Properties

Label 140.2.e.b
Level $140$
Weight $2$
Character orbit 140.e
Analytic conductor $1.118$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 i + 1) q^{5} + i q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (2 i + 1) q^{5} + i q^{7} + 3 q^{9} - 4 i q^{13} + 4 i q^{17} - 4 q^{19} - 8 i q^{23} + (4 i - 3) q^{25} - 2 q^{29} - 8 q^{31} + (i - 2) q^{35} - 8 i q^{37} + 6 q^{41} - 8 i q^{43} + (6 i + 3) q^{45} + 8 i q^{47} - q^{49} + 4 q^{59} - 6 q^{61} + 3 i q^{63} + ( - 4 i + 8) q^{65} + 8 i q^{67} + 12 q^{71} + 4 i q^{73} + 4 q^{79} + 9 q^{81} + (4 i - 8) q^{85} + 10 q^{89} + 4 q^{91} + ( - 8 i - 4) q^{95} - 12 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} + 6 q^{9} - 8 q^{19} - 6 q^{25} - 4 q^{29} - 16 q^{31} - 4 q^{35} + 12 q^{41} + 6 q^{45} - 2 q^{49} + 8 q^{59} - 12 q^{61} + 16 q^{65} + 24 q^{71} + 8 q^{79} + 18 q^{81} - 16 q^{85} + 20 q^{89} + 8 q^{91} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/140\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(101\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1
1.00000i
1.00000i
0 0 0 1.00000 2.00000i 0 1.00000i 0 3.00000 0
29.2 0 0 0 1.00000 + 2.00000i 0 1.00000i 0 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 140.2.e.b 2
3.b odd 2 1 1260.2.k.b 2
4.b odd 2 1 560.2.g.c 2
5.b even 2 1 inner 140.2.e.b 2
5.c odd 4 1 700.2.a.f 1
5.c odd 4 1 700.2.a.h 1
7.b odd 2 1 980.2.e.a 2
7.c even 3 2 980.2.q.d 4
7.d odd 6 2 980.2.q.e 4
8.b even 2 1 2240.2.g.d 2
8.d odd 2 1 2240.2.g.c 2
12.b even 2 1 5040.2.t.g 2
15.d odd 2 1 1260.2.k.b 2
15.e even 4 1 6300.2.a.g 1
15.e even 4 1 6300.2.a.y 1
20.d odd 2 1 560.2.g.c 2
20.e even 4 1 2800.2.a.o 1
20.e even 4 1 2800.2.a.s 1
35.c odd 2 1 980.2.e.a 2
35.f even 4 1 4900.2.a.l 1
35.f even 4 1 4900.2.a.m 1
35.i odd 6 2 980.2.q.e 4
35.j even 6 2 980.2.q.d 4
40.e odd 2 1 2240.2.g.c 2
40.f even 2 1 2240.2.g.d 2
60.h even 2 1 5040.2.t.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.e.b 2 1.a even 1 1 trivial
140.2.e.b 2 5.b even 2 1 inner
560.2.g.c 2 4.b odd 2 1
560.2.g.c 2 20.d odd 2 1
700.2.a.f 1 5.c odd 4 1
700.2.a.h 1 5.c odd 4 1
980.2.e.a 2 7.b odd 2 1
980.2.e.a 2 35.c odd 2 1
980.2.q.d 4 7.c even 3 2
980.2.q.d 4 35.j even 6 2
980.2.q.e 4 7.d odd 6 2
980.2.q.e 4 35.i odd 6 2
1260.2.k.b 2 3.b odd 2 1
1260.2.k.b 2 15.d odd 2 1
2240.2.g.c 2 8.d odd 2 1
2240.2.g.c 2 40.e odd 2 1
2240.2.g.d 2 8.b even 2 1
2240.2.g.d 2 40.f even 2 1
2800.2.a.o 1 20.e even 4 1
2800.2.a.s 1 20.e even 4 1
4900.2.a.l 1 35.f even 4 1
4900.2.a.m 1 35.f even 4 1
5040.2.t.g 2 12.b even 2 1
5040.2.t.g 2 60.h even 2 1
6300.2.a.g 1 15.e even 4 1
6300.2.a.y 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(140, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 64 \) Copy content Toggle raw display
$29$ \( (T + 2)^{2} \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 64 \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( (T - 4)^{2} \) Copy content Toggle raw display
$61$ \( (T + 6)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 64 \) Copy content Toggle raw display
$71$ \( (T - 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 144 \) Copy content Toggle raw display
show more
show less