Defining parameters
Level: | \( N \) | = | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | = | \( 12 \) |
Nonzero newspaces: | \( 10 \) | ||
Sturm bound: | \(10368\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(126))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4848 | 1200 | 3648 |
Cusp forms | 4656 | 1200 | 3456 |
Eisenstein series | 192 | 0 | 192 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(126))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
126.12.a | \(\chi_{126}(1, \cdot)\) | 126.12.a.a | 1 | 1 |
126.12.a.b | 1 | |||
126.12.a.c | 1 | |||
126.12.a.d | 1 | |||
126.12.a.e | 1 | |||
126.12.a.f | 1 | |||
126.12.a.g | 1 | |||
126.12.a.h | 1 | |||
126.12.a.i | 2 | |||
126.12.a.j | 2 | |||
126.12.a.k | 2 | |||
126.12.a.l | 2 | |||
126.12.a.m | 3 | |||
126.12.a.n | 3 | |||
126.12.a.o | 3 | |||
126.12.a.p | 3 | |||
126.12.d | \(\chi_{126}(125, \cdot)\) | 126.12.d.a | 32 | 1 |
126.12.e | \(\chi_{126}(25, \cdot)\) | n/a | 176 | 2 |
126.12.f | \(\chi_{126}(43, \cdot)\) | n/a | 132 | 2 |
126.12.g | \(\chi_{126}(37, \cdot)\) | 126.12.g.a | 6 | 2 |
126.12.g.b | 6 | |||
126.12.g.c | 8 | |||
126.12.g.d | 8 | |||
126.12.g.e | 8 | |||
126.12.g.f | 8 | |||
126.12.g.g | 14 | |||
126.12.g.h | 14 | |||
126.12.h | \(\chi_{126}(67, \cdot)\) | n/a | 176 | 2 |
126.12.k | \(\chi_{126}(17, \cdot)\) | 126.12.k.a | 56 | 2 |
126.12.l | \(\chi_{126}(5, \cdot)\) | n/a | 176 | 2 |
126.12.m | \(\chi_{126}(41, \cdot)\) | n/a | 176 | 2 |
126.12.t | \(\chi_{126}(47, \cdot)\) | n/a | 176 | 2 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(126))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_1(126)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 2}\)