Properties

Label 126.3.q.a.29.2
Level $126$
Weight $3$
Character 126.29
Analytic conductor $3.433$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(29,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.29"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.2
Character \(\chi\) \(=\) 126.29
Dual form 126.3.q.a.113.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 0.707107i) q^{2} +(-1.47915 - 2.61001i) q^{3} +(1.00000 + 1.73205i) q^{4} +(-3.47352 + 2.00544i) q^{5} +(-0.0339773 + 4.24250i) q^{6} +(-1.32288 + 2.29129i) q^{7} -2.82843i q^{8} +(-4.62426 + 7.72115i) q^{9} +5.67224 q^{10} +(-2.91437 - 1.68261i) q^{11} +(3.04152 - 5.17196i) q^{12} +(10.3947 + 18.0042i) q^{13} +(3.24037 - 1.87083i) q^{14} +(10.3720 + 6.09958i) q^{15} +(-2.00000 + 3.46410i) q^{16} +9.33226i q^{17} +(11.1232 - 6.18660i) q^{18} +9.84429 q^{19} +(-6.94704 - 4.01088i) q^{20} +(7.93700 + 0.0635658i) q^{21} +(2.37958 + 4.12155i) q^{22} +(-31.0433 + 17.9229i) q^{23} +(-7.38221 + 4.18365i) q^{24} +(-4.45643 + 7.71877i) q^{25} -29.4007i q^{26} +(26.9922 + 0.648636i) q^{27} -5.29150 q^{28} +(-24.8605 - 14.3532i) q^{29} +(-8.39006 - 14.8046i) q^{30} +(1.68794 + 2.92360i) q^{31} +(4.89898 - 2.82843i) q^{32} +(-0.0808517 + 10.0954i) q^{33} +(6.59891 - 11.4296i) q^{34} -10.6118i q^{35} +(-17.9977 - 0.288298i) q^{36} -65.0515 q^{37} +(-12.0567 - 6.96096i) q^{38} +(31.6157 - 53.7611i) q^{39} +(5.67224 + 9.82460i) q^{40} +(21.0056 - 12.1276i) q^{41} +(-9.67585 - 5.69016i) q^{42} +(12.3344 - 21.3638i) q^{43} -6.73046i q^{44} +(0.578164 - 36.0933i) q^{45} +50.6935 q^{46} +(-40.6301 - 23.4578i) q^{47} +(11.9996 + 0.0961024i) q^{48} +(-3.50000 - 6.06218i) q^{49} +(10.9160 - 6.30235i) q^{50} +(24.3573 - 13.8038i) q^{51} +(-20.7895 + 36.0084i) q^{52} +63.1893i q^{53} +(-32.5999 - 19.8808i) q^{54} +13.4975 q^{55} +(6.48074 + 3.74166i) q^{56} +(-14.5611 - 25.6936i) q^{57} +(20.2985 + 35.1581i) q^{58} +(43.7311 - 25.2482i) q^{59} +(-0.192728 + 24.0645i) q^{60} +(-18.8189 + 32.5953i) q^{61} -4.77422i q^{62} +(-11.5741 - 20.8096i) q^{63} -8.00000 q^{64} +(-72.2126 - 41.6920i) q^{65} +(7.23752 - 12.3071i) q^{66} +(26.8361 + 46.4815i) q^{67} +(-16.1640 + 9.33226i) q^{68} +(92.6964 + 54.5127i) q^{69} +(-7.50366 + 12.9967i) q^{70} +84.1279i q^{71} +(21.8387 + 13.0794i) q^{72} -119.438 q^{73} +(79.6715 + 45.9983i) q^{74} +(26.7377 + 0.214137i) q^{75} +(9.84429 + 17.0508i) q^{76} +(7.71071 - 4.45178i) q^{77} +(-76.7361 + 43.4879i) q^{78} +(73.0280 - 126.488i) q^{79} -16.0435i q^{80} +(-38.2324 - 71.4092i) q^{81} -34.3020 q^{82} +(84.8471 + 48.9865i) q^{83} +(7.82690 + 13.8109i) q^{84} +(-18.7153 - 32.4158i) q^{85} +(-30.2130 + 17.4435i) q^{86} +(-0.689690 + 86.1167i) q^{87} +(-4.75915 + 8.24310i) q^{88} +78.6860i q^{89} +(-26.2299 + 43.7962i) q^{90} -55.0037 q^{91} +(-62.0866 - 35.8457i) q^{92} +(5.13390 - 8.72996i) q^{93} +(33.1744 + 57.4597i) q^{94} +(-34.1943 + 19.7421i) q^{95} +(-14.6285 - 8.60271i) q^{96} +(45.7282 - 79.2035i) q^{97} +9.89949i q^{98} +(26.4686 - 14.7215i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 36 q^{5} + 8 q^{6} - 32 q^{9} - 24 q^{12} - 44 q^{15} - 48 q^{16} + 48 q^{18} + 24 q^{19} + 72 q^{20} + 28 q^{21} + 24 q^{22} - 72 q^{23} - 16 q^{24} + 72 q^{25} - 108 q^{29} - 56 q^{30}+ \cdots - 440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 0.707107i −0.612372 0.353553i
\(3\) −1.47915 2.61001i −0.493048 0.870002i
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) −3.47352 + 2.00544i −0.694704 + 0.401088i −0.805372 0.592770i \(-0.798034\pi\)
0.110668 + 0.993857i \(0.464701\pi\)
\(6\) −0.0339773 + 4.24250i −0.00566289 + 0.707084i
\(7\) −1.32288 + 2.29129i −0.188982 + 0.327327i
\(8\) 2.82843i 0.353553i
\(9\) −4.62426 + 7.72115i −0.513807 + 0.857906i
\(10\) 5.67224 0.567224
\(11\) −2.91437 1.68261i −0.264943 0.152965i 0.361644 0.932316i \(-0.382216\pi\)
−0.626587 + 0.779351i \(0.715549\pi\)
\(12\) 3.04152 5.17196i 0.253460 0.430997i
\(13\) 10.3947 + 18.0042i 0.799594 + 1.38494i 0.919881 + 0.392199i \(0.128285\pi\)
−0.120286 + 0.992739i \(0.538381\pi\)
\(14\) 3.24037 1.87083i 0.231455 0.133631i
\(15\) 10.3720 + 6.09958i 0.691470 + 0.406638i
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 9.33226i 0.548957i 0.961593 + 0.274478i \(0.0885051\pi\)
−0.961593 + 0.274478i \(0.911495\pi\)
\(18\) 11.1232 6.18660i 0.617957 0.343700i
\(19\) 9.84429 0.518120 0.259060 0.965861i \(-0.416587\pi\)
0.259060 + 0.965861i \(0.416587\pi\)
\(20\) −6.94704 4.01088i −0.347352 0.200544i
\(21\) 7.93700 + 0.0635658i 0.377952 + 0.00302694i
\(22\) 2.37958 + 4.12155i 0.108163 + 0.187343i
\(23\) −31.0433 + 17.9229i −1.34971 + 0.779255i −0.988208 0.153116i \(-0.951069\pi\)
−0.361502 + 0.932372i \(0.617736\pi\)
\(24\) −7.38221 + 4.18365i −0.307592 + 0.174319i
\(25\) −4.45643 + 7.71877i −0.178257 + 0.308751i
\(26\) 29.4007i 1.13080i
\(27\) 26.9922 + 0.648636i 0.999711 + 0.0240236i
\(28\) −5.29150 −0.188982
\(29\) −24.8605 14.3532i −0.857260 0.494939i 0.00583393 0.999983i \(-0.498143\pi\)
−0.863094 + 0.505044i \(0.831476\pi\)
\(30\) −8.39006 14.8046i −0.279669 0.493486i
\(31\) 1.68794 + 2.92360i 0.0544497 + 0.0943096i 0.891966 0.452103i \(-0.149326\pi\)
−0.837516 + 0.546413i \(0.815993\pi\)
\(32\) 4.89898 2.82843i 0.153093 0.0883883i
\(33\) −0.0808517 + 10.0954i −0.00245005 + 0.305920i
\(34\) 6.59891 11.4296i 0.194085 0.336166i
\(35\) 10.6118i 0.303194i
\(36\) −17.9977 0.288298i −0.499936 0.00800828i
\(37\) −65.0515 −1.75815 −0.879074 0.476686i \(-0.841838\pi\)
−0.879074 + 0.476686i \(0.841838\pi\)
\(38\) −12.0567 6.96096i −0.317283 0.183183i
\(39\) 31.6157 53.7611i 0.810660 1.37849i
\(40\) 5.67224 + 9.82460i 0.141806 + 0.245615i
\(41\) 21.0056 12.1276i 0.512332 0.295795i −0.221460 0.975170i \(-0.571082\pi\)
0.733792 + 0.679374i \(0.237749\pi\)
\(42\) −9.67585 5.69016i −0.230377 0.135480i
\(43\) 12.3344 21.3638i 0.286847 0.496833i −0.686208 0.727405i \(-0.740726\pi\)
0.973055 + 0.230572i \(0.0740596\pi\)
\(44\) 6.73046i 0.152965i
\(45\) 0.578164 36.0933i 0.0128481 0.802073i
\(46\) 50.6935 1.10203
\(47\) −40.6301 23.4578i −0.864471 0.499102i 0.00103617 0.999999i \(-0.499670\pi\)
−0.865507 + 0.500897i \(0.833004\pi\)
\(48\) 11.9996 + 0.0961024i 0.249992 + 0.00200213i
\(49\) −3.50000 6.06218i −0.0714286 0.123718i
\(50\) 10.9160 6.30235i 0.218320 0.126047i
\(51\) 24.3573 13.8038i 0.477593 0.270662i
\(52\) −20.7895 + 36.0084i −0.399797 + 0.692469i
\(53\) 63.1893i 1.19225i 0.802891 + 0.596125i \(0.203294\pi\)
−0.802891 + 0.596125i \(0.796706\pi\)
\(54\) −32.5999 19.8808i −0.603702 0.368163i
\(55\) 13.4975 0.245410
\(56\) 6.48074 + 3.74166i 0.115728 + 0.0668153i
\(57\) −14.5611 25.6936i −0.255458 0.450766i
\(58\) 20.2985 + 35.1581i 0.349975 + 0.606174i
\(59\) 43.7311 25.2482i 0.741205 0.427935i −0.0813024 0.996689i \(-0.525908\pi\)
0.822507 + 0.568755i \(0.192575\pi\)
\(60\) −0.192728 + 24.0645i −0.00321213 + 0.401075i
\(61\) −18.8189 + 32.5953i −0.308507 + 0.534349i −0.978036 0.208436i \(-0.933163\pi\)
0.669529 + 0.742786i \(0.266496\pi\)
\(62\) 4.77422i 0.0770035i
\(63\) −11.5741 20.8096i −0.183715 0.330312i
\(64\) −8.00000 −0.125000
\(65\) −72.2126 41.6920i −1.11096 0.641415i
\(66\) 7.23752 12.3071i 0.109659 0.186471i
\(67\) 26.8361 + 46.4815i 0.400539 + 0.693754i 0.993791 0.111263i \(-0.0354895\pi\)
−0.593252 + 0.805017i \(0.702156\pi\)
\(68\) −16.1640 + 9.33226i −0.237705 + 0.137239i
\(69\) 92.6964 + 54.5127i 1.34343 + 0.790040i
\(70\) −7.50366 + 12.9967i −0.107195 + 0.185668i
\(71\) 84.1279i 1.18490i 0.805607 + 0.592450i \(0.201839\pi\)
−0.805607 + 0.592450i \(0.798161\pi\)
\(72\) 21.8387 + 13.0794i 0.303316 + 0.181658i
\(73\) −119.438 −1.63613 −0.818067 0.575122i \(-0.804954\pi\)
−0.818067 + 0.575122i \(0.804954\pi\)
\(74\) 79.6715 + 45.9983i 1.07664 + 0.621599i
\(75\) 26.7377 + 0.214137i 0.356503 + 0.00285516i
\(76\) 9.84429 + 17.0508i 0.129530 + 0.224353i
\(77\) 7.71071 4.45178i 0.100139 0.0578153i
\(78\) −76.7361 + 43.4879i −0.983796 + 0.557538i
\(79\) 73.0280 126.488i 0.924405 1.60112i 0.131889 0.991264i \(-0.457896\pi\)
0.792516 0.609852i \(-0.208771\pi\)
\(80\) 16.0435i 0.200544i
\(81\) −38.2324 71.4092i −0.472006 0.881596i
\(82\) −34.3020 −0.418318
\(83\) 84.8471 + 48.9865i 1.02225 + 0.590199i 0.914756 0.404006i \(-0.132383\pi\)
0.107498 + 0.994205i \(0.465716\pi\)
\(84\) 7.82690 + 13.8109i 0.0931774 + 0.164415i
\(85\) −18.7153 32.4158i −0.220180 0.381363i
\(86\) −30.2130 + 17.4435i −0.351314 + 0.202831i
\(87\) −0.689690 + 86.1167i −0.00792748 + 0.989847i
\(88\) −4.75915 + 8.24310i −0.0540813 + 0.0936715i
\(89\) 78.6860i 0.884112i 0.896987 + 0.442056i \(0.145751\pi\)
−0.896987 + 0.442056i \(0.854249\pi\)
\(90\) −26.2299 + 43.7962i −0.291443 + 0.486625i
\(91\) −55.0037 −0.604436
\(92\) −62.0866 35.8457i −0.674855 0.389628i
\(93\) 5.13390 8.72996i 0.0552032 0.0938705i
\(94\) 33.1744 + 57.4597i 0.352919 + 0.611273i
\(95\) −34.1943 + 19.7421i −0.359940 + 0.207812i
\(96\) −14.6285 8.60271i −0.152380 0.0896116i
\(97\) 45.7282 79.2035i 0.471424 0.816531i −0.528041 0.849219i \(-0.677073\pi\)
0.999466 + 0.0326878i \(0.0104067\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 26.4686 14.7215i 0.267359 0.148702i
\(100\) −17.8257 −0.178257
\(101\) 141.692 + 81.8059i 1.40289 + 0.809960i 0.994688 0.102931i \(-0.0328222\pi\)
0.408203 + 0.912891i \(0.366156\pi\)
\(102\) −39.5922 0.317085i −0.388158 0.00310868i
\(103\) 28.6155 + 49.5635i 0.277820 + 0.481199i 0.970843 0.239717i \(-0.0770546\pi\)
−0.693022 + 0.720916i \(0.743721\pi\)
\(104\) 50.9235 29.4007i 0.489650 0.282699i
\(105\) −27.6968 + 15.6964i −0.263779 + 0.149489i
\(106\) 44.6816 77.3908i 0.421524 0.730101i
\(107\) 25.0726i 0.234324i 0.993113 + 0.117162i \(0.0373796\pi\)
−0.993113 + 0.117162i \(0.962620\pi\)
\(108\) 25.8687 + 47.4005i 0.239525 + 0.438894i
\(109\) 52.5383 0.482003 0.241002 0.970525i \(-0.422524\pi\)
0.241002 + 0.970525i \(0.422524\pi\)
\(110\) −16.5310 9.54419i −0.150282 0.0867654i
\(111\) 96.2206 + 169.785i 0.866852 + 1.52959i
\(112\) −5.29150 9.16515i −0.0472456 0.0818317i
\(113\) 77.4916 44.7398i 0.685767 0.395928i −0.116258 0.993219i \(-0.537090\pi\)
0.802024 + 0.597292i \(0.203756\pi\)
\(114\) −0.334483 + 41.7644i −0.00293406 + 0.366355i
\(115\) 71.8864 124.511i 0.625099 1.08270i
\(116\) 57.4129i 0.494939i
\(117\) −187.081 2.99678i −1.59898 0.0256135i
\(118\) −71.4126 −0.605191
\(119\) −21.3829 12.3454i −0.179688 0.103743i
\(120\) 17.2522 29.3366i 0.143768 0.244472i
\(121\) −54.8376 94.9815i −0.453203 0.784971i
\(122\) 46.0967 26.6140i 0.377842 0.218147i
\(123\) −62.7235 36.8863i −0.509947 0.299889i
\(124\) −3.37588 + 5.84720i −0.0272248 + 0.0471548i
\(125\) 136.020i 1.08816i
\(126\) −0.539356 + 33.6706i −0.00428061 + 0.267227i
\(127\) −160.155 −1.26106 −0.630532 0.776163i \(-0.717163\pi\)
−0.630532 + 0.776163i \(0.717163\pi\)
\(128\) 9.79796 + 5.65685i 0.0765466 + 0.0441942i
\(129\) −74.0041 0.592684i −0.573675 0.00459445i
\(130\) 58.9613 + 102.124i 0.453549 + 0.785570i
\(131\) 51.0527 29.4753i 0.389715 0.225002i −0.292322 0.956320i \(-0.594428\pi\)
0.682037 + 0.731318i \(0.261094\pi\)
\(132\) −17.5665 + 9.95533i −0.133080 + 0.0754191i
\(133\) −13.0228 + 22.5561i −0.0979155 + 0.169595i
\(134\) 75.9040i 0.566448i
\(135\) −95.0588 + 51.8782i −0.704139 + 0.384283i
\(136\) 26.3956 0.194085
\(137\) −125.476 72.4437i −0.915885 0.528786i −0.0335649 0.999437i \(-0.510686\pi\)
−0.882320 + 0.470650i \(0.844019\pi\)
\(138\) −74.9831 132.310i −0.543356 0.958771i
\(139\) −49.1724 85.1690i −0.353758 0.612727i 0.633147 0.774032i \(-0.281763\pi\)
−0.986905 + 0.161305i \(0.948430\pi\)
\(140\) 18.3801 10.6118i 0.131287 0.0757985i
\(141\) −1.12718 + 140.742i −0.00799416 + 0.998173i
\(142\) 59.4874 103.035i 0.418925 0.725600i
\(143\) 69.9613i 0.489240i
\(144\) −17.4983 31.4612i −0.121516 0.218481i
\(145\) 115.138 0.794056
\(146\) 146.281 + 84.4553i 1.00192 + 0.578461i
\(147\) −10.6453 + 18.1019i −0.0724171 + 0.123142i
\(148\) −65.0515 112.672i −0.439537 0.761300i
\(149\) −60.3560 + 34.8465i −0.405074 + 0.233869i −0.688671 0.725074i \(-0.741805\pi\)
0.283597 + 0.958944i \(0.408472\pi\)
\(150\) −32.5955 19.1687i −0.217303 0.127791i
\(151\) 66.3794 114.972i 0.439598 0.761407i −0.558060 0.829801i \(-0.688454\pi\)
0.997658 + 0.0683938i \(0.0217874\pi\)
\(152\) 27.8438i 0.183183i
\(153\) −72.0558 43.1548i −0.470953 0.282058i
\(154\) −12.5915 −0.0817632
\(155\) −11.7262 6.77012i −0.0756529 0.0436782i
\(156\) 124.733 + 0.998958i 0.799569 + 0.00640358i
\(157\) 20.4647 + 35.4459i 0.130349 + 0.225770i 0.923811 0.382849i \(-0.125057\pi\)
−0.793462 + 0.608619i \(0.791724\pi\)
\(158\) −178.881 + 103.277i −1.13216 + 0.653653i
\(159\) 164.924 93.4661i 1.03726 0.587837i
\(160\) −11.3445 + 19.6492i −0.0709030 + 0.122808i
\(161\) 94.8389i 0.589062i
\(162\) −3.66896 + 114.493i −0.0226479 + 0.706744i
\(163\) 225.434 1.38303 0.691514 0.722363i \(-0.256944\pi\)
0.691514 + 0.722363i \(0.256944\pi\)
\(164\) 42.0113 + 24.2552i 0.256166 + 0.147898i
\(165\) −19.9648 35.2286i −0.120999 0.213507i
\(166\) −69.2774 119.992i −0.417334 0.722843i
\(167\) −138.606 + 80.0244i −0.829978 + 0.479188i −0.853845 0.520527i \(-0.825735\pi\)
0.0238673 + 0.999715i \(0.492402\pi\)
\(168\) 0.179791 22.4492i 0.00107019 0.133626i
\(169\) −131.601 + 227.939i −0.778702 + 1.34875i
\(170\) 52.9348i 0.311381i
\(171\) −45.5225 + 76.0093i −0.266214 + 0.444499i
\(172\) 49.3377 0.286847
\(173\) 244.696 + 141.275i 1.41443 + 0.816621i 0.995802 0.0915378i \(-0.0291782\pi\)
0.418627 + 0.908158i \(0.362512\pi\)
\(174\) 61.7384 104.983i 0.354818 0.603352i
\(175\) −11.7906 20.4219i −0.0673749 0.116697i
\(176\) 11.6575 6.73046i 0.0662358 0.0382412i
\(177\) −130.582 76.7927i −0.737754 0.433857i
\(178\) 55.6394 96.3703i 0.312581 0.541406i
\(179\) 161.517i 0.902330i 0.892440 + 0.451165i \(0.148991\pi\)
−0.892440 + 0.451165i \(0.851009\pi\)
\(180\) 63.0935 35.0919i 0.350520 0.194955i
\(181\) −48.9442 −0.270410 −0.135205 0.990818i \(-0.543169\pi\)
−0.135205 + 0.990818i \(0.543169\pi\)
\(182\) 67.3655 + 38.8935i 0.370140 + 0.213701i
\(183\) 112.910 + 0.904271i 0.616994 + 0.00494137i
\(184\) 50.6935 + 87.8038i 0.275508 + 0.477194i
\(185\) 225.958 130.457i 1.22139 0.705171i
\(186\) −12.4607 + 7.06176i −0.0669932 + 0.0379664i
\(187\) 15.7026 27.1977i 0.0839711 0.145442i
\(188\) 93.8312i 0.499102i
\(189\) −37.1935 + 60.9889i −0.196791 + 0.322692i
\(190\) 55.8391 0.293890
\(191\) −161.274 93.1116i −0.844367 0.487495i 0.0143795 0.999897i \(-0.495423\pi\)
−0.858746 + 0.512401i \(0.828756\pi\)
\(192\) 11.8332 + 20.8800i 0.0616310 + 0.108750i
\(193\) 158.411 + 274.376i 0.820783 + 1.42164i 0.905100 + 0.425199i \(0.139796\pi\)
−0.0843170 + 0.996439i \(0.526871\pi\)
\(194\) −112.011 + 64.6694i −0.577375 + 0.333347i
\(195\) −2.00335 + 250.144i −0.0102736 + 1.28279i
\(196\) 7.00000 12.1244i 0.0357143 0.0618590i
\(197\) 124.803i 0.633517i 0.948506 + 0.316758i \(0.102594\pi\)
−0.948506 + 0.316758i \(0.897406\pi\)
\(198\) −42.8269 0.686027i −0.216297 0.00346478i
\(199\) −349.881 −1.75820 −0.879098 0.476640i \(-0.841854\pi\)
−0.879098 + 0.476640i \(0.841854\pi\)
\(200\) 21.8320 + 12.6047i 0.109160 + 0.0630235i
\(201\) 81.6225 138.795i 0.406082 0.690524i
\(202\) −115.691 200.383i −0.572728 0.991994i
\(203\) 65.7748 37.9751i 0.324014 0.187069i
\(204\) 48.2661 + 28.3842i 0.236598 + 0.139138i
\(205\) −48.6423 + 84.2510i −0.237280 + 0.410980i
\(206\) 80.9369i 0.392897i
\(207\) 5.16713 322.570i 0.0249620 1.55831i
\(208\) −83.1578 −0.399797
\(209\) −28.6899 16.5641i −0.137272 0.0792543i
\(210\) 45.0205 + 0.360560i 0.214384 + 0.00171695i
\(211\) −72.4171 125.430i −0.343209 0.594456i 0.641818 0.766857i \(-0.278181\pi\)
−0.985027 + 0.172402i \(0.944847\pi\)
\(212\) −109.447 + 63.1893i −0.516260 + 0.298063i
\(213\) 219.574 124.437i 1.03087 0.584213i
\(214\) 17.7290 30.7076i 0.0828460 0.143493i
\(215\) 98.9437i 0.460203i
\(216\) 1.83462 76.3455i 0.00849361 0.353451i
\(217\) −8.93174 −0.0411601
\(218\) −64.3461 37.1502i −0.295165 0.170414i
\(219\) 176.666 + 311.733i 0.806694 + 1.42344i
\(220\) 13.4975 + 23.3784i 0.0613524 + 0.106265i
\(221\) −168.020 + 97.0063i −0.760271 + 0.438943i
\(222\) 2.21028 275.981i 0.00995620 1.24316i
\(223\) −143.953 + 249.333i −0.645527 + 1.11809i 0.338652 + 0.940912i \(0.390029\pi\)
−0.984179 + 0.177175i \(0.943304\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) −38.9901 70.1024i −0.173289 0.311566i
\(226\) −126.543 −0.559926
\(227\) −195.541 112.895i −0.861412 0.497337i 0.00307261 0.999995i \(-0.499022\pi\)
−0.864485 + 0.502659i \(0.832355\pi\)
\(228\) 29.9416 50.9143i 0.131323 0.223308i
\(229\) 210.223 + 364.117i 0.918004 + 1.59003i 0.802443 + 0.596729i \(0.203533\pi\)
0.115561 + 0.993300i \(0.463133\pi\)
\(230\) −176.085 + 101.663i −0.765587 + 0.442012i
\(231\) −23.0244 13.5402i −0.0996729 0.0586154i
\(232\) −40.5971 + 70.3162i −0.174987 + 0.303087i
\(233\) 33.5752i 0.144100i 0.997401 + 0.0720498i \(0.0229541\pi\)
−0.997401 + 0.0720498i \(0.977046\pi\)
\(234\) 227.008 + 135.957i 0.970118 + 0.581011i
\(235\) 188.173 0.800735
\(236\) 87.4622 + 50.4963i 0.370602 + 0.213967i
\(237\) −438.154 3.50908i −1.84875 0.0148063i
\(238\) 17.4591 + 30.2400i 0.0733574 + 0.127059i
\(239\) 314.355 181.493i 1.31529 0.759386i 0.332327 0.943164i \(-0.392166\pi\)
0.982968 + 0.183778i \(0.0588328\pi\)
\(240\) −41.8736 + 23.7307i −0.174474 + 0.0988778i
\(241\) −146.429 + 253.623i −0.607590 + 1.05238i 0.384046 + 0.923314i \(0.374530\pi\)
−0.991636 + 0.129064i \(0.958803\pi\)
\(242\) 155.104i 0.640926i
\(243\) −129.827 + 205.412i −0.534268 + 0.845315i
\(244\) −75.2756 −0.308507
\(245\) 24.3147 + 14.0381i 0.0992435 + 0.0572982i
\(246\) 50.7377 + 89.5285i 0.206251 + 0.363937i
\(247\) 102.329 + 177.238i 0.414286 + 0.717565i
\(248\) 8.26918 4.77422i 0.0333435 0.0192509i
\(249\) 2.35386 293.910i 0.00945326 1.18036i
\(250\) −96.1809 + 166.590i −0.384724 + 0.666361i
\(251\) 201.905i 0.804404i −0.915551 0.402202i \(-0.868245\pi\)
0.915551 0.402202i \(-0.131755\pi\)
\(252\) 24.4693 40.8565i 0.0971003 0.162129i
\(253\) 120.629 0.476795
\(254\) 196.149 + 113.247i 0.772241 + 0.445854i
\(255\) −56.9228 + 96.7947i −0.223227 + 0.379587i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −226.134 + 130.558i −0.879897 + 0.508009i −0.870625 0.491948i \(-0.836285\pi\)
−0.00927277 + 0.999957i \(0.502952\pi\)
\(258\) 90.2171 + 53.0547i 0.349679 + 0.205638i
\(259\) 86.0550 149.052i 0.332259 0.575489i
\(260\) 166.768i 0.641415i
\(261\) 225.785 125.579i 0.865077 0.481145i
\(262\) −83.3686 −0.318201
\(263\) −146.320 84.4780i −0.556350 0.321209i 0.195329 0.980738i \(-0.437423\pi\)
−0.751679 + 0.659529i \(0.770756\pi\)
\(264\) 28.5540 + 0.228683i 0.108159 + 0.000866224i
\(265\) −126.722 219.489i −0.478197 0.828262i
\(266\) 31.8991 18.4170i 0.119922 0.0692367i
\(267\) 205.371 116.388i 0.769180 0.435910i
\(268\) −53.6722 + 92.9631i −0.200270 + 0.346877i
\(269\) 284.702i 1.05837i −0.848506 0.529185i \(-0.822498\pi\)
0.848506 0.529185i \(-0.177502\pi\)
\(270\) 153.106 + 3.67922i 0.567060 + 0.0136267i
\(271\) 483.986 1.78592 0.892962 0.450131i \(-0.148623\pi\)
0.892962 + 0.450131i \(0.148623\pi\)
\(272\) −32.3279 18.6645i −0.118853 0.0686196i
\(273\) 81.3585 + 143.560i 0.298016 + 0.525861i
\(274\) 102.451 + 177.450i 0.373908 + 0.647628i
\(275\) 25.9754 14.9969i 0.0944561 0.0545342i
\(276\) −1.72243 + 215.068i −0.00624069 + 0.779230i
\(277\) 27.2899 47.2676i 0.0985196 0.170641i −0.812552 0.582888i \(-0.801923\pi\)
0.911072 + 0.412247i \(0.135256\pi\)
\(278\) 139.080i 0.500289i
\(279\) −30.3790 0.486630i −0.108885 0.00174419i
\(280\) −30.0147 −0.107195
\(281\) 169.436 + 97.8240i 0.602976 + 0.348128i 0.770211 0.637789i \(-0.220151\pi\)
−0.167236 + 0.985917i \(0.553484\pi\)
\(282\) 100.900 171.576i 0.357803 0.608427i
\(283\) −44.3105 76.7481i −0.156574 0.271195i 0.777057 0.629430i \(-0.216712\pi\)
−0.933631 + 0.358236i \(0.883378\pi\)
\(284\) −145.714 + 84.1279i −0.513077 + 0.296225i
\(285\) 102.105 + 60.0460i 0.358265 + 0.210688i
\(286\) −49.4701 + 85.6847i −0.172972 + 0.299597i
\(287\) 64.1733i 0.223600i
\(288\) −0.815430 + 50.9052i −0.00283135 + 0.176754i
\(289\) 201.909 0.698647
\(290\) −141.015 81.4150i −0.486258 0.280741i
\(291\) −274.360 2.19729i −0.942818 0.00755084i
\(292\) −119.438 206.872i −0.409034 0.708467i
\(293\) 399.075 230.406i 1.36203 0.786369i 0.372136 0.928178i \(-0.378625\pi\)
0.989894 + 0.141810i \(0.0452921\pi\)
\(294\) 25.8377 14.6428i 0.0878835 0.0498054i
\(295\) −101.267 + 175.400i −0.343279 + 0.594576i
\(296\) 183.993i 0.621599i
\(297\) −77.5740 47.3079i −0.261192 0.159286i
\(298\) 98.5609 0.330741
\(299\) −645.374 372.607i −2.15844 1.24618i
\(300\) 26.3668 + 46.5253i 0.0878895 + 0.155084i
\(301\) 32.6338 + 56.5234i 0.108418 + 0.187785i
\(302\) −162.596 + 93.8746i −0.538396 + 0.310843i
\(303\) 3.93087 490.820i 0.0129732 1.61987i
\(304\) −19.6886 + 34.1016i −0.0647650 + 0.112176i
\(305\) 150.961i 0.494953i
\(306\) 57.7350 + 103.805i 0.188676 + 0.339231i
\(307\) −36.6995 −0.119542 −0.0597712 0.998212i \(-0.519037\pi\)
−0.0597712 + 0.998212i \(0.519037\pi\)
\(308\) 15.4214 + 8.90356i 0.0500695 + 0.0289077i
\(309\) 87.0346 147.998i 0.281665 0.478959i
\(310\) 9.57440 + 16.5833i 0.0308852 + 0.0534947i
\(311\) −172.442 + 99.5593i −0.554475 + 0.320126i −0.750925 0.660388i \(-0.770392\pi\)
0.196450 + 0.980514i \(0.437059\pi\)
\(312\) −152.059 89.4228i −0.487370 0.286612i
\(313\) 47.7951 82.7836i 0.152700 0.264484i −0.779519 0.626378i \(-0.784536\pi\)
0.932219 + 0.361894i \(0.117870\pi\)
\(314\) 57.8830i 0.184341i
\(315\) 81.9352 + 49.0716i 0.260112 + 0.155783i
\(316\) 292.112 0.924405
\(317\) −47.4997 27.4240i −0.149841 0.0865109i 0.423205 0.906034i \(-0.360905\pi\)
−0.573046 + 0.819523i \(0.694238\pi\)
\(318\) −268.081 2.14700i −0.843022 0.00675159i
\(319\) 48.3019 + 83.6614i 0.151417 + 0.262261i
\(320\) 27.7882 16.0435i 0.0868380 0.0501360i
\(321\) 65.4397 37.0861i 0.203862 0.115533i
\(322\) −67.0612 + 116.153i −0.208265 + 0.360725i
\(323\) 91.8695i 0.284426i
\(324\) 85.4520 137.630i 0.263741 0.424783i
\(325\) −185.294 −0.570134
\(326\) −276.099 159.406i −0.846928 0.488974i
\(327\) −77.7118 137.125i −0.237651 0.419344i
\(328\) −34.3020 59.4129i −0.104579 0.181137i
\(329\) 107.497 62.0635i 0.326739 0.188643i
\(330\) −0.458610 + 57.2633i −0.00138973 + 0.173525i
\(331\) 111.327 192.824i 0.336336 0.582551i −0.647404 0.762147i \(-0.724146\pi\)
0.983741 + 0.179595i \(0.0574788\pi\)
\(332\) 195.946i 0.590199i
\(333\) 300.815 502.272i 0.903348 1.50833i
\(334\) 226.343 0.677674
\(335\) −186.432 107.636i −0.556513 0.321303i
\(336\) −16.0942 + 27.3674i −0.0478994 + 0.0814507i
\(337\) −120.850 209.318i −0.358605 0.621121i 0.629123 0.777305i \(-0.283414\pi\)
−0.987728 + 0.156184i \(0.950081\pi\)
\(338\) 322.354 186.111i 0.953711 0.550625i
\(339\) −231.393 136.077i −0.682574 0.401407i
\(340\) 37.4306 64.8316i 0.110090 0.190681i
\(341\) 11.3606i 0.0333156i
\(342\) 109.500 60.9027i 0.320176 0.178078i
\(343\) 18.5203 0.0539949
\(344\) −60.4261 34.8870i −0.175657 0.101416i
\(345\) −431.305 3.45423i −1.25016 0.0100123i
\(346\) −199.794 346.053i −0.577438 1.00015i
\(347\) −474.285 + 273.829i −1.36682 + 0.789132i −0.990520 0.137368i \(-0.956136\pi\)
−0.376296 + 0.926500i \(0.622802\pi\)
\(348\) −149.848 + 84.9221i −0.430598 + 0.244029i
\(349\) 12.2170 21.1605i 0.0350058 0.0606318i −0.847992 0.530009i \(-0.822188\pi\)
0.882998 + 0.469378i \(0.155522\pi\)
\(350\) 33.3489i 0.0952825i
\(351\) 268.898 + 492.715i 0.766092 + 1.40375i
\(352\) −19.0366 −0.0540813
\(353\) 145.238 + 83.8531i 0.411439 + 0.237544i 0.691408 0.722465i \(-0.256991\pi\)
−0.279969 + 0.960009i \(0.590324\pi\)
\(354\) 105.630 + 186.387i 0.298389 + 0.526518i
\(355\) −168.713 292.220i −0.475249 0.823155i
\(356\) −136.288 + 78.6860i −0.382832 + 0.221028i
\(357\) −0.593213 + 74.0702i −0.00166166 + 0.207479i
\(358\) 114.210 197.817i 0.319022 0.552562i
\(359\) 54.4528i 0.151679i 0.997120 + 0.0758396i \(0.0241637\pi\)
−0.997120 + 0.0758396i \(0.975836\pi\)
\(360\) −102.087 1.63529i −0.283575 0.00454249i
\(361\) −264.090 −0.731551
\(362\) 59.9442 + 34.6088i 0.165592 + 0.0956044i
\(363\) −166.790 + 283.618i −0.459475 + 0.781317i
\(364\) −55.0037 95.2692i −0.151109 0.261729i
\(365\) 414.870 239.525i 1.13663 0.656234i
\(366\) −137.646 80.9468i −0.376083 0.221166i
\(367\) 83.9105 145.337i 0.228639 0.396014i −0.728766 0.684763i \(-0.759906\pi\)
0.957405 + 0.288748i \(0.0932391\pi\)
\(368\) 143.383i 0.389628i
\(369\) −3.49636 + 218.269i −0.00947524 + 0.591515i
\(370\) −368.987 −0.997263
\(371\) −144.785 83.5916i −0.390256 0.225314i
\(372\) 20.2546 + 0.162215i 0.0544479 + 0.000436062i
\(373\) 263.215 + 455.902i 0.705670 + 1.22226i 0.966449 + 0.256858i \(0.0826874\pi\)
−0.260779 + 0.965399i \(0.583979\pi\)
\(374\) −38.4634 + 22.2068i −0.102843 + 0.0593766i
\(375\) −355.014 + 201.194i −0.946704 + 0.536517i
\(376\) −66.3487 + 114.919i −0.176459 + 0.305637i
\(377\) 596.792i 1.58300i
\(378\) 88.6782 48.3960i 0.234599 0.128032i
\(379\) 88.4297 0.233324 0.116662 0.993172i \(-0.462781\pi\)
0.116662 + 0.993172i \(0.462781\pi\)
\(380\) −68.3887 39.4842i −0.179970 0.103906i
\(381\) 236.893 + 418.006i 0.621766 + 1.09713i
\(382\) 131.680 + 228.076i 0.344711 + 0.597057i
\(383\) 61.9482 35.7658i 0.161745 0.0933833i −0.416943 0.908933i \(-0.636898\pi\)
0.578687 + 0.815549i \(0.303565\pi\)
\(384\) 0.271819 33.9400i 0.000707861 0.0883855i
\(385\) −17.8555 + 30.9267i −0.0463780 + 0.0803291i
\(386\) 448.054i 1.16076i
\(387\) 107.916 + 194.028i 0.278853 + 0.501364i
\(388\) 182.913 0.471424
\(389\) 509.363 + 294.081i 1.30942 + 0.755991i 0.981999 0.188888i \(-0.0604885\pi\)
0.327417 + 0.944880i \(0.393822\pi\)
\(390\) 179.332 304.946i 0.459826 0.781912i
\(391\) −167.261 289.704i −0.427777 0.740932i
\(392\) −17.1464 + 9.89949i −0.0437409 + 0.0252538i
\(393\) −152.445 89.6495i −0.387901 0.228116i
\(394\) 88.2489 152.852i 0.223982 0.387948i
\(395\) 585.813i 1.48307i
\(396\) 51.9669 + 31.1234i 0.131230 + 0.0785944i
\(397\) 696.775 1.75510 0.877551 0.479484i \(-0.159176\pi\)
0.877551 + 0.479484i \(0.159176\pi\)
\(398\) 428.515 + 247.403i 1.07667 + 0.621616i
\(399\) 78.1341 + 0.625760i 0.195825 + 0.00156832i
\(400\) −17.8257 30.8751i −0.0445643 0.0771877i
\(401\) 537.160 310.130i 1.33955 0.773390i 0.352811 0.935695i \(-0.385226\pi\)
0.986741 + 0.162304i \(0.0518927\pi\)
\(402\) −198.110 + 112.273i −0.492811 + 0.279286i
\(403\) −35.0914 + 60.7800i −0.0870753 + 0.150819i
\(404\) 327.224i 0.809960i
\(405\) 276.008 + 171.369i 0.681501 + 0.423133i
\(406\) −107.410 −0.264556
\(407\) 189.584 + 109.457i 0.465809 + 0.268935i
\(408\) −39.0430 68.8927i −0.0956935 0.168855i
\(409\) −53.2078 92.1586i −0.130092 0.225327i 0.793620 0.608414i \(-0.208194\pi\)
−0.923712 + 0.383088i \(0.874861\pi\)
\(410\) 119.149 68.7906i 0.290607 0.167782i
\(411\) −3.48101 + 434.648i −0.00846961 + 1.05754i
\(412\) −57.2310 + 99.1270i −0.138910 + 0.240600i
\(413\) 133.601i 0.323488i
\(414\) −234.420 + 391.413i −0.566232 + 0.945441i
\(415\) −392.958 −0.946886
\(416\) 101.847 + 58.8014i 0.244825 + 0.141350i
\(417\) −149.559 + 254.317i −0.358654 + 0.609874i
\(418\) 23.4252 + 40.5737i 0.0560412 + 0.0970663i
\(419\) −162.096 + 93.5864i −0.386865 + 0.223356i −0.680801 0.732469i \(-0.738368\pi\)
0.293936 + 0.955825i \(0.405035\pi\)
\(420\) −54.8837 32.2759i −0.130676 0.0768474i
\(421\) −190.208 + 329.449i −0.451800 + 0.782540i −0.998498 0.0547895i \(-0.982551\pi\)
0.546698 + 0.837330i \(0.315885\pi\)
\(422\) 204.827i 0.485371i
\(423\) 369.006 205.236i 0.872354 0.485193i
\(424\) 178.726 0.421524
\(425\) −72.0336 41.5886i −0.169491 0.0978555i
\(426\) −356.913 2.85844i −0.837824 0.00670996i
\(427\) −49.7901 86.2391i −0.116605 0.201965i
\(428\) −43.4271 + 25.0726i −0.101465 + 0.0585809i
\(429\) −182.599 + 103.483i −0.425639 + 0.241219i
\(430\) 69.9637 121.181i 0.162706 0.281816i
\(431\) 630.398i 1.46264i 0.682035 + 0.731320i \(0.261095\pi\)
−0.682035 + 0.731320i \(0.738905\pi\)
\(432\) −56.2314 + 92.2065i −0.130165 + 0.213441i
\(433\) 228.885 0.528603 0.264301 0.964440i \(-0.414859\pi\)
0.264301 + 0.964440i \(0.414859\pi\)
\(434\) 10.9391 + 6.31569i 0.0252053 + 0.0145523i
\(435\) −170.306 300.511i −0.391508 0.690830i
\(436\) 52.5383 + 90.9991i 0.120501 + 0.208713i
\(437\) −305.599 + 176.438i −0.699312 + 0.403748i
\(438\) 4.05818 506.716i 0.00926525 1.15689i
\(439\) −245.842 + 425.811i −0.560004 + 0.969956i 0.437491 + 0.899223i \(0.355867\pi\)
−0.997495 + 0.0707333i \(0.977466\pi\)
\(440\) 38.1768i 0.0867654i
\(441\) 62.9919 + 1.00904i 0.142839 + 0.00228808i
\(442\) 274.375 0.620759
\(443\) 299.012 + 172.635i 0.674971 + 0.389695i 0.797958 0.602713i \(-0.205914\pi\)
−0.122986 + 0.992408i \(0.539247\pi\)
\(444\) −197.855 + 336.444i −0.445620 + 0.757756i
\(445\) −157.800 273.318i −0.354607 0.614197i
\(446\) 352.610 203.580i 0.790606 0.456457i
\(447\) 180.225 + 105.986i 0.403188 + 0.237106i
\(448\) 10.5830 18.3303i 0.0236228 0.0409159i
\(449\) 811.155i 1.80658i 0.429030 + 0.903290i \(0.358856\pi\)
−0.429030 + 0.903290i \(0.641144\pi\)
\(450\) −1.81695 + 113.428i −0.00403768 + 0.252062i
\(451\) −81.6243 −0.180985
\(452\) 154.983 + 89.4796i 0.342883 + 0.197964i
\(453\) −398.263 3.18961i −0.879169 0.00704108i
\(454\) 159.658 + 276.536i 0.351670 + 0.609111i
\(455\) 191.057 110.307i 0.419905 0.242432i
\(456\) −72.6726 + 41.1851i −0.159370 + 0.0903182i
\(457\) −211.628 + 366.551i −0.463081 + 0.802080i −0.999113 0.0421179i \(-0.986589\pi\)
0.536032 + 0.844198i \(0.319923\pi\)
\(458\) 594.600i 1.29825i
\(459\) −6.05324 + 251.898i −0.0131879 + 0.548798i
\(460\) 287.546 0.625099
\(461\) 245.509 + 141.745i 0.532557 + 0.307472i 0.742057 0.670337i \(-0.233850\pi\)
−0.209500 + 0.977809i \(0.567184\pi\)
\(462\) 18.6247 + 32.8640i 0.0403132 + 0.0711342i
\(463\) −323.479 560.282i −0.698659 1.21011i −0.968932 0.247329i \(-0.920447\pi\)
0.270273 0.962784i \(-0.412886\pi\)
\(464\) 99.4421 57.4129i 0.214315 0.123735i
\(465\) −0.325313 + 40.6194i −0.000699597 + 0.0873536i
\(466\) 23.7413 41.1211i 0.0509469 0.0882427i
\(467\) 526.799i 1.12805i −0.825758 0.564025i \(-0.809252\pi\)
0.825758 0.564025i \(-0.190748\pi\)
\(468\) −181.890 327.031i −0.388655 0.698784i
\(469\) −142.003 −0.302779
\(470\) −230.464 133.058i −0.490348 0.283103i
\(471\) 62.2438 105.843i 0.132152 0.224719i
\(472\) −71.4126 123.690i −0.151298 0.262055i
\(473\) −71.8942 + 41.5081i −0.151996 + 0.0877551i
\(474\) 534.145 + 314.119i 1.12689 + 0.662699i
\(475\) −43.8704 + 75.9858i −0.0923587 + 0.159970i
\(476\) 49.3817i 0.103743i
\(477\) −487.894 292.204i −1.02284 0.612586i
\(478\) −513.340 −1.07393
\(479\) 595.527 + 343.828i 1.24327 + 0.717803i 0.969759 0.244065i \(-0.0784810\pi\)
0.273513 + 0.961868i \(0.411814\pi\)
\(480\) 68.0647 + 0.545116i 0.141801 + 0.00113566i
\(481\) −676.192 1171.20i −1.40580 2.43493i
\(482\) 358.677 207.082i 0.744143 0.429631i
\(483\) −247.530 + 140.281i −0.512485 + 0.290436i
\(484\) 109.675 189.963i 0.226602 0.392486i
\(485\) 366.820i 0.756330i
\(486\) 304.253 159.775i 0.626035 0.328755i
\(487\) 211.195 0.433666 0.216833 0.976209i \(-0.430427\pi\)
0.216833 + 0.976209i \(0.430427\pi\)
\(488\) 92.1934 + 53.2279i 0.188921 + 0.109074i
\(489\) −333.449 588.383i −0.681900 1.20324i
\(490\) −19.8528 34.3861i −0.0405160 0.0701757i
\(491\) −233.574 + 134.854i −0.475711 + 0.274652i −0.718627 0.695395i \(-0.755229\pi\)
0.242916 + 0.970047i \(0.421896\pi\)
\(492\) 1.16549 145.527i 0.00236889 0.295786i
\(493\) 133.948 232.005i 0.271700 0.470598i
\(494\) 289.429i 0.585889i
\(495\) −62.4160 + 104.216i −0.126093 + 0.210538i
\(496\) −13.5035 −0.0272248
\(497\) −192.761 111.291i −0.387849 0.223925i
\(498\) −210.708 + 358.300i −0.423109 + 0.719478i
\(499\) −43.3403 75.0676i −0.0868543 0.150436i 0.819326 0.573329i \(-0.194348\pi\)
−0.906180 + 0.422892i \(0.861015\pi\)
\(500\) 235.594 136.020i 0.471188 0.272041i
\(501\) 413.883 + 243.396i 0.826114 + 0.485819i
\(502\) −142.769 + 247.283i −0.284400 + 0.492595i
\(503\) 796.451i 1.58340i 0.610909 + 0.791701i \(0.290804\pi\)
−0.610909 + 0.791701i \(0.709196\pi\)
\(504\) −58.8585 + 32.7364i −0.116783 + 0.0649532i
\(505\) −656.227 −1.29946
\(506\) −147.740 85.2977i −0.291976 0.168573i
\(507\) 789.579 + 6.32357i 1.55735 + 0.0124725i
\(508\) −160.155 277.397i −0.315266 0.546057i
\(509\) −429.587 + 248.022i −0.843982 + 0.487273i −0.858616 0.512620i \(-0.828675\pi\)
0.0146337 + 0.999893i \(0.495342\pi\)
\(510\) 138.160 78.2983i 0.270902 0.153526i
\(511\) 158.001 273.667i 0.309200 0.535551i
\(512\) 22.6274i 0.0441942i
\(513\) 265.719 + 6.38536i 0.517971 + 0.0124471i
\(514\) 369.275 0.718433
\(515\) −198.793 114.773i −0.386006 0.222861i
\(516\) −72.9776 128.772i −0.141429 0.249557i
\(517\) 78.9409 + 136.730i 0.152690 + 0.264467i
\(518\) −210.791 + 121.700i −0.406932 + 0.234942i
\(519\) 6.78845 847.625i 0.0130799 1.63319i
\(520\) −117.923 + 204.248i −0.226774 + 0.392785i
\(521\) 759.191i 1.45718i −0.684950 0.728590i \(-0.740176\pi\)
0.684950 0.728590i \(-0.259824\pi\)
\(522\) −365.327 5.85203i −0.699860 0.0112108i
\(523\) 153.141 0.292813 0.146407 0.989224i \(-0.453229\pi\)
0.146407 + 0.989224i \(0.453229\pi\)
\(524\) 102.105 + 58.9505i 0.194857 + 0.112501i
\(525\) −35.8613 + 60.9806i −0.0683073 + 0.116153i
\(526\) 119.470 + 206.928i 0.227129 + 0.393399i
\(527\) −27.2838 + 15.7523i −0.0517719 + 0.0298905i
\(528\) −34.8097 20.4708i −0.0659274 0.0387705i
\(529\) 377.959 654.644i 0.714478 1.23751i
\(530\) 358.425i 0.676273i
\(531\) −7.27899 + 454.408i −0.0137081 + 0.855760i
\(532\) −52.0911 −0.0979155
\(533\) 436.695 + 252.126i 0.819316 + 0.473032i
\(534\) −333.826 2.67354i −0.625142 0.00500663i
\(535\) −50.2816 87.0904i −0.0939844 0.162786i
\(536\) 131.470 75.9040i 0.245279 0.141612i
\(537\) 421.561 238.907i 0.785029 0.444892i
\(538\) −201.314 + 348.687i −0.374190 + 0.648117i
\(539\) 23.5566i 0.0437043i
\(540\) −184.914 112.769i −0.342434 0.208831i
\(541\) −513.041 −0.948320 −0.474160 0.880439i \(-0.657248\pi\)
−0.474160 + 0.880439i \(0.657248\pi\)
\(542\) −592.759 342.229i −1.09365 0.631420i
\(543\) 72.3956 + 127.745i 0.133325 + 0.235257i
\(544\) 26.3956 + 45.7186i 0.0485214 + 0.0840415i
\(545\) −182.493 + 105.362i −0.334850 + 0.193326i
\(546\) 1.86888 233.354i 0.00342286 0.427387i
\(547\) 99.8344 172.918i 0.182513 0.316121i −0.760223 0.649662i \(-0.774910\pi\)
0.942736 + 0.333541i \(0.108244\pi\)
\(548\) 289.775i 0.528786i
\(549\) −164.650 296.033i −0.299909 0.539222i
\(550\) −42.4177 −0.0771231
\(551\) −244.734 141.297i −0.444164 0.256438i
\(552\) 154.185 262.185i 0.279321 0.474973i
\(553\) 193.214 + 334.656i 0.349392 + 0.605165i
\(554\) −66.8464 + 38.5938i −0.120661 + 0.0696639i
\(555\) −674.717 396.786i −1.21571 0.714930i
\(556\) 98.3447 170.338i 0.176879 0.306363i
\(557\) 53.8854i 0.0967421i −0.998829 0.0483711i \(-0.984597\pi\)
0.998829 0.0483711i \(-0.0154030\pi\)
\(558\) 36.8625 + 22.0772i 0.0660618 + 0.0395649i
\(559\) 512.852 0.917445
\(560\) 36.7603 + 21.2236i 0.0656434 + 0.0378992i
\(561\) −94.2126 0.754529i −0.167937 0.00134497i
\(562\) −138.344 239.619i −0.246164 0.426368i
\(563\) 183.647 106.029i 0.326194 0.188328i −0.327956 0.944693i \(-0.606360\pi\)
0.654150 + 0.756365i \(0.273026\pi\)
\(564\) −244.900 + 138.790i −0.434220 + 0.246082i
\(565\) −179.446 + 310.809i −0.317603 + 0.550105i
\(566\) 125.329i 0.221430i
\(567\) 214.196 + 6.86400i 0.377771 + 0.0121058i
\(568\) 237.950 0.418925
\(569\) −419.953 242.460i −0.738055 0.426116i 0.0833068 0.996524i \(-0.473452\pi\)
−0.821362 + 0.570408i \(0.806785\pi\)
\(570\) −82.5942 145.740i −0.144902 0.255685i
\(571\) 355.259 + 615.326i 0.622169 + 1.07763i 0.989081 + 0.147373i \(0.0470817\pi\)
−0.366912 + 0.930256i \(0.619585\pi\)
\(572\) 121.176 69.9613i 0.211847 0.122310i
\(573\) −4.47413 + 558.652i −0.00780825 + 0.974959i
\(574\) 45.3773 78.5959i 0.0790546 0.136927i
\(575\) 319.488i 0.555632i
\(576\) 36.9941 61.7692i 0.0642258 0.107238i
\(577\) 664.563 1.15175 0.575877 0.817536i \(-0.304661\pi\)
0.575877 + 0.817536i \(0.304661\pi\)
\(578\) −247.287 142.771i −0.427832 0.247009i
\(579\) 481.810 819.296i 0.832142 1.41502i
\(580\) 115.138 + 199.425i 0.198514 + 0.343836i
\(581\) −224.484 + 129.606i −0.386376 + 0.223074i
\(582\) 334.467 + 196.693i 0.574686 + 0.337961i
\(583\) 106.323 184.157i 0.182373 0.315879i
\(584\) 337.821i 0.578461i
\(585\) 655.840 364.770i 1.12109 0.623539i
\(586\) −651.687 −1.11209
\(587\) −116.045 66.9986i −0.197692 0.114137i 0.397887 0.917435i \(-0.369744\pi\)
−0.595578 + 0.803297i \(0.703077\pi\)
\(588\) −41.9987 0.336359i −0.0714263 0.000572038i
\(589\) 16.6166 + 28.7807i 0.0282115 + 0.0488637i
\(590\) 248.053 143.214i 0.420429 0.242735i
\(591\) 325.736 184.602i 0.551161 0.312355i
\(592\) 130.103 225.345i 0.219768 0.380650i
\(593\) 37.8229i 0.0637823i 0.999491 + 0.0318911i \(0.0101530\pi\)
−0.999491 + 0.0318911i \(0.989847\pi\)
\(594\) 61.5566 + 112.793i 0.103631 + 0.189887i
\(595\) 99.0319 0.166440
\(596\) −120.712 69.6931i −0.202537 0.116935i
\(597\) 517.525 + 913.192i 0.866876 + 1.52963i
\(598\) 526.945 + 912.696i 0.881180 + 1.52625i
\(599\) 700.983 404.713i 1.17026 0.675647i 0.216515 0.976279i \(-0.430531\pi\)
0.953740 + 0.300632i \(0.0971976\pi\)
\(600\) 0.605671 75.6257i 0.00100945 0.126043i
\(601\) 160.964 278.797i 0.267827 0.463889i −0.700474 0.713678i \(-0.747028\pi\)
0.968300 + 0.249789i \(0.0803612\pi\)
\(602\) 92.3023i 0.153326i
\(603\) −482.988 7.73680i −0.800976 0.0128305i
\(604\) 265.517 0.439598
\(605\) 380.959 + 219.947i 0.629685 + 0.363549i
\(606\) −351.876 + 598.350i −0.580654 + 0.987376i
\(607\) −304.992 528.262i −0.502459 0.870284i −0.999996 0.00284120i \(-0.999096\pi\)
0.497537 0.867443i \(-0.334238\pi\)
\(608\) 48.2270 27.8438i 0.0793207 0.0457958i
\(609\) −196.406 115.502i −0.322505 0.189658i
\(610\) −106.745 + 184.888i −0.174992 + 0.303096i
\(611\) 975.350i 1.59632i
\(612\) 2.69047 167.959i 0.00439620 0.274443i
\(613\) −960.151 −1.56632 −0.783158 0.621823i \(-0.786392\pi\)
−0.783158 + 0.621823i \(0.786392\pi\)
\(614\) 44.9476 + 25.9505i 0.0732045 + 0.0422646i
\(615\) 291.845 + 2.33732i 0.474544 + 0.00380053i
\(616\) −12.5915 21.8092i −0.0204408 0.0354045i
\(617\) −748.615 + 432.213i −1.21331 + 0.700507i −0.963480 0.267782i \(-0.913709\pi\)
−0.249834 + 0.968289i \(0.580376\pi\)
\(618\) −211.246 + 119.717i −0.341822 + 0.193717i
\(619\) 7.62254 13.2026i 0.0123143 0.0213290i −0.859803 0.510627i \(-0.829413\pi\)
0.872117 + 0.489298i \(0.162747\pi\)
\(620\) 27.0805i 0.0436782i
\(621\) −849.553 + 463.642i −1.36804 + 0.746606i
\(622\) 281.596 0.452727
\(623\) −180.292 104.092i −0.289394 0.167082i
\(624\) 123.002 + 217.042i 0.197119 + 0.347824i
\(625\) 161.370 + 279.500i 0.258191 + 0.447201i
\(626\) −117.074 + 67.5925i −0.187019 + 0.107975i
\(627\) −0.795927 + 99.3817i −0.00126942 + 0.158503i
\(628\) −40.9295 + 70.8919i −0.0651743 + 0.112885i
\(629\) 607.077i 0.965147i
\(630\) −65.6508 118.037i −0.104208 0.187361i
\(631\) −716.934 −1.13619 −0.568094 0.822964i \(-0.692319\pi\)
−0.568094 + 0.822964i \(0.692319\pi\)
\(632\) −357.763 206.554i −0.566080 0.326826i
\(633\) −220.258 + 374.539i −0.347959 + 0.591688i
\(634\) 38.7833 + 67.1747i 0.0611725 + 0.105954i
\(635\) 556.303 321.181i 0.876067 0.505798i
\(636\) 326.812 + 192.191i 0.513856 + 0.302188i
\(637\) 72.7631 126.029i 0.114228 0.197848i
\(638\) 136.618i 0.214136i
\(639\) −649.564 389.029i −1.01653 0.608809i
\(640\) −45.3779 −0.0709030
\(641\) 279.229 + 161.213i 0.435615 + 0.251502i 0.701736 0.712437i \(-0.252409\pi\)
−0.266121 + 0.963940i \(0.585742\pi\)
\(642\) −106.371 0.851902i −0.165687 0.00132695i
\(643\) 429.688 + 744.241i 0.668254 + 1.15745i 0.978392 + 0.206759i \(0.0662915\pi\)
−0.310138 + 0.950692i \(0.600375\pi\)
\(644\) 164.266 94.8389i 0.255071 0.147265i
\(645\) 258.244 146.352i 0.400378 0.226902i
\(646\) 64.9615 112.517i 0.100560 0.174174i
\(647\) 523.408i 0.808977i 0.914543 + 0.404489i \(0.132550\pi\)
−0.914543 + 0.404489i \(0.867450\pi\)
\(648\) −201.976 + 108.138i −0.311691 + 0.166879i
\(649\) −169.932 −0.261836
\(650\) 226.937 + 131.022i 0.349134 + 0.201573i
\(651\) 13.2113 + 23.3119i 0.0202939 + 0.0358094i
\(652\) 225.434 + 390.462i 0.345757 + 0.598869i
\(653\) −1061.65 + 612.945i −1.62581 + 0.938660i −0.640482 + 0.767974i \(0.721265\pi\)
−0.985325 + 0.170687i \(0.945401\pi\)
\(654\) −1.78511 + 222.894i −0.00272953 + 0.340817i
\(655\) −118.222 + 204.766i −0.180491 + 0.312620i
\(656\) 97.0208i 0.147898i
\(657\) 552.312 922.198i 0.840657 1.40365i
\(658\) −175.542 −0.266781
\(659\) −745.244 430.267i −1.13087 0.652909i −0.186717 0.982414i \(-0.559785\pi\)
−0.944154 + 0.329505i \(0.893118\pi\)
\(660\) 41.0529 69.8086i 0.0622014 0.105771i
\(661\) 306.814 + 531.417i 0.464166 + 0.803960i 0.999163 0.0408940i \(-0.0130206\pi\)
−0.534997 + 0.844854i \(0.679687\pi\)
\(662\) −272.695 + 157.441i −0.411926 + 0.237826i
\(663\) 501.713 + 295.046i 0.756731 + 0.445017i
\(664\) 138.555 239.984i 0.208667 0.361421i
\(665\) 104.465i 0.157091i
\(666\) −723.582 + 402.447i −1.08646 + 0.604275i
\(667\) 1029.00 1.54274
\(668\) −277.213 160.049i −0.414989 0.239594i
\(669\) 863.688 + 6.91710i 1.29101 + 0.0103395i
\(670\) 152.221 + 263.654i 0.227195 + 0.393514i
\(671\) 109.691 63.3299i 0.163473 0.0943814i
\(672\) 39.0630 22.1378i 0.0581294 0.0329432i
\(673\) −497.647 + 861.950i −0.739446 + 1.28076i 0.213299 + 0.976987i \(0.431579\pi\)
−0.952745 + 0.303771i \(0.901754\pi\)
\(674\) 341.815i 0.507144i
\(675\) −125.296 + 205.456i −0.185623 + 0.304379i
\(676\) −526.403 −0.778702
\(677\) −393.511 227.194i −0.581258 0.335589i 0.180375 0.983598i \(-0.442269\pi\)
−0.761633 + 0.648009i \(0.775602\pi\)
\(678\) 187.176 + 330.279i 0.276071 + 0.487137i
\(679\) 120.985 + 209.553i 0.178182 + 0.308620i
\(680\) −91.6858 + 52.9348i −0.134832 + 0.0778453i
\(681\) −5.42476 + 677.351i −0.00796588 + 0.994641i
\(682\) −8.03317 + 13.9139i −0.0117788 + 0.0204015i
\(683\) 1103.35i 1.61544i −0.589567 0.807720i \(-0.700701\pi\)
0.589567 0.807720i \(-0.299299\pi\)
\(684\) −177.174 2.83809i −0.259027 0.00414925i
\(685\) 581.126 0.848359
\(686\) −22.6826 13.0958i −0.0330650 0.0190901i
\(687\) 639.397 1087.26i 0.930708 1.58263i
\(688\) 49.3377 + 85.4553i 0.0717117 + 0.124208i
\(689\) −1137.67 + 656.835i −1.65119 + 0.953317i
\(690\) 525.796 + 309.209i 0.762023 + 0.448129i
\(691\) −54.9059 + 95.0998i −0.0794586 + 0.137626i −0.903016 0.429606i \(-0.858652\pi\)
0.823558 + 0.567232i \(0.191986\pi\)
\(692\) 565.101i 0.816621i
\(693\) −1.28344 + 80.1218i −0.00185201 + 0.115616i
\(694\) 774.504 1.11600
\(695\) 341.603 + 197.224i 0.491514 + 0.283776i
\(696\) 243.575 + 1.95074i 0.349964 + 0.00280279i
\(697\) 113.178 + 196.030i 0.162379 + 0.281248i
\(698\) −29.9255 + 17.2775i −0.0428732 + 0.0247528i
\(699\) 87.6315 49.6626i 0.125367 0.0710481i
\(700\) 23.5812 40.8439i 0.0336875 0.0583484i
\(701\) 435.772i 0.621644i −0.950468 0.310822i \(-0.899396\pi\)
0.950468 0.310822i \(-0.100604\pi\)
\(702\) 19.0704 793.590i 0.0271658 1.13047i
\(703\) −640.385 −0.910932
\(704\) 23.3150 + 13.4609i 0.0331179 + 0.0191206i
\(705\) −278.335 491.132i −0.394801 0.696641i
\(706\) −118.586 205.397i −0.167969 0.290931i
\(707\) −374.882 + 216.438i −0.530243 + 0.306136i
\(708\) 2.42641 302.968i 0.00342713 0.427921i
\(709\) 388.936 673.657i 0.548570 0.950151i −0.449803 0.893128i \(-0.648506\pi\)
0.998373 0.0570231i \(-0.0181609\pi\)
\(710\) 477.193i 0.672103i
\(711\) 638.934 + 1148.77i 0.898642 + 1.61572i
\(712\) 222.558 0.312581
\(713\) −104.799 60.5055i −0.146983 0.0848604i
\(714\) 53.1020 90.2976i 0.0743726 0.126467i
\(715\) 140.303 + 243.012i 0.196228 + 0.339877i
\(716\) −279.756 + 161.517i −0.390720 + 0.225583i
\(717\) −938.676 552.015i −1.30917 0.769895i
\(718\) 38.5040 66.6908i 0.0536267 0.0928841i
\(719\) 47.2047i 0.0656533i 0.999461 + 0.0328267i \(0.0104509\pi\)
−0.999461 + 0.0328267i \(0.989549\pi\)
\(720\) 123.874 + 74.1893i 0.172048 + 0.103041i
\(721\) −151.419 −0.210013
\(722\) 323.443 + 186.740i 0.447982 + 0.258642i
\(723\) 878.548 + 7.03611i 1.21514 + 0.00973182i
\(724\) −48.9442 84.7739i −0.0676025 0.117091i
\(725\) 221.579 127.928i 0.305626 0.176453i
\(726\) 404.823 229.422i 0.557607 0.316008i
\(727\) −130.458 + 225.960i −0.179447 + 0.310812i −0.941691 0.336478i \(-0.890764\pi\)
0.762244 + 0.647290i \(0.224098\pi\)
\(728\) 155.574i 0.213701i
\(729\) 728.159 + 35.0162i 0.998846 + 0.0480332i
\(730\) −677.480 −0.928055
\(731\) 199.373 + 115.108i 0.272740 + 0.157466i
\(732\) 111.344 + 196.470i 0.152109 + 0.268401i
\(733\) 56.4059 + 97.6979i 0.0769521 + 0.133285i 0.901934 0.431875i \(-0.142148\pi\)
−0.824981 + 0.565160i \(0.808814\pi\)
\(734\) −205.538 + 118.667i −0.280025 + 0.161672i
\(735\) 0.674546 84.2257i 0.000917750 0.114593i
\(736\) −101.387 + 175.608i −0.137754 + 0.238597i
\(737\) 180.619i 0.245074i
\(738\) 158.622 264.851i 0.214934 0.358877i
\(739\) −703.950 −0.952571 −0.476285 0.879291i \(-0.658017\pi\)
−0.476285 + 0.879291i \(0.658017\pi\)
\(740\) 451.915 + 260.913i 0.610696 + 0.352586i
\(741\) 311.234 529.240i 0.420019 0.714224i
\(742\) 118.216 + 204.757i 0.159321 + 0.275952i
\(743\) 166.506 96.1325i 0.224100 0.129384i −0.383747 0.923438i \(-0.625367\pi\)
0.607847 + 0.794054i \(0.292033\pi\)
\(744\) −24.6921 14.5209i −0.0331882 0.0195173i
\(745\) 139.765 242.080i 0.187604 0.324940i
\(746\) 744.485i 0.997969i
\(747\) −770.587 + 428.591i −1.03158 + 0.573750i
\(748\) 62.8104 0.0839711
\(749\) −57.4486 33.1680i −0.0767005 0.0442830i
\(750\) 577.067 + 4.62161i 0.769423 + 0.00616215i
\(751\) −274.777 475.928i −0.365882 0.633726i 0.623036 0.782193i \(-0.285899\pi\)
−0.988917 + 0.148468i \(0.952566\pi\)
\(752\) 162.520 93.8312i 0.216118 0.124776i
\(753\) −526.974 + 298.647i −0.699833 + 0.396610i
\(754\) −421.996 + 730.918i −0.559676 + 0.969387i
\(755\) 532.479i 0.705270i
\(756\) −142.829 3.43226i −0.188928 0.00454003i
\(757\) 741.823 0.979952 0.489976 0.871736i \(-0.337006\pi\)
0.489976 + 0.871736i \(0.337006\pi\)
\(758\) −108.304 62.5292i −0.142881 0.0824924i
\(759\) −178.428 314.843i −0.235083 0.414813i
\(760\) 55.8391 + 96.7162i 0.0734725 + 0.127258i
\(761\) −293.314 + 169.345i −0.385433 + 0.222530i −0.680179 0.733046i \(-0.738098\pi\)
0.294746 + 0.955575i \(0.404765\pi\)
\(762\) 5.44165 679.459i 0.00714127 0.891679i
\(763\) −69.5017 + 120.380i −0.0910900 + 0.157773i
\(764\) 372.446i 0.487495i
\(765\) 336.832 + 5.39558i 0.440303 + 0.00705304i
\(766\) −101.161 −0.132064
\(767\) 909.145 + 524.895i 1.18533 + 0.684348i
\(768\) −24.3321 + 41.3757i −0.0316825 + 0.0538746i
\(769\) 342.939 + 593.987i 0.445954 + 0.772415i 0.998118 0.0613201i \(-0.0195311\pi\)
−0.552164 + 0.833736i \(0.686198\pi\)
\(770\) 43.7370 25.2516i 0.0568013 0.0327942i
\(771\) 675.242 + 397.095i 0.875801 + 0.515039i
\(772\) −316.822 + 548.752i −0.410391 + 0.710819i
\(773\) 611.346i 0.790874i −0.918493 0.395437i \(-0.870593\pi\)
0.918493 0.395437i \(-0.129407\pi\)
\(774\) 5.02893 313.943i 0.00649732 0.405611i
\(775\) −30.0888 −0.0388242
\(776\) −224.021 129.339i −0.288687 0.166674i
\(777\) −516.313 4.13505i −0.664496 0.00532181i
\(778\) −415.893 720.348i −0.534567 0.925897i
\(779\) 206.785 119.388i 0.265450 0.153258i
\(780\) −435.265 + 246.674i −0.558032 + 0.316249i
\(781\) 141.555 245.180i 0.181248 0.313931i
\(782\) 473.085i 0.604968i
\(783\) −661.731 403.551i −0.845122 0.515391i
\(784\) 28.0000 0.0357143
\(785\) −142.169 82.0815i −0.181107 0.104562i
\(786\) 123.314 + 217.593i 0.156888 + 0.276835i
\(787\) 494.442 + 856.398i 0.628261 + 1.08818i 0.987901 + 0.155089i \(0.0495664\pi\)
−0.359639 + 0.933091i \(0.617100\pi\)
\(788\) −216.165 + 124.803i −0.274321 + 0.158379i
\(789\) −4.05927 + 506.852i −0.00514483 + 0.642397i
\(790\) 414.232 717.471i 0.524344 0.908191i
\(791\) 236.741i 0.299293i
\(792\) −41.6387 74.8644i −0.0525741 0.0945257i
\(793\) −782.470 −0.986721
\(794\) −853.372 492.694i −1.07478 0.620522i
\(795\) −385.428 + 655.402i −0.484815 + 0.824405i
\(796\) −349.881 606.012i −0.439549 0.761321i
\(797\) −451.755 + 260.821i −0.566819 + 0.327253i −0.755878 0.654713i \(-0.772790\pi\)
0.189059 + 0.981966i \(0.439456\pi\)
\(798\) −95.2519 56.0155i −0.119363 0.0701949i
\(799\) 218.914 379.171i 0.273986 0.474557i
\(800\) 50.4188i 0.0630235i
\(801\) −607.547 363.865i −0.758485 0.454263i
\(802\) −877.179 −1.09374
\(803\) 348.087 + 200.968i 0.433483 + 0.250271i
\(804\) 322.023 + 2.57902i 0.400526 + 0.00320773i
\(805\) 190.194 + 329.425i 0.236265 + 0.409224i
\(806\) 85.9559 49.6267i 0.106645 0.0615715i
\(807\) −743.073 + 421.115i −0.920784 + 0.521828i
\(808\) 231.382 400.766i 0.286364 0.495997i
\(809\) 117.417i 0.145139i 0.997363 + 0.0725694i \(0.0231199\pi\)
−0.997363 + 0.0725694i \(0.976880\pi\)
\(810\) −216.864 405.050i −0.267733 0.500062i
\(811\) −103.595 −0.127737 −0.0638684 0.997958i \(-0.520344\pi\)
−0.0638684 + 0.997958i \(0.520344\pi\)
\(812\) 131.550 + 75.9502i 0.162007 + 0.0935347i
\(813\) −715.885 1263.21i −0.880547 1.55376i
\(814\) −154.795 268.113i −0.190166 0.329377i
\(815\) −783.048 + 452.093i −0.960795 + 0.554715i
\(816\) −0.896853 + 111.984i −0.00109908 + 0.137235i
\(817\) 121.424 210.312i 0.148621 0.257420i
\(818\) 150.494i 0.183978i
\(819\) 254.351 424.692i 0.310563 0.518550i
\(820\) −194.569 −0.237280
\(821\) 503.527 + 290.711i 0.613309 + 0.354094i 0.774260 0.632868i \(-0.218123\pi\)
−0.160950 + 0.986963i \(0.551456\pi\)
\(822\) 311.606 529.872i 0.379083 0.644613i
\(823\) 590.769 + 1023.24i 0.717824 + 1.24331i 0.961860 + 0.273541i \(0.0881950\pi\)
−0.244037 + 0.969766i \(0.578472\pi\)
\(824\) 140.187 80.9369i 0.170130 0.0982244i
\(825\) −77.5635 45.6134i −0.0940163 0.0552889i
\(826\) 94.4699 163.627i 0.114370 0.198095i
\(827\) 772.787i 0.934447i 0.884139 + 0.467223i \(0.154746\pi\)
−0.884139 + 0.467223i \(0.845254\pi\)
\(828\) 563.875 313.621i 0.681009 0.378769i
\(829\) −692.394 −0.835216 −0.417608 0.908627i \(-0.637131\pi\)
−0.417608 + 0.908627i \(0.637131\pi\)
\(830\) 481.273 + 277.863i 0.579847 + 0.334775i
\(831\) −163.734 1.31131i −0.197033 0.00157800i
\(832\) −83.1578 144.034i −0.0999493 0.173117i
\(833\) 56.5738 32.6629i 0.0679158 0.0392112i
\(834\) 363.001 205.720i 0.435253 0.246667i
\(835\) 320.968 555.933i 0.384393 0.665788i
\(836\) 66.2566i 0.0792543i
\(837\) 43.6649 + 80.0092i 0.0521683 + 0.0955905i
\(838\) 264.702 0.315874
\(839\) −51.8471 29.9340i −0.0617964 0.0356781i 0.468783 0.883313i \(-0.344692\pi\)
−0.530580 + 0.847635i \(0.678026\pi\)
\(840\) 44.3960 + 78.3384i 0.0528524 + 0.0932600i
\(841\) −8.46925 14.6692i −0.0100705 0.0174425i
\(842\) 465.912 268.994i 0.553340 0.319471i
\(843\) 4.70056 586.925i 0.00557599 0.696234i
\(844\) 144.834 250.860i 0.171605 0.297228i
\(845\) 1055.67i 1.24931i
\(846\) −597.062 9.56410i −0.705747 0.0113051i
\(847\) 290.173 0.342590
\(848\) −218.894 126.379i −0.258130 0.149031i
\(849\) −134.771 + 229.172i −0.158741 + 0.269932i
\(850\) 58.8151 + 101.871i 0.0691943 + 0.119848i
\(851\) 2019.41 1165.91i 2.37299 1.37005i
\(852\) 435.106 + 255.876i 0.510688 + 0.300324i
\(853\) 354.754 614.451i 0.415889 0.720341i −0.579632 0.814878i \(-0.696804\pi\)
0.995521 + 0.0945369i \(0.0301370\pi\)
\(854\) 140.828i 0.164904i
\(855\) 5.69161 355.312i 0.00665686 0.415570i
\(856\) 70.9161 0.0828460
\(857\) 464.496 + 268.177i 0.542002 + 0.312925i 0.745890 0.666069i \(-0.232024\pi\)
−0.203888 + 0.978994i \(0.565358\pi\)
\(858\) 296.811 + 2.37710i 0.345934 + 0.00277051i
\(859\) 46.6609 + 80.8191i 0.0543200 + 0.0940851i 0.891907 0.452219i \(-0.149368\pi\)
−0.837587 + 0.546304i \(0.816034\pi\)
\(860\) −171.375 + 98.9437i −0.199274 + 0.115051i
\(861\) 167.493 94.9215i 0.194533 0.110246i
\(862\) 445.758 772.076i 0.517121 0.895680i
\(863\) 400.285i 0.463830i −0.972736 0.231915i \(-0.925501\pi\)
0.972736 0.231915i \(-0.0744991\pi\)
\(864\) 134.069 73.1678i 0.155172 0.0846850i
\(865\) −1133.28 −1.31015
\(866\) −280.326 161.846i −0.323702 0.186889i
\(867\) −298.653 526.983i −0.344467 0.607824i
\(868\) −8.93174 15.4702i −0.0102900 0.0178228i
\(869\) −425.662 + 245.756i −0.489829 + 0.282803i
\(870\) −3.91209 + 488.474i −0.00449665 + 0.561464i
\(871\) −557.908 + 966.325i −0.640538 + 1.10944i
\(872\) 148.601i 0.170414i
\(873\) 400.084 + 719.332i 0.458286 + 0.823977i
\(874\) 499.042 0.570986
\(875\) 311.662 + 179.938i 0.356185 + 0.205643i
\(876\) −363.272 + 617.728i −0.414694 + 0.705169i
\(877\) 150.061 + 259.913i 0.171107 + 0.296366i 0.938807 0.344443i \(-0.111932\pi\)
−0.767700 + 0.640809i \(0.778599\pi\)
\(878\) 602.187 347.673i 0.685863 0.395983i
\(879\) −1191.65 700.784i −1.35569 0.797251i
\(880\) −26.9950 + 46.7568i −0.0306762 + 0.0531327i
\(881\) 9.45241i 0.0107292i −0.999986 0.00536459i \(-0.998292\pi\)
0.999986 0.00536459i \(-0.00170761\pi\)
\(882\) −76.4355 45.7778i −0.0866616 0.0519023i
\(883\) 264.964 0.300072 0.150036 0.988681i \(-0.452061\pi\)
0.150036 + 0.988681i \(0.452061\pi\)
\(884\) −336.040 194.013i −0.380135 0.219471i
\(885\) 607.584 + 4.86601i 0.686536 + 0.00549832i
\(886\) −244.143 422.867i −0.275556 0.477277i
\(887\) 1433.09 827.395i 1.61566 0.932801i 0.627634 0.778508i \(-0.284023\pi\)
0.988025 0.154293i \(-0.0493100\pi\)
\(888\) 480.224 272.153i 0.540792 0.306478i
\(889\) 211.865 366.962i 0.238319 0.412780i
\(890\) 446.326i 0.501490i
\(891\) −8.73058 + 272.444i −0.00979863 + 0.305773i
\(892\) −575.810 −0.645527
\(893\) −399.975 230.925i −0.447900 0.258595i
\(894\) −145.786 257.245i −0.163071 0.287746i
\(895\) −323.913 561.033i −0.361914 0.626853i
\(896\) −25.9230 + 14.9666i −0.0289319 + 0.0167038i
\(897\) −17.9042 + 2235.57i −0.0199601 + 2.49227i
\(898\) 573.573 993.458i 0.638723 1.10630i
\(899\) 96.9096i 0.107797i
\(900\) 82.4308 137.635i 0.0915898 0.152928i
\(901\) −589.699 −0.654494
\(902\) 99.9690 + 57.7171i 0.110830 + 0.0639879i
\(903\) 99.2563 168.781i 0.109918 0.186911i
\(904\) −126.543 219.179i −0.139982 0.242455i
\(905\) 170.009 98.1546i 0.187855 0.108458i
\(906\) 485.516 + 285.521i 0.535889 + 0.315145i
\(907\) 52.8627 91.5609i 0.0582830 0.100949i −0.835412 0.549625i \(-0.814771\pi\)
0.893695 + 0.448675i \(0.148104\pi\)
\(908\) 451.582i 0.497337i
\(909\) −1286.86 + 715.734i −1.41568 + 0.787386i
\(910\) −311.994 −0.342851
\(911\) 517.915 + 299.018i 0.568512 + 0.328231i 0.756555 0.653930i \(-0.226881\pi\)
−0.188043 + 0.982161i \(0.560214\pi\)
\(912\) 118.128 + 0.946060i 0.129526 + 0.00103735i
\(913\) −164.851 285.530i −0.180559 0.312738i
\(914\) 518.381 299.287i 0.567156 0.327448i
\(915\) −394.008 + 223.293i −0.430610 + 0.244036i
\(916\) −420.446 + 728.233i −0.459002 + 0.795015i
\(917\) 155.968i 0.170086i
\(918\) 185.533 304.231i 0.202105 0.331406i
\(919\) −1453.58 −1.58169 −0.790847 0.612014i \(-0.790359\pi\)
−0.790847 + 0.612014i \(0.790359\pi\)
\(920\) −352.170 203.326i −0.382794 0.221006i
\(921\) 54.2839 + 95.7860i 0.0589402 + 0.104002i
\(922\) −200.457 347.202i −0.217415 0.376575i
\(923\) −1514.65 + 874.486i −1.64101 + 0.947439i
\(924\) 0.427827 53.4197i 0.000463016 0.0578135i
\(925\) 289.897 502.117i 0.313403 0.542829i
\(926\) 914.937i 0.988053i
\(927\) −515.013 8.24980i −0.555570 0.00889946i
\(928\) −162.388 −0.174987
\(929\) 999.556 + 577.094i 1.07595 + 0.621199i 0.929800 0.368064i \(-0.119979\pi\)
0.146147 + 0.989263i \(0.453313\pi\)
\(930\) 29.1207 49.5184i 0.0313126 0.0532456i
\(931\) −34.4550 59.6778i −0.0370086 0.0641008i
\(932\) −58.1540 + 33.5752i −0.0623970 + 0.0360249i
\(933\) 514.917 + 302.811i 0.551893 + 0.324557i
\(934\) −372.503 + 645.195i −0.398826 + 0.690787i
\(935\) 125.962i 0.134719i
\(936\) −8.47617 + 529.145i −0.00905574 + 0.565326i
\(937\) 1700.25 1.81457 0.907286 0.420513i \(-0.138150\pi\)
0.907286 + 0.420513i \(0.138150\pi\)
\(938\) 173.918 + 100.412i 0.185414 + 0.107049i
\(939\) −286.762 2.29661i −0.305390 0.00244581i
\(940\) 188.173 + 325.925i 0.200184 + 0.346729i
\(941\) 994.455 574.149i 1.05681 0.610148i 0.132259 0.991215i \(-0.457777\pi\)
0.924547 + 0.381068i \(0.124443\pi\)
\(942\) −151.075 + 85.6173i −0.160377 + 0.0908889i
\(943\) −434.723 + 752.962i −0.461000 + 0.798475i
\(944\) 201.985i 0.213967i
\(945\) 6.88318 286.435i 0.00728379 0.303106i
\(946\) 117.403 0.124104
\(947\) −868.085 501.189i −0.916668 0.529239i −0.0340977 0.999419i \(-0.510856\pi\)
−0.882571 + 0.470180i \(0.844189\pi\)
\(948\) −432.076 762.414i −0.455776 0.804234i
\(949\) −1241.52 2150.38i −1.30824 2.26595i
\(950\) 107.460 62.0421i 0.113116 0.0653075i
\(951\) −1.31775 + 164.538i −0.00138565 + 0.173016i
\(952\) −34.9181 + 60.4800i −0.0366787 + 0.0635294i
\(953\) 140.777i 0.147719i −0.997269 0.0738597i \(-0.976468\pi\)
0.997269 0.0738597i \(-0.0235317\pi\)
\(954\) 390.927 + 702.868i 0.409776 + 0.736759i
\(955\) 746.918 0.782114
\(956\) 628.711 + 362.986i 0.657647 + 0.379693i
\(957\) 146.911 249.816i 0.153512 0.261040i
\(958\) −486.246 842.203i −0.507564 0.879126i
\(959\) 331.979 191.668i 0.346172 0.199862i
\(960\) −82.9764 48.7966i −0.0864337 0.0508298i
\(961\) 474.802 822.381i 0.494070 0.855755i
\(962\) 1912.56i 1.98811i
\(963\) −193.590 115.942i −0.201028 0.120397i
\(964\) −585.717 −0.607590
\(965\) −1100.49 635.368i −1.14040 0.658412i
\(966\) 402.355 + 3.22237i 0.416516 + 0.00333579i
\(967\) 522.129 + 904.354i 0.539947 + 0.935216i 0.998906 + 0.0467584i \(0.0148891\pi\)
−0.458959 + 0.888457i \(0.651778\pi\)
\(968\) −268.648 + 155.104i −0.277529 + 0.160232i
\(969\) 239.780 135.888i 0.247451 0.140236i
\(970\) 259.381 449.261i 0.267403 0.463156i
\(971\) 698.841i 0.719712i −0.933008 0.359856i \(-0.882826\pi\)
0.933008 0.359856i \(-0.117174\pi\)
\(972\) −485.610 19.4558i −0.499599 0.0200162i
\(973\) 260.196 0.267416
\(974\) −258.660 149.338i −0.265565 0.153324i
\(975\) 274.076 + 483.617i 0.281104 + 0.496018i
\(976\) −75.2756 130.381i −0.0771267 0.133587i
\(977\) −306.627 + 177.031i −0.313845 + 0.181199i −0.648646 0.761090i \(-0.724664\pi\)
0.334801 + 0.942289i \(0.391331\pi\)
\(978\) −7.65963 + 956.403i −0.00783194 + 0.977917i
\(979\) 132.398 229.320i 0.135238 0.234240i
\(980\) 56.1523i 0.0572982i
\(981\) −242.951 + 405.657i −0.247656 + 0.413513i
\(982\) 381.425 0.388417
\(983\) 550.281 + 317.705i 0.559797 + 0.323199i 0.753064 0.657947i \(-0.228575\pi\)
−0.193267 + 0.981146i \(0.561908\pi\)
\(984\) −104.330 + 177.409i −0.106027 + 0.180294i
\(985\) −250.284 433.505i −0.254096 0.440107i
\(986\) −328.105 + 189.431i −0.332763 + 0.192121i
\(987\) −320.990 188.767i −0.325218 0.191254i
\(988\) −204.657 + 354.477i −0.207143 + 0.358782i
\(989\) 884.273i 0.894108i
\(990\) 150.136 83.5038i 0.151652 0.0843472i
\(991\) −1564.14 −1.57835 −0.789175 0.614169i \(-0.789491\pi\)
−0.789175 + 0.614169i \(0.789491\pi\)
\(992\) 16.5384 + 9.54843i 0.0166717 + 0.00962544i
\(993\) −667.942 5.34941i −0.672651 0.00538712i
\(994\) 157.389 + 272.605i 0.158339 + 0.274251i
\(995\) 1215.32 701.665i 1.22143 0.705191i
\(996\) 511.420 289.833i 0.513474 0.290997i
\(997\) 186.336 322.743i 0.186896 0.323714i −0.757317 0.653047i \(-0.773490\pi\)
0.944214 + 0.329333i \(0.106824\pi\)
\(998\) 122.585i 0.122831i
\(999\) −1755.88 42.1947i −1.75764 0.0422370i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.q.a.29.2 24
3.2 odd 2 378.3.q.a.197.11 24
9.2 odd 6 1134.3.b.c.323.9 24
9.4 even 3 378.3.q.a.71.11 24
9.5 odd 6 inner 126.3.q.a.113.2 yes 24
9.7 even 3 1134.3.b.c.323.16 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.2 24 1.1 even 1 trivial
126.3.q.a.113.2 yes 24 9.5 odd 6 inner
378.3.q.a.71.11 24 9.4 even 3
378.3.q.a.197.11 24 3.2 odd 2
1134.3.b.c.323.9 24 9.2 odd 6
1134.3.b.c.323.16 24 9.7 even 3