Properties

Label 126.12
Level 126
Weight 12
Dimension 1200
Nonzero newspaces 10
Sturm bound 10368
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 10 \)
Sturm bound: \(10368\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(126))\).

Total New Old
Modular forms 4848 1200 3648
Cusp forms 4656 1200 3456
Eisenstein series 192 0 192

Trace form

\( 1200 q - 128 q^{2} + 486 q^{3} + 10240 q^{4} - 5898 q^{5} + 6720 q^{6} + 127810 q^{7} + 65536 q^{8} - 30642 q^{9} - 183360 q^{10} - 208362 q^{11} + 2113536 q^{12} - 2270522 q^{13} - 14249216 q^{14} - 673080 q^{15}+ \cdots + 271154108148 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(126))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
126.12.a \(\chi_{126}(1, \cdot)\) 126.12.a.a 1 1
126.12.a.b 1
126.12.a.c 1
126.12.a.d 1
126.12.a.e 1
126.12.a.f 1
126.12.a.g 1
126.12.a.h 1
126.12.a.i 2
126.12.a.j 2
126.12.a.k 2
126.12.a.l 2
126.12.a.m 3
126.12.a.n 3
126.12.a.o 3
126.12.a.p 3
126.12.d \(\chi_{126}(125, \cdot)\) 126.12.d.a 32 1
126.12.e \(\chi_{126}(25, \cdot)\) n/a 176 2
126.12.f \(\chi_{126}(43, \cdot)\) n/a 132 2
126.12.g \(\chi_{126}(37, \cdot)\) 126.12.g.a 6 2
126.12.g.b 6
126.12.g.c 8
126.12.g.d 8
126.12.g.e 8
126.12.g.f 8
126.12.g.g 14
126.12.g.h 14
126.12.h \(\chi_{126}(67, \cdot)\) n/a 176 2
126.12.k \(\chi_{126}(17, \cdot)\) 126.12.k.a 56 2
126.12.l \(\chi_{126}(5, \cdot)\) n/a 176 2
126.12.m \(\chi_{126}(41, \cdot)\) n/a 176 2
126.12.t \(\chi_{126}(47, \cdot)\) n/a 176 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(126))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(126)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 2}\)