Properties

Label 127.4
Level 127
Weight 4
Dimension 1953
Nonzero newspaces 6
Newform subspaces 8
Sturm bound 5376
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 127 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 8 \)
Sturm bound: \(5376\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(127))\).

Total New Old
Modular forms 2079 2077 2
Cusp forms 1953 1953 0
Eisenstein series 126 124 2

Trace form

\( 1953 q - 63 q^{2} - 63 q^{3} - 63 q^{4} - 63 q^{5} - 63 q^{6} - 63 q^{7} - 63 q^{8} - 63 q^{9} - 63 q^{10} - 63 q^{11} - 63 q^{12} - 63 q^{13} - 63 q^{14} - 63 q^{15} - 63 q^{16} - 63 q^{17} - 63 q^{18}+ \cdots - 63 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(127))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
127.4.a \(\chi_{127}(1, \cdot)\) 127.4.a.a 1 1
127.4.a.b 13
127.4.a.c 17
127.4.c \(\chi_{127}(19, \cdot)\) 127.4.c.a 62 2
127.4.e \(\chi_{127}(2, \cdot)\) 127.4.e.a 186 6
127.4.f \(\chi_{127}(22, \cdot)\) 127.4.f.a 186 6
127.4.i \(\chi_{127}(25, \cdot)\) 127.4.i.a 372 12
127.4.k \(\chi_{127}(9, \cdot)\) 127.4.k.a 1116 36