gp: [N,k,chi] = [127,4,Mod(1,127)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(127, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("127.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
127 127 1 2 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 + 1 T_{2} + 1 T 2 + 1
T2 + 1
acting on S 4 n e w ( Γ 0 ( 127 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(127)) S 4 n e w ( Γ 0 ( 1 2 7 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 1 T + 1 T + 1
T + 1
3 3 3
T + 8 T + 8 T + 8
T + 8
5 5 5
T + 15 T + 15 T + 1 5
T + 15
7 7 7
T + 25 T + 25 T + 2 5
T + 25
11 11 1 1
T + 51 T + 51 T + 5 1
T + 51
13 13 1 3
T − 2 T - 2 T − 2
T - 2
17 17 1 7
T − 31 T - 31 T − 3 1
T - 31
19 19 1 9
T + 123 T + 123 T + 1 2 3
T + 123
23 23 2 3
T + 149 T + 149 T + 1 4 9
T + 149
29 29 2 9
T − 6 T - 6 T − 6
T - 6
31 31 3 1
T − 10 T - 10 T − 1 0
T - 10
37 37 3 7
T + 348 T + 348 T + 3 4 8
T + 348
41 41 4 1
T + 387 T + 387 T + 3 8 7
T + 387
43 43 4 3
T + 80 T + 80 T + 8 0
T + 80
47 47 4 7
T − 266 T - 266 T − 2 6 6
T - 266
53 53 5 3
T − 347 T - 347 T − 3 4 7
T - 347
59 59 5 9
T + 656 T + 656 T + 6 5 6
T + 656
61 61 6 1
T + 158 T + 158 T + 1 5 8
T + 158
67 67 6 7
T + 314 T + 314 T + 3 1 4
T + 314
71 71 7 1
T − 312 T - 312 T − 3 1 2
T - 312
73 73 7 3
T + 646 T + 646 T + 6 4 6
T + 646
79 79 7 9
T + 846 T + 846 T + 8 4 6
T + 846
83 83 8 3
T − 1352 T - 1352 T − 1 3 5 2
T - 1352
89 89 8 9
T − 1242 T - 1242 T − 1 2 4 2
T - 1242
97 97 9 7
T − 632 T - 632 T − 6 3 2
T - 632
show more
show less