
\(684\) 8.11577 0.310314
\(685\) −34.5813 −1.32128
\(686\) 0 0
\(687\) −2.17547 −0.0829993
\(688\) 4.10777 0.156607
\(689\) −2.43741 −0.0928580
\(690\) −6.94751 −0.264487
\(691\) −5.50289 −0.209340 −0.104670 0.994507i \(-0.533379\pi\)
−0.104670 + 0.994507i \(0.533379\pi\)
\(692\) −19.5892 −0.744668
\(693\) 0 0
\(694\) 6.50687 0.246997
\(695\) 44.2045 1.67677
\(696\) −19.0999 −0.723981
\(697\) −62.6908 −2.37458
\(698\) 20.0266 0.758017
\(699\) 34.3766 1.30024
\(700\) 0 0
\(701\) −35.0184 −1.32263 −0.661314 0.750109i \(-0.730001\pi\)
−0.661314 + 0.750109i \(0.730001\pi\)
\(702\) 2.68681 0.101407
\(703\) −14.8132 −0.558689
\(704\) 1.85838 0.0700403
\(705\) −74.5696 −2.80845
\(706\) −19.2162 −0.723211
\(707\) 0 0
\(708\) 21.4949 0.807827
\(709\) −36.2529 −1.36151 −0.680753 0.732513i \(-0.738347\pi\)
−0.680753 + 0.732513i \(0.738347\pi\)
\(710\) 26.7256 1.00300
\(711\) −1.55304 −0.0582435
\(712\) 12.4103 0.465096
\(713\) 0.145863 0.00546261
\(714\) 0 0
\(715\) 5.73981 0.214657
\(716\) −24.8071 −0.927086
\(717\) 2.41084 0.0900346
\(718\) 18.5795 0.693383
\(719\) 12.4878 0.465715 0.232858 0.972511i \(-0.425192\pi\)
0.232858 + 0.972511i \(0.425192\pi\)
\(720\) 5.46612 0.203710
\(721\) 0 0
\(722\) −2.02944 −0.0755278
\(723\) −10.2211 −0.380128
\(724\) 1.17282 0.0435873
\(725\) 39.7003 1.47443
\(726\) 16.4812 0.611676
\(727\) 4.67279 0.173304 0.0866520 0.996239i \(-0.472383\pi\)
0.0866520 + 0.996239i \(0.472383\pi\)
\(728\) 0 0
\(729\) −2.17729 −0.0806402
\(730\) 34.8933 1.29146
\(731\) −26.7121 −0.987984
\(732\) 17.7308 0.655348
\(733\) 3.62425 0.133865 0.0669323 0.997758i \(-0.478679\pi\)
0.0669323 + 0.997758i \(0.478679\pi\)
\(734\) −11.5356 −0.425786
\(735\) 0 0
\(736\) −1.02995 −0.0379645
\(737\) −22.7212 −0.836945
\(738\) −17.0615 −0.628043
\(739\) −13.8171 −0.508269 −0.254134 0.967169i \(-0.581791\pi\)
−0.254134 + 0.967169i \(0.581791\pi\)
\(740\) −9.97694 −0.366760
\(741\) 10.0153 0.367920
\(742\) 0 0
\(743\) 22.8590 0.838614 0.419307 0.907845i \(-0.362273\pi\)
0.419307 + 0.907845i \(0.362273\pi\)
\(744\) −0.309297 −0.0113394
\(745\) 67.9216 2.48845
\(746\) 31.7433 1.16221
\(747\) −15.5524 −0.569032
\(748\) −12.0847 −0.441861
\(749\) 0 0
\(750\) 3.10607 0.113418
\(751\) −13.9814 −0.510189 −0.255095 0.966916i \(-0.582107\pi\)
−0.255095 + 0.966916i \(0.582107\pi\)
\(752\) −11.0548 −0.403126
\(753\) 17.1242 0.624041
\(754\) −8.74547 −0.318491
\(755\) −16.6387 −0.605545
\(756\) 0 0
\(757\) 16.8475 0.612334 0.306167 0.951978i \(-0.400953\pi\)
0.306167 + 0.951978i \(0.400953\pi\)
\(758\) 9.75185 0.354203
\(759\) 4.18023 0.151733
\(760\) −14.1637 −0.513772
\(761\) 28.6820 1.03972 0.519862 0.854251i \(-0.325984\pi\)
0.519862 + 0.854251i \(0.325984\pi\)
\(762\) −23.3398 −0.845510
\(763\) 0 0
\(764\) 8.48528 0.306987
\(765\) −35.5452 −1.28514
\(766\) 11.3571 0.410349
\(767\) 9.84208 0.355377
\(768\) 2.18398 0.0788076
\(769\) 17.1879 0.619811 0.309905 0.950767i \(-0.399703\pi\)
0.309905 + 0.950767i \(0.399703\pi\)
\(770\) 0 0
\(771\) −56.4594 −2.03334
\(772\) 7.43352 0.267538
\(773\) −18.3194 −0.658902 −0.329451 0.944173i \(-0.606864\pi\)
−0.329451 + 0.944173i \(0.606864\pi\)
\(774\) −7.26980 −0.261307
\(775\) 0.642893 0.0230934
\(776\) −5.79296 −0.207955
\(777\) 0 0
\(778\) −3.80927 −0.136569
\(779\) 44.2095 1.58397
\(780\) 6.74547 0.241526
\(781\) −16.0805 −0.575405
\(782\) 6.69760 0.239506
\(783\) −23.4974 −0.839728
\(784\) 0 0
\(785\) −4.34710 −0.155155
\(786\) −30.9245 −1.10304
\(787\) 44.6046 1.58998 0.794990 0.606622i \(-0.207476\pi\)
0.794990 + 0.606622i \(0.207476\pi\)
\(788\) −20.5688 −0.732732
\(789\) −33.5215 −1.19340
\(790\) 2.71038 0.0964309
\(791\) 0 0
\(792\) −3.28890 −0.116866
\(793\) 8.11857 0.288299
\(794\) −20.8916 −0.741414
\(795\) −16.4415 −0.583119
\(796\) −10.3449 −0.366665
\(797\) 12.3667 0.438052 0.219026 0.975719i \(-0.429712\pi\)
0.219026 + 0.975719i \(0.429712\pi\)
\(798\) 0 0
\(799\) 71.8872 2.54319
\(800\) −4.53953 −0.160497
\(801\) −21.9634 −0.776037
\(802\) 19.8596 0.701268
\(803\) −20.9949 −0.740893
\(804\) −26.7021 −0.941709
\(805\) 0 0
\(806\) −0.141621 −0.00498839
\(807\) −51.1044 −1.79896
\(808\) −0.900594 −0.0316828
\(809\) 41.9220 1.47390 0.736950 0.675947i \(-0.236265\pi\)
0.736950 + 0.675947i \(0.236265\pi\)
\(810\) 34.5221 1.21298
\(811\) −26.3617 −0.925685 −0.462843 0.886440i \(-0.653170\pi\)
−0.462843 + 0.886440i \(0.653170\pi\)
\(812\) 0 0
\(813\) 14.7517 0.517365
\(814\) 6.00300 0.210405
\(815\) 18.7933 0.658302
\(816\) −14.2020 −0.497171
\(817\) 18.8374 0.659036
\(818\) −26.7896 −0.936676
\(819\) 0 0
\(820\) 29.7759 1.03982
\(821\) 4.68409 0.163476 0.0817380 0.996654i \(-0.473953\pi\)
0.0817380 + 0.996654i \(0.473953\pi\)
\(822\) 24.4527 0.852885
\(823\) −33.2320 −1.15839 −0.579197 0.815187i \(-0.696634\pi\)
−0.579197 + 0.815187i \(0.696634\pi\)
\(824\) −19.6817 −0.685643
\(825\) 18.4244 0.641456
\(826\) 0 0
\(827\) 4.33535 0.150755 0.0753775 0.997155i \(-0.475984\pi\)
0.0753775 + 0.997155i \(0.475984\pi\)
\(828\) 1.82277 0.0633458
\(829\) −12.1942 −0.423524 −0.211762 0.977321i \(-0.567920\pi\)
−0.211762 + 0.977321i \(0.567920\pi\)
\(830\) 27.1422 0.942119
\(831\) 34.0602 1.18154
\(832\) 1.00000 0.0346688
\(833\) 0 0
\(834\) −31.2573 −1.08235
\(835\) 4.71330 0.163111
\(836\) 8.52213 0.294744
\(837\) −0.380508 −0.0131523
\(838\) −18.6884 −0.645579
\(839\) 30.4397 1.05089 0.525447 0.850826i \(-0.323898\pi\)
0.525447 + 0.850826i \(0.323898\pi\)
\(840\) 0 0
\(841\) 47.4832 1.63735
\(842\) 22.7269 0.783220
\(843\) −44.2254 −1.52320
\(844\) −4.41583 −0.151999
\(845\) 3.08861 0.106252
\(846\) 19.5643 0.672636
\(847\) 0 0
\(848\) −2.43741 −0.0837011
\(849\) 52.4379 1.79967
\(850\) 29.5198 1.01252
\(851\) −3.32699 −0.114048
\(852\) −18.8979 −0.647431
\(853\) −17.3470 −0.593951 −0.296976 0.954885i \(-0.595978\pi\)
−0.296976 + 0.954885i \(0.595978\pi\)
\(854\) 0 0
\(855\) 25.0665 0.857255
\(856\) 10.9961 0.375839
\(857\) 13.0678 0.446389 0.223194 0.974774i \(-0.428352\pi\)
0.223194 + 0.974774i \(0.428352\pi\)
\(858\) −4.05866 −0.138560
\(859\) −25.3127 −0.863657 −0.431829 0.901956i \(-0.642131\pi\)
−0.431829 + 0.901956i \(0.642131\pi\)
\(860\) 12.6873 0.432634
\(861\) 0 0
\(862\) −11.6817 −0.397879
\(863\) −40.5891 −1.38167 −0.690834 0.723013i \(-0.742757\pi\)
−0.690834 + 0.723013i \(0.742757\pi\)
\(864\) 2.68681 0.0914070
\(865\) −60.5033 −2.05717
\(866\) 0.728650 0.0247605
\(867\) 55.2258 1.87556
\(868\) 0 0
\(869\) −1.63080 −0.0553211
\(870\) −58.9923 −2.00003
\(871\) −12.2263 −0.414274
\(872\) 14.8532 0.502994
\(873\) 10.2522 0.346984
\(874\) −4.72314 −0.159763
\(875\) 0 0
\(876\) −24.6733 −0.833634
\(877\) 3.22775 0.108993 0.0544967 0.998514i \(-0.482645\pi\)
0.0544967 + 0.998514i \(0.482645\pi\)
\(878\) −38.4271 −1.29685
\(879\) −43.5193 −1.46787
\(880\) 5.73981 0.193489
\(881\) 41.5142 1.39865 0.699324 0.714804i \(-0.253484\pi\)
0.699324 + 0.714804i \(0.253484\pi\)
\(882\) 0 0
\(883\) 13.7281 0.461986 0.230993 0.972955i \(-0.425803\pi\)
0.230993 + 0.972955i \(0.425803\pi\)
\(884\) −6.50283 −0.218714
\(885\) 66.3894 2.23166
\(886\) 23.7511 0.797935
\(887\) −42.9159 −1.44098 −0.720488 0.693467i \(-0.756082\pi\)
−0.720488 + 0.693467i \(0.756082\pi\)
\(888\) 7.05476 0.236742
\(889\) 0 0
\(890\) 38.3307 1.28485
\(891\) −20.7715 −0.695872
\(892\) 20.5592 0.688373
\(893\) −50.6948 −1.69644
\(894\) −48.0278 −1.60629
\(895\) −76.6196 −2.56111
\(896\) 0 0
\(897\) 2.24939 0.0751051
\(898\) 14.7398 0.491872
\(899\) 1.23854 0.0413077
\(900\) 8.03391 0.267797
\(901\) 15.8501 0.528042
\(902\) −17.9158 −0.596531
\(903\) 0 0
\(904\) −5.75061 −0.191262
\(905\) 3.62237 0.120412
\(906\) 11.7654 0.390878
\(907\) 32.8071 1.08934 0.544671 0.838650i \(-0.316654\pi\)
0.544671 + 0.838650i \(0.316654\pi\)
\(908\) 22.0073 0.730337
\(909\) 1.59384 0.0528644
\(910\) 0 0
\(911\) 1.87240 0.0620354 0.0310177 0.999519i \(-0.490125\pi\)
0.0310177 + 0.999519i \(0.490125\pi\)
\(912\) 10.0153 0.331638
\(913\) −16.3311 −0.540481
\(914\) −37.3619 −1.23582
\(915\) 54.7635 1.81043
\(916\) −0.996103 −0.0329122
\(917\) 0 0
\(918\) −17.4718 −0.576656
\(919\) 46.1835 1.52345 0.761726 0.647900i \(-0.224352\pi\)
0.761726 + 0.647900i \(0.224352\pi\)
\(920\) −3.18112 −0.104879
\(921\) −36.3785 −1.19871
\(922\) 25.8709 0.852014
\(923\) −8.65296 −0.284816
\(924\) 0 0
\(925\) −14.6638 −0.482141
\(926\) −24.4041 −0.801968
\(927\) 34.8319 1.14403
\(928\) −8.74547 −0.287084
\(929\) −38.6352 −1.26758 −0.633790 0.773505i \(-0.718502\pi\)
−0.633790 + 0.773505i \(0.718502\pi\)
\(930\) −0.955300 −0.0313255
\(931\) 0 0
\(932\) 15.7403 0.515592
\(933\) −58.0787 −1.90141
\(934\) −36.5660 −1.19647
\(935\) −37.3250 −1.22066
\(936\) −1.76977 −0.0578466
\(937\) 2.65276 0.0866617 0.0433309 0.999061i \(-0.486203\pi\)
0.0433309 + 0.999061i \(0.486203\pi\)
\(938\) 0 0
\(939\) −14.2733 −0.465790
\(940\) −34.1439 −1.11365
\(941\) −24.1574 −0.787509 −0.393754 0.919216i \(-0.628824\pi\)
−0.393754 + 0.919216i \(0.628824\pi\)
\(942\) 3.07386 0.100152
\(943\) 9.92930 0.323343
\(944\) 9.84208 0.320332
\(945\) 0 0
\(946\) −7.63380 −0.248196
\(947\) −30.7990 −1.00083 −0.500417 0.865784i \(-0.666820\pi\)
−0.500417 + 0.865784i \(0.666820\pi\)
\(948\) −1.91653 −0.0622459
\(949\) −11.2974 −0.366729
\(950\) −20.8173 −0.675403
\(951\) −60.6439 −1.96651
\(952\) 0 0
\(953\) 36.9808 1.19793 0.598963 0.800776i \(-0.295579\pi\)
0.598963 + 0.800776i \(0.295579\pi\)
\(954\) 4.31365 0.139660
\(955\) 26.2078 0.848063
\(956\) 1.10388 0.0357019
\(957\) 35.4949 1.14739
\(958\) 5.50693 0.177921
\(959\) 0 0
\(960\) 6.74547 0.217709
\(961\) −30.9799 −0.999353
\(962\) 3.23023 0.104147
\(963\) −19.4605 −0.627107
\(964\) −4.68005 −0.150734
\(965\) 22.9593 0.739085
\(966\) 0 0
\(967\) −10.8805 −0.349895 −0.174947 0.984578i \(-0.555975\pi\)
−0.174947 + 0.984578i \(0.555975\pi\)
\(968\) 7.54643 0.242551
\(969\) −65.1275 −2.09220
\(970\) −17.8922 −0.574485
\(971\) −19.1195 −0.613572 −0.306786 0.951778i \(-0.599254\pi\)
−0.306786 + 0.951778i \(0.599254\pi\)
\(972\) −16.3504 −0.524440
\(973\) 0 0
\(974\) 15.1981 0.486980
\(975\) 9.91424 0.317510
\(976\) 8.11857 0.259869
\(977\) 14.2754 0.456712 0.228356 0.973578i \(-0.426665\pi\)
0.228356 + 0.973578i \(0.426665\pi\)
\(978\) −13.2889 −0.424932
\(979\) −23.0631 −0.737099
\(980\) 0 0
\(981\) −26.2868 −0.839272
\(982\) 41.7930 1.33367
\(983\) −16.7685 −0.534833 −0.267416 0.963581i \(-0.586170\pi\)
−0.267416 + 0.963581i \(0.586170\pi\)
\(984\) −21.0548 −0.671201
\(985\) −63.5289 −2.02420
\(986\) 56.8703 1.81112
\(987\) 0 0
\(988\) 4.58579 0.145893
\(989\) 4.23081 0.134532
\(990\) −10.1581 −0.322846
\(991\) 49.7063 1.57897 0.789486 0.613769i \(-0.210347\pi\)
0.789486 + 0.613769i \(0.210347\pi\)
\(992\) −0.141621 −0.00449647
\(993\) 4.20651 0.133490
\(994\) 0 0
\(995\) −31.9514 −1.01293
\(996\) −19.1924 −0.608135
\(997\) −10.1594 −0.321750 −0.160875 0.986975i \(-0.551432\pi\)
−0.160875 + 0.986975i \(0.551432\pi\)
\(998\) −6.54790 −0.207270
\(999\) 8.67901 0.274592
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.a.u.1.3 yes 4
7.2 even 3 1274.2.f.z.1145.2 8
7.3 odd 6 1274.2.f.ba.79.3 8
7.4 even 3 1274.2.f.z.79.2 8
7.5 odd 6 1274.2.f.ba.1145.3 8
7.6 odd 2 1274.2.a.t.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1274.2.a.t.1.2 4 7.6 odd 2
1274.2.a.u.1.3 yes 4 1.1 even 1 trivial
1274.2.f.z.79.2 8 7.4 even 3
1274.2.f.z.1145.2 8 7.2 even 3
1274.2.f.ba.79.3 8 7.3 odd 6
1274.2.f.ba.1145.3 8 7.5 odd 6