Properties

Label 1260.2.k.b
Level 12601260
Weight 22
Character orbit 1260.k
Analytic conductor 10.06110.061
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1260,2,Mod(1009,1260)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1260, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1260.1009"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1260=223257 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1260.k (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.061150654710.0611506547
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2i1)q5+iq74iq134iq174q19+8iq23+(4i3)q25+2q298q31+(i+2)q358iq376q418iq438iq47q49+12iq97+O(q100) q + ( - 2 i - 1) q^{5} + i q^{7} - 4 i q^{13} - 4 i q^{17} - 4 q^{19} + 8 i q^{23} + (4 i - 3) q^{25} + 2 q^{29} - 8 q^{31} + ( - i + 2) q^{35} - 8 i q^{37} - 6 q^{41} - 8 i q^{43} - 8 i q^{47} - q^{49} + \cdots - 12 i q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q58q196q25+4q2916q31+4q3512q412q498q5912q6116q6524q71+8q7916q8520q89+8q91+8q95+O(q100) 2 q - 2 q^{5} - 8 q^{19} - 6 q^{25} + 4 q^{29} - 16 q^{31} + 4 q^{35} - 12 q^{41} - 2 q^{49} - 8 q^{59} - 12 q^{61} - 16 q^{65} - 24 q^{71} + 8 q^{79} - 16 q^{85} - 20 q^{89} + 8 q^{91} + 8 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1260Z)×\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times.

nn 281281 631631 757757 10811081
χ(n)\chi(n) 11 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1009.1
1.00000i
1.00000i
0 0 0 −1.00000 2.00000i 0 1.00000i 0 0 0
1009.2 0 0 0 −1.00000 + 2.00000i 0 1.00000i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1260.2.k.b 2
3.b odd 2 1 140.2.e.b 2
4.b odd 2 1 5040.2.t.g 2
5.b even 2 1 inner 1260.2.k.b 2
5.c odd 4 1 6300.2.a.g 1
5.c odd 4 1 6300.2.a.y 1
12.b even 2 1 560.2.g.c 2
15.d odd 2 1 140.2.e.b 2
15.e even 4 1 700.2.a.f 1
15.e even 4 1 700.2.a.h 1
20.d odd 2 1 5040.2.t.g 2
21.c even 2 1 980.2.e.a 2
21.g even 6 2 980.2.q.e 4
21.h odd 6 2 980.2.q.d 4
24.f even 2 1 2240.2.g.c 2
24.h odd 2 1 2240.2.g.d 2
60.h even 2 1 560.2.g.c 2
60.l odd 4 1 2800.2.a.o 1
60.l odd 4 1 2800.2.a.s 1
105.g even 2 1 980.2.e.a 2
105.k odd 4 1 4900.2.a.l 1
105.k odd 4 1 4900.2.a.m 1
105.o odd 6 2 980.2.q.d 4
105.p even 6 2 980.2.q.e 4
120.i odd 2 1 2240.2.g.d 2
120.m even 2 1 2240.2.g.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.e.b 2 3.b odd 2 1
140.2.e.b 2 15.d odd 2 1
560.2.g.c 2 12.b even 2 1
560.2.g.c 2 60.h even 2 1
700.2.a.f 1 15.e even 4 1
700.2.a.h 1 15.e even 4 1
980.2.e.a 2 21.c even 2 1
980.2.e.a 2 105.g even 2 1
980.2.q.d 4 21.h odd 6 2
980.2.q.d 4 105.o odd 6 2
980.2.q.e 4 21.g even 6 2
980.2.q.e 4 105.p even 6 2
1260.2.k.b 2 1.a even 1 1 trivial
1260.2.k.b 2 5.b even 2 1 inner
2240.2.g.c 2 24.f even 2 1
2240.2.g.c 2 120.m even 2 1
2240.2.g.d 2 24.h odd 2 1
2240.2.g.d 2 120.i odd 2 1
2800.2.a.o 1 60.l odd 4 1
2800.2.a.s 1 60.l odd 4 1
4900.2.a.l 1 105.k odd 4 1
4900.2.a.m 1 105.k odd 4 1
5040.2.t.g 2 4.b odd 2 1
5040.2.t.g 2 20.d odd 2 1
6300.2.a.g 1 5.c odd 4 1
6300.2.a.y 1 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T11 T_{11} acting on S2new(1260,[χ])S_{2}^{\mathrm{new}}(1260, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+2T+5 T^{2} + 2T + 5 Copy content Toggle raw display
77 T2+1 T^{2} + 1 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+16 T^{2} + 16 Copy content Toggle raw display
1717 T2+16 T^{2} + 16 Copy content Toggle raw display
1919 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
2323 T2+64 T^{2} + 64 Copy content Toggle raw display
2929 (T2)2 (T - 2)^{2} Copy content Toggle raw display
3131 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
3737 T2+64 T^{2} + 64 Copy content Toggle raw display
4141 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4343 T2+64 T^{2} + 64 Copy content Toggle raw display
4747 T2+64 T^{2} + 64 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
6161 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
6767 T2+64 T^{2} + 64 Copy content Toggle raw display
7171 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
7373 T2+16 T^{2} + 16 Copy content Toggle raw display
7979 (T4)2 (T - 4)^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
9797 T2+144 T^{2} + 144 Copy content Toggle raw display
show more
show less