Properties

Label 1274.2.a.p.1.1
Level $1274$
Weight $2$
Character 1274.1
Self dual yes
Analytic conductor $10.173$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(1,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-2,2,-4,-2,0,2,0,-4,2,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.1729412175\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1274.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -2.41421 q^{3} +1.00000 q^{4} -0.585786 q^{5} -2.41421 q^{6} +1.00000 q^{8} +2.82843 q^{9} -0.585786 q^{10} -0.414214 q^{11} -2.41421 q^{12} +1.00000 q^{13} +1.41421 q^{15} +1.00000 q^{16} -4.00000 q^{17} +2.82843 q^{18} -0.585786 q^{19} -0.585786 q^{20} -0.414214 q^{22} +5.24264 q^{23} -2.41421 q^{24} -4.65685 q^{25} +1.00000 q^{26} +0.414214 q^{27} -3.41421 q^{29} +1.41421 q^{30} -5.58579 q^{31} +1.00000 q^{32} +1.00000 q^{33} -4.00000 q^{34} +2.82843 q^{36} -0.171573 q^{37} -0.585786 q^{38} -2.41421 q^{39} -0.585786 q^{40} -7.00000 q^{41} -6.58579 q^{43} -0.414214 q^{44} -1.65685 q^{45} +5.24264 q^{46} -1.24264 q^{47} -2.41421 q^{48} -4.65685 q^{50} +9.65685 q^{51} +1.00000 q^{52} -11.8995 q^{53} +0.414214 q^{54} +0.242641 q^{55} +1.41421 q^{57} -3.41421 q^{58} +4.58579 q^{59} +1.41421 q^{60} -2.17157 q^{61} -5.58579 q^{62} +1.00000 q^{64} -0.585786 q^{65} +1.00000 q^{66} -14.4142 q^{67} -4.00000 q^{68} -12.6569 q^{69} -0.242641 q^{71} +2.82843 q^{72} +3.00000 q^{73} -0.171573 q^{74} +11.2426 q^{75} -0.585786 q^{76} -2.41421 q^{78} -5.58579 q^{79} -0.585786 q^{80} -9.48528 q^{81} -7.00000 q^{82} +9.89949 q^{83} +2.34315 q^{85} -6.58579 q^{86} +8.24264 q^{87} -0.414214 q^{88} -18.1421 q^{89} -1.65685 q^{90} +5.24264 q^{92} +13.4853 q^{93} -1.24264 q^{94} +0.343146 q^{95} -2.41421 q^{96} -8.31371 q^{97} -1.17157 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 4 q^{5} - 2 q^{6} + 2 q^{8} - 4 q^{10} + 2 q^{11} - 2 q^{12} + 2 q^{13} + 2 q^{16} - 8 q^{17} - 4 q^{19} - 4 q^{20} + 2 q^{22} + 2 q^{23} - 2 q^{24} + 2 q^{25} + 2 q^{26}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −2.41421 −1.39385 −0.696923 0.717146i \(-0.745448\pi\)
−0.696923 + 0.717146i \(0.745448\pi\)
\(4\) 1.00000 0.500000
\(5\) −0.585786 −0.261972 −0.130986 0.991384i \(-0.541814\pi\)
−0.130986 + 0.991384i \(0.541814\pi\)
\(6\) −2.41421 −0.985599
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 2.82843 0.942809
\(10\) −0.585786 −0.185242
\(11\) −0.414214 −0.124890 −0.0624450 0.998048i \(-0.519890\pi\)
−0.0624450 + 0.998048i \(0.519890\pi\)
\(12\) −2.41421 −0.696923
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 1.41421 0.365148
\(16\) 1.00000 0.250000
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 2.82843 0.666667
\(19\) −0.585786 −0.134389 −0.0671943 0.997740i \(-0.521405\pi\)
−0.0671943 + 0.997740i \(0.521405\pi\)
\(20\) −0.585786 −0.130986
\(21\) 0 0
\(22\) −0.414214 −0.0883106
\(23\) 5.24264 1.09317 0.546583 0.837405i \(-0.315928\pi\)
0.546583 + 0.837405i \(0.315928\pi\)
\(24\) −2.41421 −0.492799
\(25\) −4.65685 −0.931371
\(26\) 1.00000 0.196116
\(27\) 0.414214 0.0797154
\(28\) 0 0
\(29\) −3.41421 −0.634004 −0.317002 0.948425i \(-0.602676\pi\)
−0.317002 + 0.948425i \(0.602676\pi\)
\(30\) 1.41421 0.258199
\(31\) −5.58579 −1.00324 −0.501618 0.865089i \(-0.667262\pi\)
−0.501618 + 0.865089i \(0.667262\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.00000 0.174078
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) 2.82843 0.471405
\(37\) −0.171573 −0.0282064 −0.0141032 0.999901i \(-0.504489\pi\)
−0.0141032 + 0.999901i \(0.504489\pi\)
\(38\) −0.585786 −0.0950271
\(39\) −2.41421 −0.386584
\(40\) −0.585786 −0.0926210
\(41\) −7.00000 −1.09322 −0.546608 0.837389i \(-0.684081\pi\)
−0.546608 + 0.837389i \(0.684081\pi\)
\(42\) 0 0
\(43\) −6.58579 −1.00432 −0.502162 0.864774i \(-0.667462\pi\)
−0.502162 + 0.864774i \(0.667462\pi\)
\(44\) −0.414214 −0.0624450
\(45\) −1.65685 −0.246989
\(46\) 5.24264 0.772985
\(47\) −1.24264 −0.181258 −0.0906289 0.995885i \(-0.528888\pi\)
−0.0906289 + 0.995885i \(0.528888\pi\)
\(48\) −2.41421 −0.348462
\(49\) 0 0
\(50\) −4.65685 −0.658579
\(51\) 9.65685 1.35223
\(52\) 1.00000 0.138675
\(53\) −11.8995 −1.63452 −0.817261 0.576268i \(-0.804508\pi\)
−0.817261 + 0.576268i \(0.804508\pi\)
\(54\) 0.414214 0.0563673
\(55\) 0.242641 0.0327177
\(56\) 0 0
\(57\) 1.41421 0.187317
\(58\) −3.41421 −0.448308
\(59\) 4.58579 0.597019 0.298509 0.954407i \(-0.403511\pi\)
0.298509 + 0.954407i \(0.403511\pi\)
\(60\) 1.41421 0.182574
\(61\) −2.17157 −0.278041 −0.139021 0.990289i \(-0.544395\pi\)
−0.139021 + 0.990289i \(0.544395\pi\)
\(62\) −5.58579 −0.709396
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.585786 −0.0726579
\(66\) 1.00000 0.123091
\(67\) −14.4142 −1.76098 −0.880488 0.474068i \(-0.842785\pi\)
−0.880488 + 0.474068i \(0.842785\pi\)
\(68\) −4.00000 −0.485071
\(69\) −12.6569 −1.52371
\(70\) 0 0
\(71\) −0.242641 −0.0287962 −0.0143981 0.999896i \(-0.504583\pi\)
−0.0143981 + 0.999896i \(0.504583\pi\)
\(72\) 2.82843 0.333333
\(73\) 3.00000 0.351123 0.175562 0.984468i \(-0.443826\pi\)
0.175562 + 0.984468i \(0.443826\pi\)
\(74\) −0.171573 −0.0199449
\(75\) 11.2426 1.29819
\(76\) −0.585786 −0.0671943
\(77\) 0 0
\(78\) −2.41421 −0.273356
\(79\) −5.58579 −0.628450 −0.314225 0.949349i \(-0.601745\pi\)
−0.314225 + 0.949349i \(0.601745\pi\)
\(80\) −0.585786 −0.0654929
\(81\) −9.48528 −1.05392
\(82\) −7.00000 −0.773021
\(83\) 9.89949 1.08661 0.543305 0.839535i \(-0.317173\pi\)
0.543305 + 0.839535i \(0.317173\pi\)
\(84\) 0 0
\(85\) 2.34315 0.254150
\(86\) −6.58579 −0.710164
\(87\) 8.24264 0.883704
\(88\) −0.414214 −0.0441553
\(89\) −18.1421 −1.92306 −0.961531 0.274696i \(-0.911423\pi\)
−0.961531 + 0.274696i \(0.911423\pi\)
\(90\) −1.65685 −0.174648
\(91\) 0 0
\(92\) 5.24264 0.546583
\(93\) 13.4853 1.39836
\(94\) −1.24264 −0.128169
\(95\) 0.343146 0.0352060
\(96\) −2.41421 −0.246400
\(97\) −8.31371 −0.844129 −0.422065 0.906566i \(-0.638694\pi\)
−0.422065 + 0.906566i \(0.638694\pi\)
\(98\) 0 0
\(99\) −1.17157 −0.117748
\(100\) −4.65685 −0.465685
\(101\) 18.3137 1.82228 0.911141 0.412095i \(-0.135203\pi\)
0.911141 + 0.412095i \(0.135203\pi\)
\(102\) 9.65685 0.956171
\(103\) −10.4853 −1.03315 −0.516573 0.856243i \(-0.672792\pi\)
−0.516573 + 0.856243i \(0.672792\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) −11.8995 −1.15578
\(107\) 12.2426 1.18354 0.591770 0.806107i \(-0.298429\pi\)
0.591770 + 0.806107i \(0.298429\pi\)
\(108\) 0.414214 0.0398577
\(109\) −3.31371 −0.317396 −0.158698 0.987327i \(-0.550730\pi\)
−0.158698 + 0.987327i \(0.550730\pi\)
\(110\) 0.242641 0.0231349
\(111\) 0.414214 0.0393154
\(112\) 0 0
\(113\) −13.9706 −1.31424 −0.657120 0.753786i \(-0.728226\pi\)
−0.657120 + 0.753786i \(0.728226\pi\)
\(114\) 1.41421 0.132453
\(115\) −3.07107 −0.286379
\(116\) −3.41421 −0.317002
\(117\) 2.82843 0.261488
\(118\) 4.58579 0.422156
\(119\) 0 0
\(120\) 1.41421 0.129099
\(121\) −10.8284 −0.984402
\(122\) −2.17157 −0.196605
\(123\) 16.8995 1.52378
\(124\) −5.58579 −0.501618
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) 12.5563 1.11420 0.557098 0.830447i \(-0.311915\pi\)
0.557098 + 0.830447i \(0.311915\pi\)
\(128\) 1.00000 0.0883883
\(129\) 15.8995 1.39987
\(130\) −0.585786 −0.0513769
\(131\) 15.6569 1.36795 0.683973 0.729507i \(-0.260251\pi\)
0.683973 + 0.729507i \(0.260251\pi\)
\(132\) 1.00000 0.0870388
\(133\) 0 0
\(134\) −14.4142 −1.24520
\(135\) −0.242641 −0.0208832
\(136\) −4.00000 −0.342997
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) −12.6569 −1.07742
\(139\) 6.34315 0.538019 0.269009 0.963138i \(-0.413304\pi\)
0.269009 + 0.963138i \(0.413304\pi\)
\(140\) 0 0
\(141\) 3.00000 0.252646
\(142\) −0.242641 −0.0203620
\(143\) −0.414214 −0.0346383
\(144\) 2.82843 0.235702
\(145\) 2.00000 0.166091
\(146\) 3.00000 0.248282
\(147\) 0 0
\(148\) −0.171573 −0.0141032
\(149\) 4.31371 0.353393 0.176696 0.984265i \(-0.443459\pi\)
0.176696 + 0.984265i \(0.443459\pi\)
\(150\) 11.2426 0.917958
\(151\) 20.9706 1.70656 0.853280 0.521453i \(-0.174610\pi\)
0.853280 + 0.521453i \(0.174610\pi\)
\(152\) −0.585786 −0.0475136
\(153\) −11.3137 −0.914659
\(154\) 0 0
\(155\) 3.27208 0.262820
\(156\) −2.41421 −0.193292
\(157\) 11.9706 0.955355 0.477677 0.878535i \(-0.341479\pi\)
0.477677 + 0.878535i \(0.341479\pi\)
\(158\) −5.58579 −0.444381
\(159\) 28.7279 2.27827
\(160\) −0.585786 −0.0463105
\(161\) 0 0
\(162\) −9.48528 −0.745234
\(163\) −5.31371 −0.416202 −0.208101 0.978107i \(-0.566728\pi\)
−0.208101 + 0.978107i \(0.566728\pi\)
\(164\) −7.00000 −0.546608
\(165\) −0.585786 −0.0456034
\(166\) 9.89949 0.768350
\(167\) 10.8284 0.837929 0.418964 0.908003i \(-0.362393\pi\)
0.418964 + 0.908003i \(0.362393\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 2.34315 0.179711
\(171\) −1.65685 −0.126703
\(172\) −6.58579 −0.502162
\(173\) −13.6569 −1.03831 −0.519156 0.854680i \(-0.673754\pi\)
−0.519156 + 0.854680i \(0.673754\pi\)
\(174\) 8.24264 0.624873
\(175\) 0 0
\(176\) −0.414214 −0.0312225
\(177\) −11.0711 −0.832152
\(178\) −18.1421 −1.35981
\(179\) −6.48528 −0.484733 −0.242366 0.970185i \(-0.577924\pi\)
−0.242366 + 0.970185i \(0.577924\pi\)
\(180\) −1.65685 −0.123495
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 5.24264 0.387547
\(184\) 5.24264 0.386493
\(185\) 0.100505 0.00738928
\(186\) 13.4853 0.988789
\(187\) 1.65685 0.121161
\(188\) −1.24264 −0.0906289
\(189\) 0 0
\(190\) 0.343146 0.0248944
\(191\) 0.485281 0.0351137 0.0175569 0.999846i \(-0.494411\pi\)
0.0175569 + 0.999846i \(0.494411\pi\)
\(192\) −2.41421 −0.174231
\(193\) 20.9706 1.50949 0.754747 0.656016i \(-0.227760\pi\)
0.754747 + 0.656016i \(0.227760\pi\)
\(194\) −8.31371 −0.596889
\(195\) 1.41421 0.101274
\(196\) 0 0
\(197\) 10.3137 0.734821 0.367411 0.930059i \(-0.380244\pi\)
0.367411 + 0.930059i \(0.380244\pi\)
\(198\) −1.17157 −0.0832601
\(199\) −24.7279 −1.75292 −0.876458 0.481478i \(-0.840100\pi\)
−0.876458 + 0.481478i \(0.840100\pi\)
\(200\) −4.65685 −0.329289
\(201\) 34.7990 2.45453
\(202\) 18.3137 1.28855
\(203\) 0 0
\(204\) 9.65685 0.676115
\(205\) 4.10051 0.286392
\(206\) −10.4853 −0.730544
\(207\) 14.8284 1.03065
\(208\) 1.00000 0.0693375
\(209\) 0.242641 0.0167838
\(210\) 0 0
\(211\) −9.75736 −0.671724 −0.335862 0.941911i \(-0.609028\pi\)
−0.335862 + 0.941911i \(0.609028\pi\)
\(212\) −11.8995 −0.817261
\(213\) 0.585786 0.0401374
\(214\) 12.2426 0.836890
\(215\) 3.85786 0.263104
\(216\) 0.414214 0.0281837
\(217\) 0 0
\(218\) −3.31371 −0.224433
\(219\) −7.24264 −0.489412
\(220\) 0.242641 0.0163588
\(221\) −4.00000 −0.269069
\(222\) 0.414214 0.0278002
\(223\) 23.2426 1.55644 0.778221 0.627990i \(-0.216122\pi\)
0.778221 + 0.627990i \(0.216122\pi\)
\(224\) 0 0
\(225\) −13.1716 −0.878105
\(226\) −13.9706 −0.929308
\(227\) −12.9706 −0.860886 −0.430443 0.902618i \(-0.641643\pi\)
−0.430443 + 0.902618i \(0.641643\pi\)
\(228\) 1.41421 0.0936586
\(229\) −15.8995 −1.05067 −0.525334 0.850896i \(-0.676060\pi\)
−0.525334 + 0.850896i \(0.676060\pi\)
\(230\) −3.07107 −0.202500
\(231\) 0 0
\(232\) −3.41421 −0.224154
\(233\) 21.4853 1.40755 0.703774 0.710424i \(-0.251497\pi\)
0.703774 + 0.710424i \(0.251497\pi\)
\(234\) 2.82843 0.184900
\(235\) 0.727922 0.0474844
\(236\) 4.58579 0.298509
\(237\) 13.4853 0.875963
\(238\) 0 0
\(239\) 21.7990 1.41006 0.705030 0.709178i \(-0.250934\pi\)
0.705030 + 0.709178i \(0.250934\pi\)
\(240\) 1.41421 0.0912871
\(241\) −14.8284 −0.955183 −0.477591 0.878582i \(-0.658490\pi\)
−0.477591 + 0.878582i \(0.658490\pi\)
\(242\) −10.8284 −0.696078
\(243\) 21.6569 1.38929
\(244\) −2.17157 −0.139021
\(245\) 0 0
\(246\) 16.8995 1.07747
\(247\) −0.585786 −0.0372727
\(248\) −5.58579 −0.354698
\(249\) −23.8995 −1.51457
\(250\) 5.65685 0.357771
\(251\) −13.7279 −0.866499 −0.433249 0.901274i \(-0.642633\pi\)
−0.433249 + 0.901274i \(0.642633\pi\)
\(252\) 0 0
\(253\) −2.17157 −0.136526
\(254\) 12.5563 0.787855
\(255\) −5.65685 −0.354246
\(256\) 1.00000 0.0625000
\(257\) 16.9706 1.05859 0.529297 0.848436i \(-0.322456\pi\)
0.529297 + 0.848436i \(0.322456\pi\)
\(258\) 15.8995 0.989859
\(259\) 0 0
\(260\) −0.585786 −0.0363289
\(261\) −9.65685 −0.597744
\(262\) 15.6569 0.967284
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 1.00000 0.0615457
\(265\) 6.97056 0.428198
\(266\) 0 0
\(267\) 43.7990 2.68045
\(268\) −14.4142 −0.880488
\(269\) 13.8284 0.843134 0.421567 0.906797i \(-0.361480\pi\)
0.421567 + 0.906797i \(0.361480\pi\)
\(270\) −0.242641 −0.0147666
\(271\) −24.2132 −1.47085 −0.735424 0.677608i \(-0.763017\pi\)
−0.735424 + 0.677608i \(0.763017\pi\)
\(272\) −4.00000 −0.242536
\(273\) 0 0
\(274\) −2.00000 −0.120824
\(275\) 1.92893 0.116319
\(276\) −12.6569 −0.761853
\(277\) 15.5563 0.934690 0.467345 0.884075i \(-0.345211\pi\)
0.467345 + 0.884075i \(0.345211\pi\)
\(278\) 6.34315 0.380437
\(279\) −15.7990 −0.945861
\(280\) 0 0
\(281\) −31.4142 −1.87401 −0.937007 0.349309i \(-0.886416\pi\)
−0.937007 + 0.349309i \(0.886416\pi\)
\(282\) 3.00000 0.178647
\(283\) 6.55635 0.389735 0.194867 0.980830i \(-0.437572\pi\)
0.194867 + 0.980830i \(0.437572\pi\)
\(284\) −0.242641 −0.0143981
\(285\) −0.828427 −0.0490718
\(286\) −0.414214 −0.0244930
\(287\) 0 0
\(288\) 2.82843 0.166667
\(289\) −1.00000 −0.0588235
\(290\) 2.00000 0.117444
\(291\) 20.0711 1.17659
\(292\) 3.00000 0.175562
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) 0 0
\(295\) −2.68629 −0.156402
\(296\) −0.171573 −0.00997247
\(297\) −0.171573 −0.00995567
\(298\) 4.31371 0.249886
\(299\) 5.24264 0.303190
\(300\) 11.2426 0.649094
\(301\) 0 0
\(302\) 20.9706 1.20672
\(303\) −44.2132 −2.53998
\(304\) −0.585786 −0.0335972
\(305\) 1.27208 0.0728390
\(306\) −11.3137 −0.646762
\(307\) 27.0711 1.54503 0.772514 0.634998i \(-0.218999\pi\)
0.772514 + 0.634998i \(0.218999\pi\)
\(308\) 0 0
\(309\) 25.3137 1.44005
\(310\) 3.27208 0.185842
\(311\) 2.72792 0.154686 0.0773431 0.997005i \(-0.475356\pi\)
0.0773431 + 0.997005i \(0.475356\pi\)
\(312\) −2.41421 −0.136678
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 11.9706 0.675538
\(315\) 0 0
\(316\) −5.58579 −0.314225
\(317\) 18.3137 1.02860 0.514300 0.857610i \(-0.328052\pi\)
0.514300 + 0.857610i \(0.328052\pi\)
\(318\) 28.7279 1.61098
\(319\) 1.41421 0.0791808
\(320\) −0.585786 −0.0327465
\(321\) −29.5563 −1.64967
\(322\) 0 0
\(323\) 2.34315 0.130376
\(324\) −9.48528 −0.526960
\(325\) −4.65685 −0.258316
\(326\) −5.31371 −0.294299
\(327\) 8.00000 0.442401
\(328\) −7.00000 −0.386510
\(329\) 0 0
\(330\) −0.585786 −0.0322465
\(331\) −26.6985 −1.46748 −0.733741 0.679430i \(-0.762227\pi\)
−0.733741 + 0.679430i \(0.762227\pi\)
\(332\) 9.89949 0.543305
\(333\) −0.485281 −0.0265933
\(334\) 10.8284 0.592505
\(335\) 8.44365 0.461326
\(336\) 0 0
\(337\) 30.6569 1.66999 0.834993 0.550261i \(-0.185472\pi\)
0.834993 + 0.550261i \(0.185472\pi\)
\(338\) 1.00000 0.0543928
\(339\) 33.7279 1.83185
\(340\) 2.34315 0.127075
\(341\) 2.31371 0.125294
\(342\) −1.65685 −0.0895924
\(343\) 0 0
\(344\) −6.58579 −0.355082
\(345\) 7.41421 0.399168
\(346\) −13.6569 −0.734197
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 8.24264 0.441852
\(349\) 3.55635 0.190367 0.0951835 0.995460i \(-0.469656\pi\)
0.0951835 + 0.995460i \(0.469656\pi\)
\(350\) 0 0
\(351\) 0.414214 0.0221091
\(352\) −0.414214 −0.0220777
\(353\) 6.17157 0.328480 0.164240 0.986420i \(-0.447483\pi\)
0.164240 + 0.986420i \(0.447483\pi\)
\(354\) −11.0711 −0.588421
\(355\) 0.142136 0.00754378
\(356\) −18.1421 −0.961531
\(357\) 0 0
\(358\) −6.48528 −0.342758
\(359\) −7.55635 −0.398809 −0.199404 0.979917i \(-0.563901\pi\)
−0.199404 + 0.979917i \(0.563901\pi\)
\(360\) −1.65685 −0.0873239
\(361\) −18.6569 −0.981940
\(362\) −7.00000 −0.367912
\(363\) 26.1421 1.37211
\(364\) 0 0
\(365\) −1.75736 −0.0919844
\(366\) 5.24264 0.274037
\(367\) −4.92893 −0.257288 −0.128644 0.991691i \(-0.541062\pi\)
−0.128644 + 0.991691i \(0.541062\pi\)
\(368\) 5.24264 0.273292
\(369\) −19.7990 −1.03069
\(370\) 0.100505 0.00522501
\(371\) 0 0
\(372\) 13.4853 0.699179
\(373\) −23.4142 −1.21234 −0.606171 0.795334i \(-0.707295\pi\)
−0.606171 + 0.795334i \(0.707295\pi\)
\(374\) 1.65685 0.0856739
\(375\) −13.6569 −0.705237
\(376\) −1.24264 −0.0640843
\(377\) −3.41421 −0.175841
\(378\) 0 0
\(379\) 5.17157 0.265646 0.132823 0.991140i \(-0.457596\pi\)
0.132823 + 0.991140i \(0.457596\pi\)
\(380\) 0.343146 0.0176030
\(381\) −30.3137 −1.55302
\(382\) 0.485281 0.0248292
\(383\) −6.27208 −0.320488 −0.160244 0.987077i \(-0.551228\pi\)
−0.160244 + 0.987077i \(0.551228\pi\)
\(384\) −2.41421 −0.123200
\(385\) 0 0
\(386\) 20.9706 1.06737
\(387\) −18.6274 −0.946885
\(388\) −8.31371 −0.422065
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 1.41421 0.0716115
\(391\) −20.9706 −1.06053
\(392\) 0 0
\(393\) −37.7990 −1.90671
\(394\) 10.3137 0.519597
\(395\) 3.27208 0.164636
\(396\) −1.17157 −0.0588738
\(397\) −37.9411 −1.90421 −0.952105 0.305770i \(-0.901086\pi\)
−0.952105 + 0.305770i \(0.901086\pi\)
\(398\) −24.7279 −1.23950
\(399\) 0 0
\(400\) −4.65685 −0.232843
\(401\) −17.0711 −0.852488 −0.426244 0.904608i \(-0.640164\pi\)
−0.426244 + 0.904608i \(0.640164\pi\)
\(402\) 34.7990 1.73562
\(403\) −5.58579 −0.278248
\(404\) 18.3137 0.911141
\(405\) 5.55635 0.276097
\(406\) 0 0
\(407\) 0.0710678 0.00352270
\(408\) 9.65685 0.478086
\(409\) −18.0000 −0.890043 −0.445021 0.895520i \(-0.646804\pi\)
−0.445021 + 0.895520i \(0.646804\pi\)
\(410\) 4.10051 0.202510
\(411\) 4.82843 0.238169
\(412\) −10.4853 −0.516573
\(413\) 0 0
\(414\) 14.8284 0.728777
\(415\) −5.79899 −0.284661
\(416\) 1.00000 0.0490290
\(417\) −15.3137 −0.749916
\(418\) 0.242641 0.0118679
\(419\) 23.2426 1.13548 0.567739 0.823209i \(-0.307818\pi\)
0.567739 + 0.823209i \(0.307818\pi\)
\(420\) 0 0
\(421\) 7.68629 0.374607 0.187303 0.982302i \(-0.440025\pi\)
0.187303 + 0.982302i \(0.440025\pi\)
\(422\) −9.75736 −0.474981
\(423\) −3.51472 −0.170891
\(424\) −11.8995 −0.577891
\(425\) 18.6274 0.903562
\(426\) 0.585786 0.0283814
\(427\) 0 0
\(428\) 12.2426 0.591770
\(429\) 1.00000 0.0482805
\(430\) 3.85786 0.186043
\(431\) −28.1421 −1.35556 −0.677779 0.735265i \(-0.737058\pi\)
−0.677779 + 0.735265i \(0.737058\pi\)
\(432\) 0.414214 0.0199289
\(433\) −7.65685 −0.367965 −0.183982 0.982930i \(-0.558899\pi\)
−0.183982 + 0.982930i \(0.558899\pi\)
\(434\) 0 0
\(435\) −4.82843 −0.231505
\(436\) −3.31371 −0.158698
\(437\) −3.07107 −0.146909
\(438\) −7.24264 −0.346067
\(439\) −0.585786 −0.0279581 −0.0139790 0.999902i \(-0.504450\pi\)
−0.0139790 + 0.999902i \(0.504450\pi\)
\(440\) 0.242641 0.0115674
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) 10.3848 0.493396 0.246698 0.969092i \(-0.420654\pi\)
0.246698 + 0.969092i \(0.420654\pi\)
\(444\) 0.414214 0.0196577
\(445\) 10.6274 0.503788
\(446\) 23.2426 1.10057
\(447\) −10.4142 −0.492575
\(448\) 0 0
\(449\) 1.61522 0.0762271 0.0381136 0.999273i \(-0.487865\pi\)
0.0381136 + 0.999273i \(0.487865\pi\)
\(450\) −13.1716 −0.620914
\(451\) 2.89949 0.136532
\(452\) −13.9706 −0.657120
\(453\) −50.6274 −2.37868
\(454\) −12.9706 −0.608739
\(455\) 0 0
\(456\) 1.41421 0.0662266
\(457\) −24.7279 −1.15672 −0.578362 0.815780i \(-0.696308\pi\)
−0.578362 + 0.815780i \(0.696308\pi\)
\(458\) −15.8995 −0.742935
\(459\) −1.65685 −0.0773353
\(460\) −3.07107 −0.143189
\(461\) −34.7279 −1.61744 −0.808720 0.588193i \(-0.799839\pi\)
−0.808720 + 0.588193i \(0.799839\pi\)
\(462\) 0 0
\(463\) −36.2843 −1.68627 −0.843137 0.537700i \(-0.819293\pi\)
−0.843137 + 0.537700i \(0.819293\pi\)
\(464\) −3.41421 −0.158501
\(465\) −7.89949 −0.366330
\(466\) 21.4853 0.995286
\(467\) −18.1421 −0.839518 −0.419759 0.907636i \(-0.637885\pi\)
−0.419759 + 0.907636i \(0.637885\pi\)
\(468\) 2.82843 0.130744
\(469\) 0 0
\(470\) 0.727922 0.0335765
\(471\) −28.8995 −1.33162
\(472\) 4.58579 0.211078
\(473\) 2.72792 0.125430
\(474\) 13.4853 0.619399
\(475\) 2.72792 0.125166
\(476\) 0 0
\(477\) −33.6569 −1.54104
\(478\) 21.7990 0.997063
\(479\) 20.2843 0.926812 0.463406 0.886146i \(-0.346627\pi\)
0.463406 + 0.886146i \(0.346627\pi\)
\(480\) 1.41421 0.0645497
\(481\) −0.171573 −0.00782305
\(482\) −14.8284 −0.675416
\(483\) 0 0
\(484\) −10.8284 −0.492201
\(485\) 4.87006 0.221138
\(486\) 21.6569 0.982375
\(487\) 40.3848 1.83001 0.915004 0.403444i \(-0.132187\pi\)
0.915004 + 0.403444i \(0.132187\pi\)
\(488\) −2.17157 −0.0983025
\(489\) 12.8284 0.580122
\(490\) 0 0
\(491\) −26.3848 −1.19073 −0.595364 0.803456i \(-0.702992\pi\)
−0.595364 + 0.803456i \(0.702992\pi\)
\(492\) 16.8995 0.761888
\(493\) 13.6569 0.615074
\(494\) −0.585786 −0.0263558
\(495\) 0.686292 0.0308465
\(496\) −5.58579 −0.250809
\(497\) 0 0
\(498\) −23.8995 −1.07096
\(499\) 12.8995 0.577461 0.288730 0.957410i \(-0.406767\pi\)
0.288730 + 0.957410i \(0.406767\pi\)
\(500\) 5.65685 0.252982
\(501\) −26.1421 −1.16794
\(502\) −13.7279 −0.612707
\(503\) −6.34315 −0.282827 −0.141413 0.989951i \(-0.545165\pi\)
−0.141413 + 0.989951i \(0.545165\pi\)
\(504\) 0 0
\(505\) −10.7279 −0.477386
\(506\) −2.17157 −0.0965382
\(507\) −2.41421 −0.107219
\(508\) 12.5563 0.557098
\(509\) −6.38478 −0.283000 −0.141500 0.989938i \(-0.545193\pi\)
−0.141500 + 0.989938i \(0.545193\pi\)
\(510\) −5.65685 −0.250490
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −0.242641 −0.0107128
\(514\) 16.9706 0.748539
\(515\) 6.14214 0.270655
\(516\) 15.8995 0.699936
\(517\) 0.514719 0.0226373
\(518\) 0 0
\(519\) 32.9706 1.44725
\(520\) −0.585786 −0.0256884
\(521\) −26.5858 −1.16474 −0.582372 0.812922i \(-0.697875\pi\)
−0.582372 + 0.812922i \(0.697875\pi\)
\(522\) −9.65685 −0.422669
\(523\) 12.2132 0.534046 0.267023 0.963690i \(-0.413960\pi\)
0.267023 + 0.963690i \(0.413960\pi\)
\(524\) 15.6569 0.683973
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) 22.3431 0.973283
\(528\) 1.00000 0.0435194
\(529\) 4.48528 0.195012
\(530\) 6.97056 0.302782
\(531\) 12.9706 0.562874
\(532\) 0 0
\(533\) −7.00000 −0.303204
\(534\) 43.7990 1.89537
\(535\) −7.17157 −0.310054
\(536\) −14.4142 −0.622599
\(537\) 15.6569 0.675643
\(538\) 13.8284 0.596186
\(539\) 0 0
\(540\) −0.242641 −0.0104416
\(541\) 43.7990 1.88307 0.941533 0.336921i \(-0.109386\pi\)
0.941533 + 0.336921i \(0.109386\pi\)
\(542\) −24.2132 −1.04005
\(543\) 16.8995 0.725227
\(544\) −4.00000 −0.171499
\(545\) 1.94113 0.0831487
\(546\) 0 0
\(547\) 1.61522 0.0690620 0.0345310 0.999404i \(-0.489006\pi\)
0.0345310 + 0.999404i \(0.489006\pi\)
\(548\) −2.00000 −0.0854358
\(549\) −6.14214 −0.262140
\(550\) 1.92893 0.0822499
\(551\) 2.00000 0.0852029
\(552\) −12.6569 −0.538711
\(553\) 0 0
\(554\) 15.5563 0.660926
\(555\) −0.242641 −0.0102995
\(556\) 6.34315 0.269009
\(557\) 6.31371 0.267520 0.133760 0.991014i \(-0.457295\pi\)
0.133760 + 0.991014i \(0.457295\pi\)
\(558\) −15.7990 −0.668825
\(559\) −6.58579 −0.278549
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) −31.4142 −1.32513
\(563\) 13.4437 0.566582 0.283291 0.959034i \(-0.408574\pi\)
0.283291 + 0.959034i \(0.408574\pi\)
\(564\) 3.00000 0.126323
\(565\) 8.18377 0.344294
\(566\) 6.55635 0.275584
\(567\) 0 0
\(568\) −0.242641 −0.0101810
\(569\) 31.7696 1.33185 0.665924 0.746019i \(-0.268037\pi\)
0.665924 + 0.746019i \(0.268037\pi\)
\(570\) −0.828427 −0.0346990
\(571\) 35.8995 1.50235 0.751174 0.660105i \(-0.229488\pi\)
0.751174 + 0.660105i \(0.229488\pi\)
\(572\) −0.414214 −0.0173191
\(573\) −1.17157 −0.0489432
\(574\) 0 0
\(575\) −24.4142 −1.01814
\(576\) 2.82843 0.117851
\(577\) −25.6569 −1.06811 −0.534054 0.845450i \(-0.679332\pi\)
−0.534054 + 0.845450i \(0.679332\pi\)
\(578\) −1.00000 −0.0415945
\(579\) −50.6274 −2.10400
\(580\) 2.00000 0.0830455
\(581\) 0 0
\(582\) 20.0711 0.831973
\(583\) 4.92893 0.204136
\(584\) 3.00000 0.124141
\(585\) −1.65685 −0.0685025
\(586\) 14.0000 0.578335
\(587\) 40.1421 1.65684 0.828422 0.560105i \(-0.189239\pi\)
0.828422 + 0.560105i \(0.189239\pi\)
\(588\) 0 0
\(589\) 3.27208 0.134824
\(590\) −2.68629 −0.110593
\(591\) −24.8995 −1.02423
\(592\) −0.171573 −0.00705160
\(593\) 12.4853 0.512709 0.256355 0.966583i \(-0.417479\pi\)
0.256355 + 0.966583i \(0.417479\pi\)
\(594\) −0.171573 −0.00703972
\(595\) 0 0
\(596\) 4.31371 0.176696
\(597\) 59.6985 2.44330
\(598\) 5.24264 0.214388
\(599\) −14.4142 −0.588949 −0.294474 0.955659i \(-0.595145\pi\)
−0.294474 + 0.955659i \(0.595145\pi\)
\(600\) 11.2426 0.458979
\(601\) −22.5858 −0.921293 −0.460647 0.887584i \(-0.652382\pi\)
−0.460647 + 0.887584i \(0.652382\pi\)
\(602\) 0 0
\(603\) −40.7696 −1.66026
\(604\) 20.9706 0.853280
\(605\) 6.34315 0.257886
\(606\) −44.2132 −1.79604
\(607\) −28.5858 −1.16026 −0.580131 0.814523i \(-0.696999\pi\)
−0.580131 + 0.814523i \(0.696999\pi\)
\(608\) −0.585786 −0.0237568
\(609\) 0 0
\(610\) 1.27208 0.0515049
\(611\) −1.24264 −0.0502719
\(612\) −11.3137 −0.457330
\(613\) 43.2843 1.74824 0.874118 0.485714i \(-0.161440\pi\)
0.874118 + 0.485714i \(0.161440\pi\)
\(614\) 27.0711 1.09250
\(615\) −9.89949 −0.399186
\(616\) 0 0
\(617\) 2.38478 0.0960075 0.0480037 0.998847i \(-0.484714\pi\)
0.0480037 + 0.998847i \(0.484714\pi\)
\(618\) 25.3137 1.01827
\(619\) −4.38478 −0.176239 −0.0881195 0.996110i \(-0.528086\pi\)
−0.0881195 + 0.996110i \(0.528086\pi\)
\(620\) 3.27208 0.131410
\(621\) 2.17157 0.0871422
\(622\) 2.72792 0.109380
\(623\) 0 0
\(624\) −2.41421 −0.0966459
\(625\) 19.9706 0.798823
\(626\) −6.00000 −0.239808
\(627\) −0.585786 −0.0233941
\(628\) 11.9706 0.477677
\(629\) 0.686292 0.0273642
\(630\) 0 0
\(631\) 21.7990 0.867804 0.433902 0.900960i \(-0.357136\pi\)
0.433902 + 0.900960i \(0.357136\pi\)
\(632\) −5.58579 −0.222191
\(633\) 23.5563 0.936281
\(634\) 18.3137 0.727330
\(635\) −7.35534 −0.291888
\(636\) 28.7279 1.13914
\(637\) 0 0
\(638\) 1.41421 0.0559893
\(639\) −0.686292 −0.0271493
\(640\) −0.585786 −0.0231552
\(641\) −4.51472 −0.178321 −0.0891603 0.996017i \(-0.528418\pi\)
−0.0891603 + 0.996017i \(0.528418\pi\)
\(642\) −29.5563 −1.16650
\(643\) −24.2843 −0.957678 −0.478839 0.877903i \(-0.658942\pi\)
−0.478839 + 0.877903i \(0.658942\pi\)
\(644\) 0 0
\(645\) −9.31371 −0.366727
\(646\) 2.34315 0.0921898
\(647\) 12.2426 0.481308 0.240654 0.970611i \(-0.422638\pi\)
0.240654 + 0.970611i \(0.422638\pi\)
\(648\) −9.48528 −0.372617
\(649\) −1.89949 −0.0745617
\(650\) −4.65685 −0.182657
\(651\) 0 0
\(652\) −5.31371 −0.208101
\(653\) 13.5563 0.530501 0.265250 0.964180i \(-0.414545\pi\)
0.265250 + 0.964180i \(0.414545\pi\)
\(654\) 8.00000 0.312825
\(655\) −9.17157 −0.358363
\(656\) −7.00000 −0.273304
\(657\) 8.48528 0.331042
\(658\) 0 0
\(659\) −20.5858 −0.801908 −0.400954 0.916098i \(-0.631321\pi\)
−0.400954 + 0.916098i \(0.631321\pi\)
\(660\) −0.585786 −0.0228017
\(661\) −14.4437 −0.561793 −0.280896 0.959738i \(-0.590632\pi\)
−0.280896 + 0.959738i \(0.590632\pi\)
\(662\) −26.6985 −1.03767
\(663\) 9.65685 0.375041
\(664\) 9.89949 0.384175
\(665\) 0 0
\(666\) −0.485281 −0.0188043
\(667\) −17.8995 −0.693071
\(668\) 10.8284 0.418964
\(669\) −56.1127 −2.16944
\(670\) 8.44365 0.326207
\(671\) 0.899495 0.0347246
\(672\) 0 0
\(673\) −33.7696 −1.30172 −0.650860 0.759198i \(-0.725592\pi\)
−0.650860 + 0.759198i \(0.725592\pi\)
\(674\) 30.6569 1.18086
\(675\) −1.92893 −0.0742446
\(676\) 1.00000 0.0384615
\(677\) −30.1716 −1.15959 −0.579794 0.814763i \(-0.696867\pi\)
−0.579794 + 0.814763i \(0.696867\pi\)
\(678\) 33.7279 1.29531
\(679\) 0 0
\(680\) 2.34315 0.0898555
\(681\) 31.3137 1.19994
\(682\) 2.31371 0.0885965
\(683\) 28.8995 1.10581 0.552904 0.833245i \(-0.313520\pi\)
0.552904 + 0.833245i \(0.313520\pi\)
\(684\) −1.65685 −0.0633514
\(685\) 1.17157 0.0447635
\(686\) 0 0
\(687\) 38.3848 1.46447
\(688\) −6.58579 −0.251081
\(689\) −11.8995 −0.453335
\(690\) 7.41421 0.282254
\(691\) −4.68629 −0.178275 −0.0891375 0.996019i \(-0.528411\pi\)
−0.0891375 + 0.996019i \(0.528411\pi\)
\(692\) −13.6569 −0.519156
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −3.71573 −0.140946
\(696\) 8.24264 0.312436
\(697\) 28.0000 1.06058
\(698\) 3.55635 0.134610
\(699\) −51.8701 −1.96191
\(700\) 0 0
\(701\) 41.7574 1.57715 0.788577 0.614936i \(-0.210818\pi\)
0.788577 + 0.614936i \(0.210818\pi\)
\(702\) 0.414214 0.0156335
\(703\) 0.100505 0.00379062
\(704\) −0.414214 −0.0156113
\(705\) −1.75736 −0.0661860
\(706\) 6.17157 0.232270
\(707\) 0 0
\(708\) −11.0711 −0.416076
\(709\) 29.1421 1.09446 0.547228 0.836984i \(-0.315683\pi\)
0.547228 + 0.836984i \(0.315683\pi\)
\(710\) 0.142136 0.00533425
\(711\) −15.7990 −0.592508
\(712\) −18.1421 −0.679905
\(713\) −29.2843 −1.09670
\(714\) 0 0
\(715\) 0.242641 0.00907425
\(716\) −6.48528 −0.242366
\(717\) −52.6274 −1.96541
\(718\) −7.55635 −0.282000
\(719\) 44.4264 1.65683 0.828413 0.560118i \(-0.189244\pi\)
0.828413 + 0.560118i \(0.189244\pi\)
\(720\) −1.65685 −0.0617473
\(721\) 0 0
\(722\) −18.6569 −0.694336
\(723\) 35.7990 1.33138
\(724\) −7.00000 −0.260153
\(725\) 15.8995 0.590492
\(726\) 26.1421 0.970226
\(727\) 18.4853 0.685581 0.342791 0.939412i \(-0.388628\pi\)
0.342791 + 0.939412i \(0.388628\pi\)
\(728\) 0 0
\(729\) −23.8284 −0.882534
\(730\) −1.75736 −0.0650428
\(731\) 26.3431 0.974336
\(732\) 5.24264 0.193774
\(733\) −28.9706 −1.07005 −0.535026 0.844836i \(-0.679698\pi\)
−0.535026 + 0.844836i \(0.679698\pi\)
\(734\) −4.92893 −0.181930
\(735\) 0 0
\(736\) 5.24264 0.193246
\(737\) 5.97056 0.219929
\(738\) −19.7990 −0.728811
\(739\) −14.1421 −0.520227 −0.260113 0.965578i \(-0.583760\pi\)
−0.260113 + 0.965578i \(0.583760\pi\)
\(740\) 0.100505 0.00369464
\(741\) 1.41421 0.0519524
\(742\) 0 0
\(743\) 22.3431 0.819691 0.409845 0.912155i \(-0.365583\pi\)
0.409845 + 0.912155i \(0.365583\pi\)
\(744\) 13.4853 0.494394
\(745\) −2.52691 −0.0925789
\(746\) −23.4142 −0.857255
\(747\) 28.0000 1.02447
\(748\) 1.65685 0.0605806
\(749\) 0 0
\(750\) −13.6569 −0.498678
\(751\) −45.7279 −1.66864 −0.834318 0.551284i \(-0.814138\pi\)
−0.834318 + 0.551284i \(0.814138\pi\)
\(752\) −1.24264 −0.0453144
\(753\) 33.1421 1.20777
\(754\) −3.41421 −0.124338
\(755\) −12.2843 −0.447070
\(756\) 0 0
\(757\) −10.6863 −0.388400 −0.194200 0.980962i \(-0.562211\pi\)
−0.194200 + 0.980962i \(0.562211\pi\)
\(758\) 5.17157 0.187840
\(759\) 5.24264 0.190296
\(760\) 0.343146 0.0124472
\(761\) −13.0000 −0.471250 −0.235625 0.971844i \(-0.575714\pi\)
−0.235625 + 0.971844i \(0.575714\pi\)
\(762\) −30.3137 −1.09815
\(763\) 0 0
\(764\) 0.485281 0.0175569
\(765\) 6.62742 0.239615
\(766\) −6.27208 −0.226619
\(767\) 4.58579 0.165583
\(768\) −2.41421 −0.0871154
\(769\) −38.1716 −1.37650 −0.688251 0.725473i \(-0.741621\pi\)
−0.688251 + 0.725473i \(0.741621\pi\)
\(770\) 0 0
\(771\) −40.9706 −1.47552
\(772\) 20.9706 0.754747
\(773\) −2.68629 −0.0966192 −0.0483096 0.998832i \(-0.515383\pi\)
−0.0483096 + 0.998832i \(0.515383\pi\)
\(774\) −18.6274 −0.669549
\(775\) 26.0122 0.934386
\(776\) −8.31371 −0.298445
\(777\) 0 0
\(778\) 12.0000 0.430221
\(779\) 4.10051 0.146916
\(780\) 1.41421 0.0506370
\(781\) 0.100505 0.00359635
\(782\) −20.9706 −0.749906
\(783\) −1.41421 −0.0505399
\(784\) 0 0
\(785\) −7.01219 −0.250276
\(786\) −37.7990 −1.34825
\(787\) 20.2843 0.723056 0.361528 0.932361i \(-0.382255\pi\)
0.361528 + 0.932361i \(0.382255\pi\)
\(788\) 10.3137 0.367411
\(789\) 38.6274 1.37517
\(790\) 3.27208 0.116415
\(791\) 0 0
\(792\) −1.17157 −0.0416300
\(793\) −2.17157 −0.0771148
\(794\) −37.9411 −1.34648
\(795\) −16.8284 −0.596843
\(796\) −24.7279 −0.876458
\(797\) −15.9706 −0.565706 −0.282853 0.959163i \(-0.591281\pi\)
−0.282853 + 0.959163i \(0.591281\pi\)
\(798\) 0 0
\(799\) 4.97056 0.175846
\(800\) −4.65685 −0.164645
\(801\) −51.3137 −1.81308
\(802\) −17.0711 −0.602800
\(803\) −1.24264 −0.0438518
\(804\) 34.7990 1.22727
\(805\) 0 0
\(806\) −5.58579 −0.196751
\(807\) −33.3848 −1.17520
\(808\) 18.3137 0.644274
\(809\) 22.8284 0.802605 0.401302 0.915946i \(-0.368558\pi\)
0.401302 + 0.915946i \(0.368558\pi\)
\(810\) 5.55635 0.195230
\(811\) −21.6569 −0.760475 −0.380238 0.924889i \(-0.624158\pi\)
−0.380238 + 0.924889i \(0.624158\pi\)
\(812\) 0 0
\(813\) 58.4558 2.05014
\(814\) 0.0710678 0.00249093
\(815\) 3.11270 0.109033
\(816\) 9.65685 0.338058
\(817\) 3.85786 0.134970
\(818\) −18.0000 −0.629355
\(819\) 0 0
\(820\) 4.10051 0.143196
\(821\) −17.4558 −0.609213 −0.304607 0.952478i \(-0.598525\pi\)
−0.304607 + 0.952478i \(0.598525\pi\)
\(822\) 4.82843 0.168411
\(823\) −30.2721 −1.05522 −0.527609 0.849487i \(-0.676911\pi\)
−0.527609 + 0.849487i \(0.676911\pi\)
\(824\) −10.4853 −0.365272
\(825\) −4.65685 −0.162131
\(826\) 0 0
\(827\) 7.79899 0.271197 0.135599 0.990764i \(-0.456704\pi\)
0.135599 + 0.990764i \(0.456704\pi\)
\(828\) 14.8284 0.515323
\(829\) 43.7990 1.52120 0.760601 0.649220i \(-0.224904\pi\)
0.760601 + 0.649220i \(0.224904\pi\)
\(830\) −5.79899 −0.201286
\(831\) −37.5563 −1.30282
\(832\) 1.00000 0.0346688
\(833\) 0 0
\(834\) −15.3137 −0.530270
\(835\) −6.34315 −0.219514
\(836\) 0.242641 0.00839190
\(837\) −2.31371 −0.0799735
\(838\) 23.2426 0.802904
\(839\) −6.61522 −0.228383 −0.114191 0.993459i \(-0.536428\pi\)
−0.114191 + 0.993459i \(0.536428\pi\)
\(840\) 0 0
\(841\) −17.3431 −0.598040
\(842\) 7.68629 0.264887
\(843\) 75.8406 2.61209
\(844\) −9.75736 −0.335862
\(845\) −0.585786 −0.0201517
\(846\) −3.51472 −0.120839
\(847\) 0 0
\(848\) −11.8995 −0.408630
\(849\) −15.8284 −0.543230
\(850\) 18.6274 0.638915
\(851\) −0.899495 −0.0308343
\(852\) 0.585786 0.0200687
\(853\) −10.4437 −0.357584 −0.178792 0.983887i \(-0.557219\pi\)
−0.178792 + 0.983887i \(0.557219\pi\)
\(854\) 0 0
\(855\) 0.970563 0.0331925
\(856\) 12.2426 0.418445
\(857\) 7.75736 0.264986 0.132493 0.991184i \(-0.457702\pi\)
0.132493 + 0.991184i \(0.457702\pi\)
\(858\) 1.00000 0.0341394
\(859\) −30.5563 −1.04257 −0.521285 0.853383i \(-0.674547\pi\)
−0.521285 + 0.853383i \(0.674547\pi\)
\(860\) 3.85786 0.131552
\(861\) 0 0
\(862\) −28.1421 −0.958525
\(863\) −34.6274 −1.17873 −0.589365 0.807867i \(-0.700622\pi\)
−0.589365 + 0.807867i \(0.700622\pi\)
\(864\) 0.414214 0.0140918
\(865\) 8.00000 0.272008
\(866\) −7.65685 −0.260190
\(867\) 2.41421 0.0819910
\(868\) 0 0
\(869\) 2.31371 0.0784872
\(870\) −4.82843 −0.163699
\(871\) −14.4142 −0.488407
\(872\) −3.31371 −0.112216
\(873\) −23.5147 −0.795853
\(874\) −3.07107 −0.103880
\(875\) 0 0
\(876\) −7.24264 −0.244706
\(877\) 12.5147 0.422592 0.211296 0.977422i \(-0.432232\pi\)
0.211296 + 0.977422i \(0.432232\pi\)
\(878\) −0.585786 −0.0197693
\(879\) −33.7990 −1.14001
\(880\) 0.242641 0.00817942
\(881\) −5.02944 −0.169446 −0.0847230 0.996405i \(-0.527001\pi\)
−0.0847230 + 0.996405i \(0.527001\pi\)
\(882\) 0 0
\(883\) −26.7696 −0.900867 −0.450434 0.892810i \(-0.648731\pi\)
−0.450434 + 0.892810i \(0.648731\pi\)
\(884\) −4.00000 −0.134535
\(885\) 6.48528 0.218000
\(886\) 10.3848 0.348883
\(887\) 1.27208 0.0427122 0.0213561 0.999772i \(-0.493202\pi\)
0.0213561 + 0.999772i \(0.493202\pi\)
\(888\) 0.414214 0.0139001
\(889\) 0 0
\(890\) 10.6274 0.356232
\(891\) 3.92893 0.131624
\(892\) 23.2426 0.778221
\(893\) 0.727922 0.0243590
\(894\) −10.4142 −0.348303
\(895\) 3.79899 0.126986
\(896\) 0 0
\(897\) −12.6569 −0.422600
\(898\) 1.61522 0.0539007
\(899\) 19.0711 0.636056
\(900\) −13.1716 −0.439052
\(901\) 47.5980 1.58572
\(902\) 2.89949 0.0965426
\(903\) 0 0
\(904\) −13.9706 −0.464654
\(905\) 4.10051 0.136305
\(906\) −50.6274 −1.68198
\(907\) 48.4264 1.60797 0.803986 0.594648i \(-0.202709\pi\)
0.803986 + 0.594648i \(0.202709\pi\)
\(908\) −12.9706 −0.430443
\(909\) 51.7990 1.71806
\(910\) 0 0
\(911\) −1.17157 −0.0388159 −0.0194080 0.999812i \(-0.506178\pi\)
−0.0194080 + 0.999812i \(0.506178\pi\)
\(912\) 1.41421 0.0468293
\(913\) −4.10051 −0.135707
\(914\) −24.7279 −0.817927
\(915\) −3.07107 −0.101526
\(916\) −15.8995 −0.525334
\(917\) 0 0
\(918\) −1.65685 −0.0546843
\(919\) −37.5269 −1.23790 −0.618949 0.785431i \(-0.712441\pi\)
−0.618949 + 0.785431i \(0.712441\pi\)
\(920\) −3.07107 −0.101250
\(921\) −65.3553 −2.15353
\(922\) −34.7279 −1.14370
\(923\) −0.242641 −0.00798662
\(924\) 0 0
\(925\) 0.798990 0.0262706
\(926\) −36.2843 −1.19238
\(927\) −29.6569 −0.974059
\(928\) −3.41421 −0.112077
\(929\) 59.0833 1.93846 0.969229 0.246159i \(-0.0791685\pi\)
0.969229 + 0.246159i \(0.0791685\pi\)
\(930\) −7.89949 −0.259035
\(931\) 0 0
\(932\) 21.4853 0.703774
\(933\) −6.58579 −0.215609
\(934\) −18.1421 −0.593629
\(935\) −0.970563 −0.0317408
\(936\) 2.82843 0.0924500
\(937\) −30.6274 −1.00055 −0.500277 0.865865i \(-0.666769\pi\)
−0.500277 + 0.865865i \(0.666769\pi\)
\(938\) 0 0
\(939\) 14.4853 0.472709
\(940\) 0.727922 0.0237422
\(941\) 23.0711 0.752095 0.376048 0.926600i \(-0.377283\pi\)
0.376048 + 0.926600i \(0.377283\pi\)
\(942\) −28.8995 −0.941596
\(943\) −36.6985 −1.19507
\(944\) 4.58579 0.149255
\(945\) 0 0
\(946\) 2.72792 0.0886924
\(947\) −8.48528 −0.275735 −0.137867 0.990451i \(-0.544025\pi\)
−0.137867 + 0.990451i \(0.544025\pi\)
\(948\) 13.4853 0.437982
\(949\) 3.00000 0.0973841
\(950\) 2.72792 0.0885055
\(951\) −44.2132 −1.43371
\(952\) 0 0
\(953\) 20.4853 0.663583 0.331792 0.943353i \(-0.392347\pi\)
0.331792 + 0.943353i \(0.392347\pi\)
\(954\) −33.6569 −1.08968
\(955\) −0.284271 −0.00919880
\(956\) 21.7990 0.705030
\(957\) −3.41421 −0.110366
\(958\) 20.2843 0.655355
\(959\) 0 0
\(960\) 1.41421 0.0456435
\(961\) 0.201010 0.00648420
\(962\) −0.171573 −0.00553173
\(963\) 34.6274 1.11585
\(964\) −14.8284 −0.477591
\(965\) −12.2843 −0.395445
\(966\) 0 0
\(967\) 37.1127 1.19346 0.596732 0.802441i \(-0.296466\pi\)
0.596732 + 0.802441i \(0.296466\pi\)
\(968\) −10.8284 −0.348039
\(969\) −5.65685 −0.181724
\(970\) 4.87006 0.156368
\(971\) −24.2132 −0.777039 −0.388519 0.921441i \(-0.627013\pi\)
−0.388519 + 0.921441i \(0.627013\pi\)
\(972\) 21.6569 0.694644
\(973\) 0 0
\(974\) 40.3848 1.29401
\(975\) 11.2426 0.360053
\(976\) −2.17157 −0.0695104
\(977\) 56.6274 1.81167 0.905836 0.423629i \(-0.139244\pi\)
0.905836 + 0.423629i \(0.139244\pi\)
\(978\) 12.8284 0.410208
\(979\) 7.51472 0.240171
\(980\) 0 0
\(981\) −9.37258 −0.299244
\(982\) −26.3848 −0.841972
\(983\) 59.6569 1.90276 0.951379 0.308022i \(-0.0996672\pi\)
0.951379 + 0.308022i \(0.0996672\pi\)
\(984\) 16.8995 0.538736
\(985\) −6.04163 −0.192502
\(986\) 13.6569 0.434923
\(987\) 0 0
\(988\) −0.585786 −0.0186363
\(989\) −34.5269 −1.09789
\(990\) 0.686292 0.0218118
\(991\) −47.6690 −1.51426 −0.757129 0.653266i \(-0.773398\pi\)
−0.757129 + 0.653266i \(0.773398\pi\)
\(992\) −5.58579 −0.177349
\(993\) 64.4558 2.04544
\(994\) 0 0
\(995\) 14.4853 0.459214
\(996\) −23.8995 −0.757284
\(997\) −23.1421 −0.732919 −0.366459 0.930434i \(-0.619430\pi\)
−0.366459 + 0.930434i \(0.619430\pi\)
\(998\) 12.8995 0.408326
\(999\) −0.0710678 −0.00224849
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.a.p.1.1 2
7.2 even 3 1274.2.f.w.1145.2 4
7.3 odd 6 1274.2.f.v.79.1 4
7.4 even 3 1274.2.f.w.79.2 4
7.5 odd 6 1274.2.f.v.1145.1 4
7.6 odd 2 1274.2.a.q.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1274.2.a.p.1.1 2 1.1 even 1 trivial
1274.2.a.q.1.2 yes 2 7.6 odd 2
1274.2.f.v.79.1 4 7.3 odd 6
1274.2.f.v.1145.1 4 7.5 odd 6
1274.2.f.w.79.2 4 7.4 even 3
1274.2.f.w.1145.2 4 7.2 even 3