Defining parameters
Level: | \( N \) | \(=\) | \( 1274 = 2 \cdot 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1274.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 23 \) | ||
Sturm bound: | \(392\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1274))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 212 | 41 | 171 |
Cusp forms | 181 | 41 | 140 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(13\) | Fricke | Dim. |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(5\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(7\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(6\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(3\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(6\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(3\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(9\) |
Plus space | \(+\) | \(13\) | ||
Minus space | \(-\) | \(28\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1274))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1274))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1274)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(637))\)\(^{\oplus 2}\)