Newspace parameters
| Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 12 \) |
| Character orbit: | \([\chi]\) | \(=\) | 126.k (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(96.8112407505\) |
| Analytic rank: | \(0\) |
| Dimension: | \(56\) |
| Relative dimension: | \(28\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 17.1 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | −5242.35 | − | 9080.02i | 0 | 4958.60 | − | 44189.8i | 32768.0i | 0 | 290561. | + | 167755.i | ||||||||
| 17.2 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | −4764.94 | − | 8253.11i | 0 | 37556.4 | + | 23808.4i | 32768.0i | 0 | 264100. | + | 152478.i | ||||||||
| 17.3 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | −5312.73 | − | 9201.92i | 0 | −34960.4 | − | 27479.0i | 32768.0i | 0 | 294462. | + | 170007.i | ||||||||
| 17.4 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | −3290.58 | − | 5699.45i | 0 | 30244.4 | + | 32597.6i | 32768.0i | 0 | 182383. | + | 105299.i | ||||||||
| 17.5 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | −2257.08 | − | 3909.39i | 0 | −44086.8 | + | 5803.28i | 32768.0i | 0 | 125100. | + | 72226.7i | ||||||||
| 17.6 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | −419.765 | − | 727.054i | 0 | 34844.1 | − | 27626.3i | 32768.0i | 0 | 23265.7 | + | 13432.5i | ||||||||
| 17.7 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | 406.152 | + | 703.476i | 0 | 3805.90 | + | 44304.0i | 32768.0i | 0 | −22511.2 | − | 12996.9i | ||||||||
| 17.8 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | −110.383 | − | 191.189i | 0 | −39295.0 | + | 20814.3i | 32768.0i | 0 | 6118.05 | + | 3532.25i | ||||||||
| 17.9 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | 2396.90 | + | 4151.56i | 0 | −32574.3 | − | 30269.5i | 32768.0i | 0 | −132850. | − | 76700.9i | ||||||||
| 17.10 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | 2477.66 | + | 4291.43i | 0 | 4993.79 | − | 44185.8i | 32768.0i | 0 | −137326. | − | 79285.0i | ||||||||
| 17.11 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | 3654.85 | + | 6330.38i | 0 | 8564.03 | − | 43634.7i | 32768.0i | 0 | −202572. | − | 116955.i | ||||||||
| 17.12 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | 3812.56 | + | 6603.54i | 0 | 44444.3 | + | 1426.32i | 32768.0i | 0 | −211313. | − | 122002.i | ||||||||
| 17.13 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | 4784.47 | + | 8286.95i | 0 | −40425.2 | + | 18523.7i | 32768.0i | 0 | −265182. | − | 153103.i | ||||||||
| 17.14 | −27.7128 | + | 16.0000i | 0 | 512.000 | − | 886.810i | 6077.08 | + | 10525.8i | 0 | 35527.2 | + | 26742.2i | 32768.0i | 0 | −336826. | − | 194466.i | ||||||||
| 17.15 | 27.7128 | − | 16.0000i | 0 | 512.000 | − | 886.810i | −6077.08 | − | 10525.8i | 0 | 35527.2 | + | 26742.2i | − | 32768.0i | 0 | −336826. | − | 194466.i | |||||||
| 17.16 | 27.7128 | − | 16.0000i | 0 | 512.000 | − | 886.810i | −4784.47 | − | 8286.95i | 0 | −40425.2 | + | 18523.7i | − | 32768.0i | 0 | −265182. | − | 153103.i | |||||||
| 17.17 | 27.7128 | − | 16.0000i | 0 | 512.000 | − | 886.810i | −3812.56 | − | 6603.54i | 0 | 44444.3 | + | 1426.32i | − | 32768.0i | 0 | −211313. | − | 122002.i | |||||||
| 17.18 | 27.7128 | − | 16.0000i | 0 | 512.000 | − | 886.810i | −3654.85 | − | 6330.38i | 0 | 8564.03 | − | 43634.7i | − | 32768.0i | 0 | −202572. | − | 116955.i | |||||||
| 17.19 | 27.7128 | − | 16.0000i | 0 | 512.000 | − | 886.810i | −2477.66 | − | 4291.43i | 0 | 4993.79 | − | 44185.8i | − | 32768.0i | 0 | −137326. | − | 79285.0i | |||||||
| 17.20 | 27.7128 | − | 16.0000i | 0 | 512.000 | − | 886.810i | −2396.90 | − | 4151.56i | 0 | −32574.3 | − | 30269.5i | − | 32768.0i | 0 | −132850. | − | 76700.9i | |||||||
| See all 56 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 7.d | odd | 6 | 1 | inner |
| 21.g | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 126.12.k.a | ✓ | 56 |
| 3.b | odd | 2 | 1 | inner | 126.12.k.a | ✓ | 56 |
| 7.d | odd | 6 | 1 | inner | 126.12.k.a | ✓ | 56 |
| 21.g | even | 6 | 1 | inner | 126.12.k.a | ✓ | 56 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 126.12.k.a | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
| 126.12.k.a | ✓ | 56 | 3.b | odd | 2 | 1 | inner |
| 126.12.k.a | ✓ | 56 | 7.d | odd | 6 | 1 | inner |
| 126.12.k.a | ✓ | 56 | 21.g | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{12}^{\mathrm{new}}(126, [\chi])\).