Properties

Label 126.10.g.c.109.2
Level $126$
Weight $10$
Character 126.109
Analytic conductor $64.895$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,10,Mod(37,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.37"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,32,0,-512,-929] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.8945153566\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7081})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 1771x^{2} + 1770x + 3132900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.2
Root \(21.2872 - 36.8705i\) of defining polynomial
Character \(\chi\) \(=\) 126.109
Dual form 126.10.g.c.37.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(8.00000 + 13.8564i) q^{2} +(-128.000 + 221.703i) q^{4} +(419.902 + 727.292i) q^{5} +(-6254.79 - 1109.63i) q^{7} -4096.00 q^{8} +(-6718.44 + 11636.7i) q^{10} +(-20668.9 + 35799.5i) q^{11} -91963.9 q^{13} +(-34662.9 - 95545.9i) q^{14} +(-32768.0 - 56755.8i) q^{16} +(154395. - 267420. i) q^{17} +(396459. + 686687. i) q^{19} -214990. q^{20} -661403. q^{22} +(-466522. - 808040. i) q^{23} +(623927. - 1.08067e6i) q^{25} +(-735712. - 1.27429e6i) q^{26} +(1.04662e6 - 1.24467e6i) q^{28} -5.92949e6 q^{29} +(3.31544e6 - 5.74252e6i) q^{31} +(524288. - 908093. i) q^{32} +4.94064e6 q^{34} +(-1.81938e6 - 5.01499e6i) q^{35} +(9.40187e6 + 1.62845e7i) q^{37} +(-6.34334e6 + 1.09870e7i) q^{38} +(-1.71992e6 - 2.97899e6i) q^{40} +3.06260e6 q^{41} -1.69946e7 q^{43} +(-5.29123e6 - 9.16467e6i) q^{44} +(7.46436e6 - 1.29286e7i) q^{46} +(-2.04657e7 - 3.54477e7i) q^{47} +(3.78911e7 + 1.38809e7i) q^{49} +1.99657e7 q^{50} +(1.17714e7 - 2.03886e7i) q^{52} +(3.67746e7 - 6.36954e7i) q^{53} -3.47156e7 q^{55} +(2.56196e7 + 4.54503e6i) q^{56} +(-4.74359e7 - 8.21615e7i) q^{58} +(1.10813e7 - 1.91935e7i) q^{59} +(-3.55783e7 - 6.16234e7i) q^{61} +1.06094e8 q^{62} +1.67772e7 q^{64} +(-3.86159e7 - 6.68846e7i) q^{65} +(1.09727e8 - 1.90053e8i) q^{67} +(3.95251e7 + 6.84596e7i) q^{68} +(5.49347e7 - 6.53299e7i) q^{70} +1.77453e7 q^{71} +(-2.18567e7 + 3.78569e7i) q^{73} +(-1.50430e8 + 2.60552e8i) q^{74} -2.02987e8 q^{76} +(1.69003e8 - 2.00984e8i) q^{77} +(3.03509e7 + 5.25694e7i) q^{79} +(2.75187e7 - 4.76638e7i) q^{80} +(2.45008e7 + 4.24367e7i) q^{82} +2.88693e8 q^{83} +2.59323e8 q^{85} +(-1.35957e8 - 2.35484e8i) q^{86} +(8.46596e7 - 1.46635e8i) q^{88} +(-4.38592e7 - 7.59663e7i) q^{89} +(5.75215e8 + 1.02046e8i) q^{91} +2.38859e8 q^{92} +(3.27452e8 - 5.67163e8i) q^{94} +(-3.32948e8 + 5.76683e8i) q^{95} +1.15563e9 q^{97} +(1.10789e8 + 6.36082e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} - 512 q^{4} - 929 q^{5} - 8526 q^{7} - 16384 q^{8} + 14864 q^{10} - 41695 q^{11} - 181214 q^{13} - 204624 q^{14} - 131072 q^{16} + 472508 q^{17} + 390503 q^{19} + 475648 q^{20} - 1334240 q^{22}+ \cdots - 963050704 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 + 13.8564i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −128.000 + 221.703i −0.250000 + 0.433013i
\(5\) 419.902 + 727.292i 0.300458 + 0.520408i 0.976240 0.216694i \(-0.0695273\pi\)
−0.675782 + 0.737101i \(0.736194\pi\)
\(6\) 0 0
\(7\) −6254.79 1109.63i −0.984626 0.174677i
\(8\) −4096.00 −0.353553
\(9\) 0 0
\(10\) −6718.44 + 11636.7i −0.212456 + 0.367984i
\(11\) −20668.9 + 35799.5i −0.425647 + 0.737242i −0.996481 0.0838239i \(-0.973287\pi\)
0.570834 + 0.821066i \(0.306620\pi\)
\(12\) 0 0
\(13\) −91963.9 −0.893043 −0.446522 0.894773i \(-0.647337\pi\)
−0.446522 + 0.894773i \(0.647337\pi\)
\(14\) −34662.9 95545.9i −0.241151 0.664715i
\(15\) 0 0
\(16\) −32768.0 56755.8i −0.125000 0.216506i
\(17\) 154395. 267420.i 0.448346 0.776558i −0.549933 0.835209i \(-0.685347\pi\)
0.998279 + 0.0586510i \(0.0186799\pi\)
\(18\) 0 0
\(19\) 396459. + 686687.i 0.697922 + 1.20884i 0.969186 + 0.246331i \(0.0792251\pi\)
−0.271264 + 0.962505i \(0.587442\pi\)
\(20\) −214990. −0.300458
\(21\) 0 0
\(22\) −661403. −0.601955
\(23\) −466522. 808040.i −0.347614 0.602085i 0.638211 0.769861i \(-0.279675\pi\)
−0.985825 + 0.167776i \(0.946341\pi\)
\(24\) 0 0
\(25\) 623927. 1.08067e6i 0.319450 0.553304i
\(26\) −735712. 1.27429e6i −0.315738 0.546875i
\(27\) 0 0
\(28\) 1.04662e6 1.24467e6i 0.321794 0.382686i
\(29\) −5.92949e6 −1.55678 −0.778389 0.627782i \(-0.783963\pi\)
−0.778389 + 0.627782i \(0.783963\pi\)
\(30\) 0 0
\(31\) 3.31544e6 5.74252e6i 0.644784 1.11680i −0.339568 0.940582i \(-0.610281\pi\)
0.984351 0.176217i \(-0.0563859\pi\)
\(32\) 524288. 908093.i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 4.94064e6 0.634057
\(35\) −1.81938e6 5.01499e6i −0.204935 0.564890i
\(36\) 0 0
\(37\) 9.40187e6 + 1.62845e7i 0.824719 + 1.42846i 0.902133 + 0.431457i \(0.142000\pi\)
−0.0774140 + 0.996999i \(0.524666\pi\)
\(38\) −6.34334e6 + 1.09870e7i −0.493505 + 0.854776i
\(39\) 0 0
\(40\) −1.71992e6 2.97899e6i −0.106228 0.183992i
\(41\) 3.06260e6 0.169264 0.0846318 0.996412i \(-0.473029\pi\)
0.0846318 + 0.996412i \(0.473029\pi\)
\(42\) 0 0
\(43\) −1.69946e7 −0.758058 −0.379029 0.925385i \(-0.623742\pi\)
−0.379029 + 0.925385i \(0.623742\pi\)
\(44\) −5.29123e6 9.16467e6i −0.212823 0.368621i
\(45\) 0 0
\(46\) 7.46436e6 1.29286e7i 0.245800 0.425738i
\(47\) −2.04657e7 3.54477e7i −0.611769 1.05961i −0.990942 0.134289i \(-0.957125\pi\)
0.379174 0.925325i \(-0.376208\pi\)
\(48\) 0 0
\(49\) 3.78911e7 + 1.38809e7i 0.938976 + 0.343983i
\(50\) 1.99657e7 0.451771
\(51\) 0 0
\(52\) 1.17714e7 2.03886e7i 0.223261 0.386699i
\(53\) 3.67746e7 6.36954e7i 0.640186 1.10883i −0.345205 0.938527i \(-0.612191\pi\)
0.985391 0.170307i \(-0.0544759\pi\)
\(54\) 0 0
\(55\) −3.47156e7 −0.511555
\(56\) 2.56196e7 + 4.54503e6i 0.348118 + 0.0617576i
\(57\) 0 0
\(58\) −4.74359e7 8.21615e7i −0.550404 0.953328i
\(59\) 1.10813e7 1.91935e7i 0.119058 0.206214i −0.800337 0.599551i \(-0.795346\pi\)
0.919395 + 0.393336i \(0.128679\pi\)
\(60\) 0 0
\(61\) −3.55783e7 6.16234e7i −0.329003 0.569851i 0.653311 0.757090i \(-0.273379\pi\)
−0.982314 + 0.187239i \(0.940046\pi\)
\(62\) 1.06094e8 0.911862
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −3.86159e7 6.68846e7i −0.268322 0.464747i
\(66\) 0 0
\(67\) 1.09727e8 1.90053e8i 0.665240 1.15223i −0.313981 0.949429i \(-0.601663\pi\)
0.979220 0.202799i \(-0.0650039\pi\)
\(68\) 3.95251e7 + 6.84596e7i 0.224173 + 0.388279i
\(69\) 0 0
\(70\) 5.49347e7 6.53299e7i 0.273468 0.325215i
\(71\) 1.77453e7 0.0828744 0.0414372 0.999141i \(-0.486806\pi\)
0.0414372 + 0.999141i \(0.486806\pi\)
\(72\) 0 0
\(73\) −2.18567e7 + 3.78569e7i −0.0900806 + 0.156024i −0.907545 0.419955i \(-0.862046\pi\)
0.817464 + 0.575979i \(0.195379\pi\)
\(74\) −1.50430e8 + 2.60552e8i −0.583165 + 1.01007i
\(75\) 0 0
\(76\) −2.02987e8 −0.697922
\(77\) 1.69003e8 2.00984e8i 0.547882 0.651557i
\(78\) 0 0
\(79\) 3.03509e7 + 5.25694e7i 0.0876699 + 0.151849i 0.906526 0.422150i \(-0.138725\pi\)
−0.818856 + 0.573999i \(0.805391\pi\)
\(80\) 2.75187e7 4.76638e7i 0.0751144 0.130102i
\(81\) 0 0
\(82\) 2.45008e7 + 4.24367e7i 0.0598437 + 0.103652i
\(83\) 2.88693e8 0.667705 0.333852 0.942625i \(-0.391651\pi\)
0.333852 + 0.942625i \(0.391651\pi\)
\(84\) 0 0
\(85\) 2.59323e8 0.538836
\(86\) −1.35957e8 2.35484e8i −0.268014 0.464214i
\(87\) 0 0
\(88\) 8.46596e7 1.46635e8i 0.150489 0.260654i
\(89\) −4.38592e7 7.59663e7i −0.0740978 0.128341i 0.826596 0.562796i \(-0.190274\pi\)
−0.900694 + 0.434455i \(0.856941\pi\)
\(90\) 0 0
\(91\) 5.75215e8 + 1.02046e8i 0.879313 + 0.155994i
\(92\) 2.38859e8 0.347614
\(93\) 0 0
\(94\) 3.27452e8 5.67163e8i 0.432586 0.749260i
\(95\) −3.32948e8 + 5.76683e8i −0.419392 + 0.726408i
\(96\) 0 0
\(97\) 1.15563e9 1.32539 0.662697 0.748888i \(-0.269412\pi\)
0.662697 + 0.748888i \(0.269412\pi\)
\(98\) 1.10789e8 + 6.36082e8i 0.121333 + 0.696619i
\(99\) 0 0
\(100\) 1.59725e8 + 2.76652e8i 0.159725 + 0.276652i
\(101\) 7.25186e8 1.25606e9i 0.693431 1.20106i −0.277276 0.960790i \(-0.589432\pi\)
0.970707 0.240267i \(-0.0772350\pi\)
\(102\) 0 0
\(103\) −5.87028e7 1.01676e8i −0.0513915 0.0890127i 0.839185 0.543846i \(-0.183032\pi\)
−0.890577 + 0.454833i \(0.849699\pi\)
\(104\) 3.76684e8 0.315738
\(105\) 0 0
\(106\) 1.17679e9 0.905359
\(107\) 3.71888e7 + 6.44128e7i 0.0274274 + 0.0475057i 0.879413 0.476059i \(-0.157935\pi\)
−0.851986 + 0.523565i \(0.824602\pi\)
\(108\) 0 0
\(109\) 1.25470e9 2.17320e9i 0.851372 1.47462i −0.0285992 0.999591i \(-0.509105\pi\)
0.879971 0.475028i \(-0.157562\pi\)
\(110\) −2.77725e8 4.81033e8i −0.180862 0.313262i
\(111\) 0 0
\(112\) 1.41979e8 + 3.91356e8i 0.0852596 + 0.235012i
\(113\) −2.41014e9 −1.39056 −0.695280 0.718739i \(-0.744720\pi\)
−0.695280 + 0.718739i \(0.744720\pi\)
\(114\) 0 0
\(115\) 3.91788e8 6.78596e8i 0.208887 0.361802i
\(116\) 7.58975e8 1.31458e9i 0.389194 0.674105i
\(117\) 0 0
\(118\) 3.54603e8 0.168373
\(119\) −1.26244e9 + 1.50133e9i −0.577100 + 0.686303i
\(120\) 0 0
\(121\) 3.24571e8 + 5.62173e8i 0.137650 + 0.238416i
\(122\) 5.69252e8 9.85974e8i 0.232641 0.402945i
\(123\) 0 0
\(124\) 8.48754e8 + 1.47008e9i 0.322392 + 0.558399i
\(125\) 2.68820e9 0.984840
\(126\) 0 0
\(127\) −3.69133e9 −1.25912 −0.629558 0.776954i \(-0.716764\pi\)
−0.629558 + 0.776954i \(0.716764\pi\)
\(128\) 1.34218e8 + 2.32472e8i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 6.17854e8 1.07015e9i 0.189732 0.328626i
\(131\) 8.90047e8 + 1.54161e9i 0.264054 + 0.457355i 0.967315 0.253577i \(-0.0816070\pi\)
−0.703262 + 0.710931i \(0.748274\pi\)
\(132\) 0 0
\(133\) −1.71780e9 4.73500e9i −0.476036 1.31216i
\(134\) 3.51127e9 0.940791
\(135\) 0 0
\(136\) −6.32402e8 + 1.09535e9i −0.158514 + 0.274555i
\(137\) −3.04443e8 + 5.27310e8i −0.0738351 + 0.127886i −0.900579 0.434692i \(-0.856857\pi\)
0.826744 + 0.562578i \(0.190191\pi\)
\(138\) 0 0
\(139\) −8.68107e8 −0.197245 −0.0986226 0.995125i \(-0.531444\pi\)
−0.0986226 + 0.995125i \(0.531444\pi\)
\(140\) 1.34472e9 + 2.38558e8i 0.295838 + 0.0524830i
\(141\) 0 0
\(142\) 1.41962e8 + 2.45886e8i 0.0293005 + 0.0507500i
\(143\) 1.90079e9 3.29226e9i 0.380121 0.658389i
\(144\) 0 0
\(145\) −2.48981e9 4.31247e9i −0.467746 0.810159i
\(146\) −6.99413e8 −0.127393
\(147\) 0 0
\(148\) −4.81375e9 −0.824719
\(149\) −2.89099e9 5.00734e9i −0.480516 0.832278i 0.519234 0.854632i \(-0.326217\pi\)
−0.999750 + 0.0223539i \(0.992884\pi\)
\(150\) 0 0
\(151\) 1.94063e9 3.36127e9i 0.303771 0.526146i −0.673216 0.739446i \(-0.735088\pi\)
0.976987 + 0.213299i \(0.0684210\pi\)
\(152\) −1.62390e9 2.81267e9i −0.246753 0.427388i
\(153\) 0 0
\(154\) 4.13694e9 + 7.33910e8i 0.592701 + 0.105148i
\(155\) 5.56865e9 0.774921
\(156\) 0 0
\(157\) −4.99418e9 + 8.65018e9i −0.656018 + 1.13626i 0.325619 + 0.945501i \(0.394427\pi\)
−0.981637 + 0.190756i \(0.938906\pi\)
\(158\) −4.85615e8 + 8.41110e8i −0.0619920 + 0.107373i
\(159\) 0 0
\(160\) 8.80599e8 0.106228
\(161\) 2.02137e9 + 5.57178e9i 0.237099 + 0.653549i
\(162\) 0 0
\(163\) 8.81756e8 + 1.52725e9i 0.0978372 + 0.169459i 0.910789 0.412872i \(-0.135474\pi\)
−0.812952 + 0.582331i \(0.802141\pi\)
\(164\) −3.92013e8 + 6.78987e8i −0.0423159 + 0.0732933i
\(165\) 0 0
\(166\) 2.30954e9 + 4.00024e9i 0.236069 + 0.408884i
\(167\) −1.81719e10 −1.80791 −0.903956 0.427625i \(-0.859350\pi\)
−0.903956 + 0.427625i \(0.859350\pi\)
\(168\) 0 0
\(169\) −2.14713e9 −0.202474
\(170\) 2.07459e9 + 3.59329e9i 0.190507 + 0.329968i
\(171\) 0 0
\(172\) 2.17531e9 3.76774e9i 0.189515 0.328249i
\(173\) −1.12913e10 1.95572e10i −0.958381 1.65996i −0.726434 0.687237i \(-0.758824\pi\)
−0.231948 0.972728i \(-0.574510\pi\)
\(174\) 0 0
\(175\) −5.10167e9 + 6.06705e9i −0.411189 + 0.488997i
\(176\) 2.70911e9 0.212823
\(177\) 0 0
\(178\) 7.01747e8 1.21546e9i 0.0523951 0.0907509i
\(179\) −5.55153e9 + 9.61554e9i −0.404180 + 0.700059i −0.994226 0.107310i \(-0.965776\pi\)
0.590046 + 0.807370i \(0.299110\pi\)
\(180\) 0 0
\(181\) 8.45337e9 0.585432 0.292716 0.956199i \(-0.405441\pi\)
0.292716 + 0.956199i \(0.405441\pi\)
\(182\) 3.18773e9 + 8.78677e9i 0.215358 + 0.593620i
\(183\) 0 0
\(184\) 1.91088e9 + 3.30973e9i 0.122900 + 0.212869i
\(185\) −7.89573e9 + 1.36758e10i −0.495586 + 0.858381i
\(186\) 0 0
\(187\) 6.38234e9 + 1.10545e10i 0.381674 + 0.661079i
\(188\) 1.04785e10 0.611769
\(189\) 0 0
\(190\) −1.06543e10 −0.593110
\(191\) −7.82916e9 1.35605e10i −0.425662 0.737269i 0.570820 0.821075i \(-0.306625\pi\)
−0.996482 + 0.0838067i \(0.973292\pi\)
\(192\) 0 0
\(193\) 1.78070e9 3.08426e9i 0.0923811 0.160009i −0.816132 0.577866i \(-0.803886\pi\)
0.908513 + 0.417858i \(0.137219\pi\)
\(194\) 9.24502e9 + 1.60128e10i 0.468597 + 0.811635i
\(195\) 0 0
\(196\) −7.92750e9 + 6.62378e9i −0.383693 + 0.320593i
\(197\) −3.56610e10 −1.68693 −0.843463 0.537187i \(-0.819487\pi\)
−0.843463 + 0.537187i \(0.819487\pi\)
\(198\) 0 0
\(199\) −1.81260e10 + 3.13951e10i −0.819337 + 1.41913i 0.0868353 + 0.996223i \(0.472325\pi\)
−0.906172 + 0.422910i \(0.861009\pi\)
\(200\) −2.55560e9 + 4.42644e9i −0.112943 + 0.195623i
\(201\) 0 0
\(202\) 2.32059e10 0.980659
\(203\) 3.70877e10 + 6.57952e9i 1.53284 + 0.271933i
\(204\) 0 0
\(205\) 1.28599e9 + 2.22741e9i 0.0508565 + 0.0880861i
\(206\) 9.39245e8 1.62682e9i 0.0363393 0.0629415i
\(207\) 0 0
\(208\) 3.01347e9 + 5.21949e9i 0.111630 + 0.193350i
\(209\) −3.27774e10 −1.18827
\(210\) 0 0
\(211\) −4.13477e10 −1.43609 −0.718043 0.695999i \(-0.754962\pi\)
−0.718043 + 0.695999i \(0.754962\pi\)
\(212\) 9.41429e9 + 1.63060e10i 0.320093 + 0.554417i
\(213\) 0 0
\(214\) −5.95020e8 + 1.03061e9i −0.0193941 + 0.0335916i
\(215\) −7.13606e9 1.23600e10i −0.227764 0.394499i
\(216\) 0 0
\(217\) −2.71094e10 + 3.22393e10i −0.829950 + 0.987000i
\(218\) 4.01503e10 1.20402
\(219\) 0 0
\(220\) 4.44360e9 7.69653e9i 0.127889 0.221510i
\(221\) −1.41988e10 + 2.45930e10i −0.400392 + 0.693500i
\(222\) 0 0
\(223\) −5.00444e10 −1.35514 −0.677569 0.735459i \(-0.736966\pi\)
−0.677569 + 0.735459i \(0.736966\pi\)
\(224\) −4.28695e9 + 5.09817e9i −0.113771 + 0.135300i
\(225\) 0 0
\(226\) −1.92811e10 3.33959e10i −0.491637 0.851541i
\(227\) −1.37832e7 + 2.38733e7i −0.000344536 + 0.000596755i −0.866198 0.499702i \(-0.833443\pi\)
0.865853 + 0.500298i \(0.166776\pi\)
\(228\) 0 0
\(229\) 1.88467e10 + 3.26435e10i 0.452872 + 0.784398i 0.998563 0.0535887i \(-0.0170660\pi\)
−0.545691 + 0.837987i \(0.683733\pi\)
\(230\) 1.25372e10 0.295410
\(231\) 0 0
\(232\) 2.42872e10 0.550404
\(233\) 8.86513e9 + 1.53549e10i 0.197053 + 0.341306i 0.947572 0.319543i \(-0.103529\pi\)
−0.750518 + 0.660850i \(0.770196\pi\)
\(234\) 0 0
\(235\) 1.71872e10 2.97691e10i 0.367621 0.636738i
\(236\) 2.83682e9 + 4.91352e9i 0.0595290 + 0.103107i
\(237\) 0 0
\(238\) −3.09027e10 5.48226e9i −0.624309 0.110755i
\(239\) 7.14942e10 1.41736 0.708680 0.705530i \(-0.249291\pi\)
0.708680 + 0.705530i \(0.249291\pi\)
\(240\) 0 0
\(241\) −5.78211e9 + 1.00149e10i −0.110410 + 0.191236i −0.915936 0.401325i \(-0.868550\pi\)
0.805525 + 0.592561i \(0.201883\pi\)
\(242\) −5.19314e9 + 8.99478e9i −0.0973331 + 0.168586i
\(243\) 0 0
\(244\) 1.82161e10 0.329003
\(245\) 5.81505e9 + 3.33865e10i 0.103111 + 0.592003i
\(246\) 0 0
\(247\) −3.64599e10 6.31504e10i −0.623274 1.07954i
\(248\) −1.35801e10 + 2.35214e10i −0.227966 + 0.394848i
\(249\) 0 0
\(250\) 2.15056e10 + 3.72487e10i 0.348194 + 0.603089i
\(251\) −6.59260e10 −1.04840 −0.524198 0.851597i \(-0.675635\pi\)
−0.524198 + 0.851597i \(0.675635\pi\)
\(252\) 0 0
\(253\) 3.85699e10 0.591843
\(254\) −2.95306e10 5.11485e10i −0.445165 0.771048i
\(255\) 0 0
\(256\) −2.14748e9 + 3.71955e9i −0.0312500 + 0.0541266i
\(257\) −4.71504e10 8.16669e10i −0.674196 1.16774i −0.976703 0.214595i \(-0.931157\pi\)
0.302507 0.953147i \(-0.402176\pi\)
\(258\) 0 0
\(259\) −4.07369e10 1.12289e11i −0.562522 1.55055i
\(260\) 1.97713e10 0.268322
\(261\) 0 0
\(262\) −1.42408e10 + 2.46657e10i −0.186714 + 0.323398i
\(263\) 3.26500e9 5.65515e9i 0.0420807 0.0728859i −0.844218 0.536000i \(-0.819935\pi\)
0.886299 + 0.463114i \(0.153268\pi\)
\(264\) 0 0
\(265\) 6.17669e10 0.769395
\(266\) 5.18677e10 6.16825e10i 0.635228 0.755431i
\(267\) 0 0
\(268\) 2.80902e10 + 4.86536e10i 0.332620 + 0.576114i
\(269\) 6.08675e10 1.05426e11i 0.708761 1.22761i −0.256556 0.966529i \(-0.582588\pi\)
0.965317 0.261081i \(-0.0840790\pi\)
\(270\) 0 0
\(271\) 5.02171e10 + 8.69785e10i 0.565574 + 0.979603i 0.996996 + 0.0774529i \(0.0246788\pi\)
−0.431422 + 0.902150i \(0.641988\pi\)
\(272\) −2.02369e10 −0.224173
\(273\) 0 0
\(274\) −9.74217e9 −0.104419
\(275\) 2.57917e10 + 4.46725e10i 0.271946 + 0.471024i
\(276\) 0 0
\(277\) 8.84945e10 1.53277e11i 0.903145 1.56429i 0.0797568 0.996814i \(-0.474586\pi\)
0.823388 0.567479i \(-0.192081\pi\)
\(278\) −6.94485e9 1.20288e10i −0.0697367 0.120788i
\(279\) 0 0
\(280\) 7.45217e9 + 2.05414e10i 0.0724555 + 0.199719i
\(281\) 2.19444e10 0.209964 0.104982 0.994474i \(-0.466521\pi\)
0.104982 + 0.994474i \(0.466521\pi\)
\(282\) 0 0
\(283\) 4.80386e10 8.32053e10i 0.445196 0.771102i −0.552870 0.833268i \(-0.686467\pi\)
0.998066 + 0.0621654i \(0.0198006\pi\)
\(284\) −2.27140e9 + 3.93417e9i −0.0207186 + 0.0358857i
\(285\) 0 0
\(286\) 6.08253e10 0.537572
\(287\) −1.91559e10 3.39834e9i −0.166661 0.0295664i
\(288\) 0 0
\(289\) 1.16183e10 + 2.01234e10i 0.0979717 + 0.169692i
\(290\) 3.98369e10 6.89996e10i 0.330746 0.572869i
\(291\) 0 0
\(292\) −5.59531e9 9.69136e9i −0.0450403 0.0780121i
\(293\) −1.81128e11 −1.43575 −0.717877 0.696170i \(-0.754886\pi\)
−0.717877 + 0.696170i \(0.754886\pi\)
\(294\) 0 0
\(295\) 1.86123e10 0.143087
\(296\) −3.85100e10 6.67013e10i −0.291582 0.505035i
\(297\) 0 0
\(298\) 4.62558e10 8.01174e10i 0.339776 0.588510i
\(299\) 4.29032e10 + 7.43106e10i 0.310434 + 0.537688i
\(300\) 0 0
\(301\) 1.06297e11 + 1.88576e10i 0.746403 + 0.132415i
\(302\) 6.21001e10 0.429597
\(303\) 0 0
\(304\) 2.59823e10 4.50027e10i 0.174480 0.302209i
\(305\) 2.98788e10 5.17516e10i 0.197703 0.342432i
\(306\) 0 0
\(307\) −1.37295e11 −0.882131 −0.441065 0.897475i \(-0.645399\pi\)
−0.441065 + 0.897475i \(0.645399\pi\)
\(308\) 2.29261e10 + 6.31943e10i 0.145162 + 0.400129i
\(309\) 0 0
\(310\) 4.45492e10 + 7.71615e10i 0.273976 + 0.474540i
\(311\) −3.15063e10 + 5.45706e10i −0.190975 + 0.330778i −0.945574 0.325408i \(-0.894498\pi\)
0.754599 + 0.656187i \(0.227832\pi\)
\(312\) 0 0
\(313\) −4.14563e10 7.18044e10i −0.244141 0.422865i 0.717749 0.696302i \(-0.245173\pi\)
−0.961890 + 0.273438i \(0.911839\pi\)
\(314\) −1.59814e11 −0.927750
\(315\) 0 0
\(316\) −1.55397e10 −0.0876699
\(317\) −1.37422e11 2.38022e11i −0.764346 1.32389i −0.940592 0.339539i \(-0.889729\pi\)
0.176246 0.984346i \(-0.443605\pi\)
\(318\) 0 0
\(319\) 1.22556e11 2.12273e11i 0.662637 1.14772i
\(320\) 7.04479e9 + 1.22019e10i 0.0375572 + 0.0650510i
\(321\) 0 0
\(322\) −6.10339e10 + 7.25833e10i −0.316388 + 0.376257i
\(323\) 2.44845e11 1.25164
\(324\) 0 0
\(325\) −5.73788e10 + 9.93829e10i −0.285283 + 0.494125i
\(326\) −1.41081e10 + 2.44359e10i −0.0691814 + 0.119826i
\(327\) 0 0
\(328\) −1.25444e10 −0.0598437
\(329\) 8.86751e10 + 2.44427e11i 0.417273 + 1.15019i
\(330\) 0 0
\(331\) 9.27062e10 + 1.60572e11i 0.424505 + 0.735264i 0.996374 0.0850806i \(-0.0271148\pi\)
−0.571869 + 0.820345i \(0.693781\pi\)
\(332\) −3.69527e10 + 6.40039e10i −0.166926 + 0.289125i
\(333\) 0 0
\(334\) −1.45376e11 2.51798e11i −0.639193 1.10712i
\(335\) 1.84299e11 0.799505
\(336\) 0 0
\(337\) 2.24906e11 0.949877 0.474939 0.880019i \(-0.342470\pi\)
0.474939 + 0.880019i \(0.342470\pi\)
\(338\) −1.71771e10 2.97515e10i −0.0715853 0.123989i
\(339\) 0 0
\(340\) −3.31934e10 + 5.74926e10i −0.134709 + 0.233323i
\(341\) 1.37053e11 + 2.37383e11i 0.548900 + 0.950723i
\(342\) 0 0
\(343\) −2.21598e11 1.28867e11i −0.864454 0.502711i
\(344\) 6.96098e10 0.268014
\(345\) 0 0
\(346\) 1.80662e11 3.12915e11i 0.677678 1.17377i
\(347\) 2.01514e11 3.49032e11i 0.746143 1.29236i −0.203517 0.979072i \(-0.565237\pi\)
0.949659 0.313285i \(-0.101430\pi\)
\(348\) 0 0
\(349\) 6.38726e10 0.230462 0.115231 0.993339i \(-0.463239\pi\)
0.115231 + 0.993339i \(0.463239\pi\)
\(350\) −1.24881e11 2.21544e10i −0.444826 0.0789140i
\(351\) 0 0
\(352\) 2.16729e10 + 3.75385e10i 0.0752444 + 0.130327i
\(353\) 8.06303e10 1.39656e11i 0.276384 0.478710i −0.694100 0.719879i \(-0.744197\pi\)
0.970483 + 0.241168i \(0.0775306\pi\)
\(354\) 0 0
\(355\) 7.45129e9 + 1.29060e10i 0.0249002 + 0.0431285i
\(356\) 2.24559e10 0.0740978
\(357\) 0 0
\(358\) −1.77649e11 −0.571596
\(359\) 1.40109e11 + 2.42677e11i 0.445187 + 0.771086i 0.998065 0.0621758i \(-0.0198039\pi\)
−0.552878 + 0.833262i \(0.686471\pi\)
\(360\) 0 0
\(361\) −1.53015e11 + 2.65030e11i −0.474190 + 0.821321i
\(362\) 6.76270e10 + 1.17133e11i 0.206981 + 0.358502i
\(363\) 0 0
\(364\) −9.62512e10 + 1.14465e11i −0.287376 + 0.341755i
\(365\) −3.67107e10 −0.108262
\(366\) 0 0
\(367\) −2.73003e11 + 4.72856e11i −0.785544 + 1.36060i 0.143129 + 0.989704i \(0.454283\pi\)
−0.928674 + 0.370898i \(0.879050\pi\)
\(368\) −3.05740e10 + 5.29557e10i −0.0869035 + 0.150521i
\(369\) 0 0
\(370\) −2.52663e11 −0.700865
\(371\) −3.00695e11 + 3.57595e11i −0.824031 + 0.979961i
\(372\) 0 0
\(373\) 3.71787e10 + 6.43954e10i 0.0994500 + 0.172252i 0.911457 0.411395i \(-0.134958\pi\)
−0.812007 + 0.583647i \(0.801625\pi\)
\(374\) −1.02117e11 + 1.76873e11i −0.269884 + 0.467453i
\(375\) 0 0
\(376\) 8.38277e10 + 1.45194e11i 0.216293 + 0.374630i
\(377\) 5.45300e11 1.39027
\(378\) 0 0
\(379\) 3.89616e11 0.969974 0.484987 0.874521i \(-0.338824\pi\)
0.484987 + 0.874521i \(0.338824\pi\)
\(380\) −8.52346e10 1.47631e11i −0.209696 0.363204i
\(381\) 0 0
\(382\) 1.25267e11 2.16968e11i 0.300989 0.521328i
\(383\) −1.26648e11 2.19361e11i −0.300749 0.520913i 0.675557 0.737308i \(-0.263903\pi\)
−0.976306 + 0.216395i \(0.930570\pi\)
\(384\) 0 0
\(385\) 2.17139e11 + 3.85213e10i 0.503690 + 0.0893568i
\(386\) 5.69824e10 0.130647
\(387\) 0 0
\(388\) −1.47920e11 + 2.56205e11i −0.331348 + 0.573912i
\(389\) −4.03992e10 + 6.99735e10i −0.0894540 + 0.154939i −0.907280 0.420526i \(-0.861846\pi\)
0.817826 + 0.575465i \(0.195179\pi\)
\(390\) 0 0
\(391\) −2.88115e11 −0.623405
\(392\) −1.55202e11 5.68563e10i −0.331978 0.121616i
\(393\) 0 0
\(394\) −2.85288e11 4.94134e11i −0.596418 1.03303i
\(395\) −2.54889e10 + 4.41480e10i −0.0526822 + 0.0912482i
\(396\) 0 0
\(397\) 4.72537e10 + 8.18458e10i 0.0954725 + 0.165363i 0.909806 0.415034i \(-0.136230\pi\)
−0.814333 + 0.580398i \(0.802897\pi\)
\(398\) −5.80031e11 −1.15872
\(399\) 0 0
\(400\) −8.17793e10 −0.159725
\(401\) 1.24237e11 + 2.15186e11i 0.239940 + 0.415589i 0.960697 0.277600i \(-0.0895388\pi\)
−0.720757 + 0.693188i \(0.756206\pi\)
\(402\) 0 0
\(403\) −3.04901e11 + 5.28105e11i −0.575820 + 0.997349i
\(404\) 1.85648e11 + 3.21551e11i 0.346715 + 0.600529i
\(405\) 0 0
\(406\) 2.05533e11 + 5.66539e11i 0.375418 + 1.03481i
\(407\) −7.77303e11 −1.40416
\(408\) 0 0
\(409\) 1.68826e11 2.92414e11i 0.298321 0.516707i −0.677431 0.735586i \(-0.736907\pi\)
0.975752 + 0.218880i \(0.0702402\pi\)
\(410\) −2.05759e10 + 3.56385e10i −0.0359610 + 0.0622863i
\(411\) 0 0
\(412\) 3.00559e10 0.0513915
\(413\) −9.06090e10 + 1.07755e11i −0.153248 + 0.182247i
\(414\) 0 0
\(415\) 1.21223e11 + 2.09964e11i 0.200617 + 0.347479i
\(416\) −4.82156e10 + 8.35119e10i −0.0789346 + 0.136719i
\(417\) 0 0
\(418\) −2.62219e11 4.54177e11i −0.420118 0.727665i
\(419\) −9.60695e11 −1.52273 −0.761364 0.648324i \(-0.775470\pi\)
−0.761364 + 0.648324i \(0.775470\pi\)
\(420\) 0 0
\(421\) 8.67076e11 1.34520 0.672601 0.740005i \(-0.265177\pi\)
0.672601 + 0.740005i \(0.265177\pi\)
\(422\) −3.30782e11 5.72931e11i −0.507733 0.879419i
\(423\) 0 0
\(424\) −1.50629e11 + 2.60896e11i −0.226340 + 0.392032i
\(425\) −1.92662e11 3.33701e11i −0.286449 0.496144i
\(426\) 0 0
\(427\) 1.54156e11 + 4.24919e11i 0.224406 + 0.618559i
\(428\) −1.90407e10 −0.0274274
\(429\) 0 0
\(430\) 1.14177e11 1.97760e11i 0.161054 0.278953i
\(431\) 5.02711e11 8.70722e11i 0.701732 1.21543i −0.266127 0.963938i \(-0.585744\pi\)
0.967858 0.251497i \(-0.0809227\pi\)
\(432\) 0 0
\(433\) −1.39530e12 −1.90753 −0.953767 0.300547i \(-0.902831\pi\)
−0.953767 + 0.300547i \(0.902831\pi\)
\(434\) −6.63597e11 1.17725e11i −0.897843 0.159281i
\(435\) 0 0
\(436\) 3.21202e11 + 5.56338e11i 0.425686 + 0.737309i
\(437\) 3.69914e11 6.40709e11i 0.485215 0.840417i
\(438\) 0 0
\(439\) −4.67401e11 8.09563e11i −0.600620 1.04030i −0.992727 0.120384i \(-0.961587\pi\)
0.392108 0.919919i \(-0.371746\pi\)
\(440\) 1.42195e11 0.180862
\(441\) 0 0
\(442\) −4.54361e11 −0.566240
\(443\) 5.66403e11 + 9.81038e11i 0.698729 + 1.21023i 0.968907 + 0.247424i \(0.0795839\pi\)
−0.270179 + 0.962810i \(0.587083\pi\)
\(444\) 0 0
\(445\) 3.68331e10 6.37969e10i 0.0445265 0.0771222i
\(446\) −4.00355e11 6.93435e11i −0.479114 0.829849i
\(447\) 0 0
\(448\) −1.04938e11 1.86164e10i −0.123078 0.0218346i
\(449\) −5.33285e11 −0.619228 −0.309614 0.950862i \(-0.600200\pi\)
−0.309614 + 0.950862i \(0.600200\pi\)
\(450\) 0 0
\(451\) −6.33005e10 + 1.09640e11i −0.0720465 + 0.124788i
\(452\) 3.08498e11 5.34335e11i 0.347640 0.602130i
\(453\) 0 0
\(454\) −4.41064e8 −0.000487248
\(455\) 1.67317e11 + 4.61198e11i 0.183016 + 0.504471i
\(456\) 0 0
\(457\) −5.78445e11 1.00190e12i −0.620353 1.07448i −0.989420 0.145080i \(-0.953656\pi\)
0.369067 0.929403i \(-0.379677\pi\)
\(458\) −3.01547e11 + 5.22295e11i −0.320229 + 0.554653i
\(459\) 0 0
\(460\) 1.00298e11 + 1.73721e11i 0.104443 + 0.180901i
\(461\) 1.13012e12 1.16539 0.582693 0.812693i \(-0.301999\pi\)
0.582693 + 0.812693i \(0.301999\pi\)
\(462\) 0 0
\(463\) 8.44262e11 0.853813 0.426906 0.904296i \(-0.359603\pi\)
0.426906 + 0.904296i \(0.359603\pi\)
\(464\) 1.94298e11 + 3.36533e11i 0.194597 + 0.337052i
\(465\) 0 0
\(466\) −1.41842e11 + 2.45678e11i −0.139338 + 0.241340i
\(467\) 6.47542e11 + 1.12158e12i 0.630002 + 1.09120i 0.987551 + 0.157301i \(0.0502794\pi\)
−0.357548 + 0.933895i \(0.616387\pi\)
\(468\) 0 0
\(469\) −8.97209e11 + 1.06699e12i −0.856280 + 1.01831i
\(470\) 5.49991e11 0.519895
\(471\) 0 0
\(472\) −4.53892e10 + 7.86164e10i −0.0420933 + 0.0729078i
\(473\) 3.51258e11 6.08398e11i 0.322665 0.558872i
\(474\) 0 0
\(475\) 9.89445e11 0.891806
\(476\) −1.71257e11 4.72058e11i −0.152903 0.421467i
\(477\) 0 0
\(478\) 5.71953e11 + 9.90652e11i 0.501112 + 0.867952i
\(479\) −3.11431e11 + 5.39414e11i −0.270304 + 0.468180i −0.968940 0.247298i \(-0.920457\pi\)
0.698636 + 0.715477i \(0.253791\pi\)
\(480\) 0 0
\(481\) −8.64633e11 1.49759e12i −0.736510 1.27567i
\(482\) −1.85028e11 −0.156144
\(483\) 0 0
\(484\) −1.66180e11 −0.137650
\(485\) 4.85250e11 + 8.40478e11i 0.398225 + 0.689745i
\(486\) 0 0
\(487\) −5.62901e10 + 9.74974e10i −0.0453473 + 0.0785439i −0.887808 0.460214i \(-0.847773\pi\)
0.842461 + 0.538758i \(0.181106\pi\)
\(488\) 1.45729e11 + 2.52409e11i 0.116320 + 0.201473i
\(489\) 0 0
\(490\) −4.16097e11 + 3.47668e11i −0.326071 + 0.272447i
\(491\) −2.51566e11 −0.195337 −0.0976686 0.995219i \(-0.531139\pi\)
−0.0976686 + 0.995219i \(0.531139\pi\)
\(492\) 0 0
\(493\) −9.15485e11 + 1.58567e12i −0.697975 + 1.20893i
\(494\) 5.83359e11 1.01041e12i 0.440722 0.763352i
\(495\) 0 0
\(496\) −4.34562e11 −0.322392
\(497\) −1.10993e11 1.96906e10i −0.0816003 0.0144762i
\(498\) 0 0
\(499\) −1.56510e11 2.71084e11i −0.113003 0.195727i 0.803977 0.594661i \(-0.202714\pi\)
−0.916980 + 0.398934i \(0.869380\pi\)
\(500\) −3.44089e11 + 5.95980e11i −0.246210 + 0.426448i
\(501\) 0 0
\(502\) −5.27408e11 9.13498e11i −0.370664 0.642009i
\(503\) −2.03277e11 −0.141590 −0.0707951 0.997491i \(-0.522554\pi\)
−0.0707951 + 0.997491i \(0.522554\pi\)
\(504\) 0 0
\(505\) 1.21803e12 0.833386
\(506\) 3.08559e11 + 5.34441e11i 0.209248 + 0.362428i
\(507\) 0 0
\(508\) 4.72490e11 8.18376e11i 0.314779 0.545213i
\(509\) 8.31005e11 + 1.43934e12i 0.548749 + 0.950461i 0.998361 + 0.0572371i \(0.0182291\pi\)
−0.449612 + 0.893224i \(0.648438\pi\)
\(510\) 0 0
\(511\) 1.78716e11 2.12534e11i 0.115949 0.137890i
\(512\) −6.87195e10 −0.0441942
\(513\) 0 0
\(514\) 7.54406e11 1.30667e12i 0.476729 0.825718i
\(515\) 4.92989e10 8.53882e10i 0.0308820 0.0534891i
\(516\) 0 0
\(517\) 1.69201e12 1.04159
\(518\) 1.23002e12 1.46278e12i 0.750635 0.892677i
\(519\) 0 0
\(520\) 1.58171e11 + 2.73959e11i 0.0948660 + 0.164313i
\(521\) −4.47801e11 + 7.75614e11i −0.266266 + 0.461186i −0.967894 0.251357i \(-0.919123\pi\)
0.701629 + 0.712543i \(0.252457\pi\)
\(522\) 0 0
\(523\) 1.46603e11 + 2.53924e11i 0.0856813 + 0.148404i 0.905681 0.423959i \(-0.139360\pi\)
−0.820000 + 0.572363i \(0.806027\pi\)
\(524\) −4.55704e11 −0.264054
\(525\) 0 0
\(526\) 1.04480e11 0.0595111
\(527\) −1.02378e12 1.77323e12i −0.578172 1.00142i
\(528\) 0 0
\(529\) 4.65290e11 8.05906e11i 0.258329 0.447439i
\(530\) 4.94135e11 + 8.55867e11i 0.272022 + 0.471156i
\(531\) 0 0
\(532\) 1.26964e12 + 2.25239e11i 0.687192 + 0.121911i
\(533\) −2.81649e11 −0.151160
\(534\) 0 0
\(535\) −3.12313e10 + 5.40942e10i −0.0164815 + 0.0285469i
\(536\) −4.49443e11 + 7.78458e11i −0.235198 + 0.407374i
\(537\) 0 0
\(538\) 1.94776e12 1.00234
\(539\) −1.28010e12 + 1.06958e12i −0.653270 + 0.545837i
\(540\) 0 0
\(541\) −1.81388e12 3.14174e12i −0.910378 1.57682i −0.813531 0.581521i \(-0.802458\pi\)
−0.0968467 0.995299i \(-0.530876\pi\)
\(542\) −8.03473e11 + 1.39166e12i −0.399921 + 0.692684i
\(543\) 0 0
\(544\) −1.61895e11 2.80410e11i −0.0792571 0.137277i
\(545\) 2.10740e12 1.02320
\(546\) 0 0
\(547\) 2.70319e12 1.29102 0.645511 0.763751i \(-0.276645\pi\)
0.645511 + 0.763751i \(0.276645\pi\)
\(548\) −7.79373e10 1.34991e11i −0.0369176 0.0639431i
\(549\) 0 0
\(550\) −4.12667e11 + 7.14760e11i −0.192295 + 0.333065i
\(551\) −2.35080e12 4.07170e12i −1.08651 1.88189i
\(552\) 0 0
\(553\) −1.31506e11 3.62488e11i −0.0597976 0.164828i
\(554\) 2.83182e12 1.27724
\(555\) 0 0
\(556\) 1.11118e11 1.92461e11i 0.0493113 0.0854097i
\(557\) 1.91724e12 3.32076e12i 0.843974 1.46181i −0.0425353 0.999095i \(-0.513543\pi\)
0.886509 0.462711i \(-0.153123\pi\)
\(558\) 0 0
\(559\) 1.56289e12 0.676979
\(560\) −2.25013e11 + 2.67591e11i −0.0966854 + 0.114981i
\(561\) 0 0
\(562\) 1.75555e11 + 3.04070e11i 0.0742335 + 0.128576i
\(563\) 2.15936e10 3.74012e10i 0.00905810 0.0156891i −0.861461 0.507824i \(-0.830450\pi\)
0.870519 + 0.492135i \(0.163783\pi\)
\(564\) 0 0
\(565\) −1.01202e12 1.75288e12i −0.417804 0.723659i
\(566\) 1.53724e12 0.629602
\(567\) 0 0
\(568\) −7.26847e10 −0.0293005
\(569\) −1.20644e12 2.08961e12i −0.482503 0.835720i 0.517295 0.855807i \(-0.326939\pi\)
−0.999798 + 0.0200870i \(0.993606\pi\)
\(570\) 0 0
\(571\) −8.14907e11 + 1.41146e12i −0.320808 + 0.555656i −0.980655 0.195744i \(-0.937288\pi\)
0.659847 + 0.751400i \(0.270621\pi\)
\(572\) 4.86602e11 + 8.42819e11i 0.190060 + 0.329194i
\(573\) 0 0
\(574\) −1.06159e11 2.92619e11i −0.0408180 0.112512i
\(575\) −1.16430e12 −0.444182
\(576\) 0 0
\(577\) −2.28526e12 + 3.95818e12i −0.858309 + 1.48663i 0.0152322 + 0.999884i \(0.495151\pi\)
−0.873541 + 0.486751i \(0.838182\pi\)
\(578\) −1.85892e11 + 3.21975e11i −0.0692765 + 0.119990i
\(579\) 0 0
\(580\) 1.27478e12 0.467746
\(581\) −1.80571e12 3.20341e11i −0.657439 0.116633i
\(582\) 0 0
\(583\) 1.52018e12 + 2.63302e12i 0.544986 + 0.943943i
\(584\) 8.95249e10 1.55062e11i 0.0318483 0.0551629i
\(585\) 0 0
\(586\) −1.44902e12 2.50978e12i −0.507616 0.879217i
\(587\) −3.12353e12 −1.08586 −0.542931 0.839778i \(-0.682685\pi\)
−0.542931 + 0.839778i \(0.682685\pi\)
\(588\) 0 0
\(589\) 5.25775e12 1.80003
\(590\) 1.48899e11 + 2.57900e11i 0.0505891 + 0.0876228i
\(591\) 0 0
\(592\) 6.16161e11 1.06722e12i 0.206180 0.357114i
\(593\) −2.29885e12 3.98173e12i −0.763423 1.32229i −0.941077 0.338194i \(-0.890184\pi\)
0.177654 0.984093i \(-0.443149\pi\)
\(594\) 0 0
\(595\) −1.62201e12 2.87752e11i −0.530552 0.0941221i
\(596\) 1.48019e12 0.480516
\(597\) 0 0
\(598\) −6.86452e11 + 1.18897e12i −0.219510 + 0.380203i
\(599\) −1.94675e12 + 3.37187e12i −0.617859 + 1.07016i 0.372017 + 0.928226i \(0.378666\pi\)
−0.989876 + 0.141937i \(0.954667\pi\)
\(600\) 0 0
\(601\) 1.02722e12 0.321166 0.160583 0.987022i \(-0.448663\pi\)
0.160583 + 0.987022i \(0.448663\pi\)
\(602\) 5.89081e11 + 1.62376e12i 0.182806 + 0.503893i
\(603\) 0 0
\(604\) 4.96801e11 + 8.60484e11i 0.151885 + 0.263073i
\(605\) −2.72576e11 + 4.72116e11i −0.0827158 + 0.143268i
\(606\) 0 0
\(607\) −1.19766e12 2.07441e12i −0.358084 0.620219i 0.629557 0.776954i \(-0.283236\pi\)
−0.987641 + 0.156735i \(0.949903\pi\)
\(608\) 8.31434e11 0.246753
\(609\) 0 0
\(610\) 9.56121e11 0.279594
\(611\) 1.88211e12 + 3.25991e12i 0.546336 + 0.946281i
\(612\) 0 0
\(613\) 3.30884e12 5.73108e12i 0.946464 1.63932i 0.193670 0.981067i \(-0.437961\pi\)
0.752794 0.658256i \(-0.228706\pi\)
\(614\) −1.09836e12 1.90242e12i −0.311880 0.540192i
\(615\) 0 0
\(616\) −6.92237e11 + 8.23228e11i −0.193705 + 0.230360i
\(617\) 6.76229e12 1.87850 0.939249 0.343236i \(-0.111523\pi\)
0.939249 + 0.343236i \(0.111523\pi\)
\(618\) 0 0
\(619\) 4.19193e11 7.26064e11i 0.114764 0.198777i −0.802921 0.596085i \(-0.796722\pi\)
0.917685 + 0.397308i \(0.130055\pi\)
\(620\) −7.12787e11 + 1.23458e12i −0.193730 + 0.335551i
\(621\) 0 0
\(622\) −1.00820e12 −0.270079
\(623\) 1.90036e11 + 5.23820e11i 0.0505404 + 0.139311i
\(624\) 0 0
\(625\) −8.98272e10 1.55585e11i −0.0235477 0.0407858i
\(626\) 6.63300e11 1.14887e12i 0.172634 0.299010i
\(627\) 0 0
\(628\) −1.27851e12 2.21445e12i −0.328009 0.568128i
\(629\) 5.80641e12 1.47904
\(630\) 0 0
\(631\) −3.32721e12 −0.835504 −0.417752 0.908561i \(-0.637182\pi\)
−0.417752 + 0.908561i \(0.637182\pi\)
\(632\) −1.24317e11 2.15324e11i −0.0309960 0.0536866i
\(633\) 0 0
\(634\) 2.19875e12 3.80835e12i 0.540474 0.936128i
\(635\) −1.55000e12 2.68467e12i −0.378311 0.655254i
\(636\) 0 0
\(637\) −3.48461e12 1.27655e12i −0.838546 0.307191i
\(638\) 3.92179e12 0.937111
\(639\) 0 0
\(640\) −1.12717e11 + 1.95231e11i −0.0265570 + 0.0459980i
\(641\) −7.94940e11 + 1.37688e12i −0.185983 + 0.322132i −0.943907 0.330210i \(-0.892880\pi\)
0.757924 + 0.652343i \(0.226214\pi\)
\(642\) 0 0
\(643\) −6.05393e12 −1.39665 −0.698326 0.715780i \(-0.746071\pi\)
−0.698326 + 0.715780i \(0.746071\pi\)
\(644\) −1.49401e12 2.65045e11i −0.342270 0.0607201i
\(645\) 0 0
\(646\) 1.95876e12 + 3.39267e12i 0.442522 + 0.766471i
\(647\) −1.87293e11 + 3.24400e11i −0.0420195 + 0.0727800i −0.886270 0.463168i \(-0.846713\pi\)
0.844251 + 0.535948i \(0.180046\pi\)
\(648\) 0 0
\(649\) 4.58077e11 + 7.93413e11i 0.101353 + 0.175549i
\(650\) −1.83612e12 −0.403451
\(651\) 0 0
\(652\) −4.51459e11 −0.0978372
\(653\) −6.27315e11 1.08654e12i −0.135013 0.233850i 0.790589 0.612347i \(-0.209774\pi\)
−0.925603 + 0.378497i \(0.876441\pi\)
\(654\) 0 0
\(655\) −7.47466e11 + 1.29465e12i −0.158674 + 0.274831i
\(656\) −1.00355e11 1.73821e11i −0.0211579 0.0366466i
\(657\) 0 0
\(658\) −2.67748e12 + 3.18414e12i −0.556813 + 0.662178i
\(659\) −8.56899e12 −1.76989 −0.884943 0.465700i \(-0.845803\pi\)
−0.884943 + 0.465700i \(0.845803\pi\)
\(660\) 0 0
\(661\) −1.62869e12 + 2.82098e12i −0.331843 + 0.574768i −0.982873 0.184283i \(-0.941004\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(662\) −1.48330e12 + 2.56915e12i −0.300170 + 0.519910i
\(663\) 0 0
\(664\) −1.18249e12 −0.236069
\(665\) 2.72242e12 3.23758e12i 0.539831 0.641982i
\(666\) 0 0
\(667\) 2.76624e12 + 4.79127e12i 0.541158 + 0.937313i
\(668\) 2.32601e12 4.02877e12i 0.451978 0.782849i
\(669\) 0 0
\(670\) 1.47439e12 + 2.55372e12i 0.282668 + 0.489595i
\(671\) 2.94145e12 0.560157
\(672\) 0 0
\(673\) −5.19754e12 −0.976630 −0.488315 0.872667i \(-0.662388\pi\)
−0.488315 + 0.872667i \(0.662388\pi\)
\(674\) 1.79925e12 + 3.11640e12i 0.335832 + 0.581679i
\(675\) 0 0
\(676\) 2.74833e11 4.76025e11i 0.0506184 0.0876737i
\(677\) −3.17108e12 5.49246e12i −0.580173 1.00489i −0.995458 0.0951981i \(-0.969652\pi\)
0.415285 0.909691i \(-0.363682\pi\)
\(678\) 0 0
\(679\) −7.22820e12 1.28231e12i −1.30502 0.231516i
\(680\) −1.06219e12 −0.190507
\(681\) 0 0
\(682\) −2.19285e12 + 3.79812e12i −0.388131 + 0.672263i
\(683\) −4.28146e12 + 7.41571e12i −0.752834 + 1.30395i 0.193610 + 0.981079i \(0.437980\pi\)
−0.946444 + 0.322868i \(0.895353\pi\)
\(684\) 0 0
\(685\) −5.11345e11 −0.0887373
\(686\) 1.28533e10 4.10149e12i 0.00221593 0.707103i
\(687\) 0 0
\(688\) 5.56878e11 + 9.64542e11i 0.0947573 + 0.164124i
\(689\) −3.38193e12 + 5.85768e12i −0.571714 + 0.990237i
\(690\) 0 0
\(691\) −5.02013e12 8.69511e12i −0.837651 1.45085i −0.891853 0.452325i \(-0.850595\pi\)
0.0542018 0.998530i \(-0.482739\pi\)
\(692\) 5.78117e12 0.958381
\(693\) 0 0
\(694\) 6.44844e12 1.05520
\(695\) −3.64520e11 6.31367e11i −0.0592638 0.102648i
\(696\) 0 0
\(697\) 4.72851e11 8.19002e11i 0.0758886 0.131443i
\(698\) 5.10981e11 + 8.85045e11i 0.0814808 + 0.141129i
\(699\) 0 0
\(700\) −6.92067e11 1.90764e12i −0.108945 0.300299i
\(701\) 6.17651e12 0.966077 0.483038 0.875599i \(-0.339533\pi\)
0.483038 + 0.875599i \(0.339533\pi\)
\(702\) 0 0
\(703\) −7.45490e12 + 1.29123e13i −1.15118 + 1.99390i
\(704\) −3.46766e11 + 6.00616e11i −0.0532058 + 0.0921552i
\(705\) 0 0
\(706\) 2.58017e12 0.390865
\(707\) −5.92964e12 + 7.05169e12i −0.892567 + 1.06147i
\(708\) 0 0
\(709\) 4.11116e12 + 7.12074e12i 0.611022 + 1.05832i 0.991069 + 0.133353i \(0.0425745\pi\)
−0.380047 + 0.924967i \(0.624092\pi\)
\(710\) −1.19221e11 + 2.06496e11i −0.0176071 + 0.0304964i
\(711\) 0 0
\(712\) 1.79647e11 + 3.11158e11i 0.0261975 + 0.0453755i
\(713\) −6.18692e12 −0.896543
\(714\) 0 0
\(715\) 3.19258e12 0.456841
\(716\) −1.42119e12 2.46158e12i −0.202090 0.350030i
\(717\) 0 0
\(718\) −2.24175e12 + 3.88283e12i −0.314795 + 0.545240i
\(719\) 6.83153e11 + 1.18326e12i 0.0953318 + 0.165119i 0.909747 0.415163i \(-0.136275\pi\)
−0.814415 + 0.580283i \(0.802942\pi\)
\(720\) 0 0
\(721\) 2.54351e11 + 7.01102e11i 0.0350530 + 0.0966212i
\(722\) −4.89649e12 −0.670606
\(723\) 0 0
\(724\) −1.08203e12 + 1.87413e12i −0.146358 + 0.253499i
\(725\) −3.69957e12 + 6.40784e12i −0.497313 + 0.861372i
\(726\) 0 0
\(727\) 1.07392e13 1.42583 0.712915 0.701251i \(-0.247375\pi\)
0.712915 + 0.701251i \(0.247375\pi\)
\(728\) −2.35608e12 4.17979e11i −0.310884 0.0551522i
\(729\) 0 0
\(730\) −2.93685e11 5.08678e11i −0.0382762 0.0662964i
\(731\) −2.62388e12 + 4.54469e12i −0.339872 + 0.588676i
\(732\) 0 0
\(733\) 1.85714e12 + 3.21666e12i 0.237616 + 0.411564i 0.960030 0.279898i \(-0.0903006\pi\)
−0.722413 + 0.691461i \(0.756967\pi\)
\(734\) −8.73610e12 −1.11093
\(735\) 0 0
\(736\) −9.78368e11 −0.122900
\(737\) 4.53587e12 + 7.85636e12i 0.566314 + 0.980885i
\(738\) 0 0
\(739\) 6.48512e12 1.12326e13i 0.799867 1.38541i −0.119835 0.992794i \(-0.538236\pi\)
0.919702 0.392617i \(-0.128430\pi\)
\(740\) −2.02131e12 3.50101e12i −0.247793 0.429190i
\(741\) 0 0
\(742\) −7.36054e12 1.30579e12i −0.891440 0.158145i
\(743\) 1.26040e13 1.51726 0.758630 0.651522i \(-0.225869\pi\)
0.758630 + 0.651522i \(0.225869\pi\)
\(744\) 0 0
\(745\) 2.42786e12 4.20518e12i 0.288749 0.500129i
\(746\) −5.94860e11 + 1.03033e12i −0.0703218 + 0.121801i
\(747\) 0 0
\(748\) −3.26776e12 −0.381674
\(749\) −1.61134e11 4.44154e11i −0.0187076 0.0515662i
\(750\) 0 0
\(751\) 1.56887e12 + 2.71736e12i 0.179973 + 0.311722i 0.941871 0.335975i \(-0.109066\pi\)
−0.761898 + 0.647697i \(0.775732\pi\)
\(752\) −1.34124e12 + 2.32310e12i −0.152942 + 0.264904i
\(753\) 0 0
\(754\) 4.36240e12 + 7.55589e12i 0.491535 + 0.851363i
\(755\) 3.25950e12 0.365081
\(756\) 0 0
\(757\) 4.60752e12 0.509959 0.254980 0.966946i \(-0.417931\pi\)
0.254980 + 0.966946i \(0.417931\pi\)
\(758\) 3.11693e12 + 5.39868e12i 0.342938 + 0.593986i
\(759\) 0 0
\(760\) 1.36375e12 2.36209e12i 0.148277 0.256824i
\(761\) −7.95606e12 1.37803e13i −0.859938 1.48946i −0.871988 0.489528i \(-0.837169\pi\)
0.0120500 0.999927i \(-0.496164\pi\)
\(762\) 0 0
\(763\) −1.02593e13 + 1.22006e13i −1.09586 + 1.30323i
\(764\) 4.00853e12 0.425662
\(765\) 0 0
\(766\) 2.02637e12 3.50978e12i 0.212662 0.368341i
\(767\) −1.01908e12 + 1.76511e12i −0.106324 + 0.184158i
\(768\) 0 0
\(769\) 1.13622e13 1.17164 0.585819 0.810442i \(-0.300773\pi\)
0.585819 + 0.810442i \(0.300773\pi\)
\(770\) 1.20334e12 + 3.31693e12i 0.123362 + 0.340039i
\(771\) 0 0
\(772\) 4.55859e11 + 7.89571e11i 0.0461905 + 0.0800043i
\(773\) 3.31271e12 5.73779e12i 0.333715 0.578012i −0.649522 0.760343i \(-0.725031\pi\)
0.983237 + 0.182331i \(0.0583642\pi\)
\(774\) 0 0
\(775\) −4.13719e12 7.16582e12i −0.411953 0.713523i
\(776\) −4.73345e12 −0.468597
\(777\) 0 0
\(778\) −1.29278e12 −0.126507
\(779\) 1.21420e12 + 2.10305e12i 0.118133 + 0.204612i
\(780\) 0 0
\(781\) −3.66775e11 + 6.35272e11i −0.0352752 + 0.0610985i
\(782\) −2.30492e12 3.99224e12i −0.220407 0.381756i
\(783\) 0 0
\(784\) −4.53790e11 2.60539e12i −0.0428976 0.246292i
\(785\) −8.38827e12 −0.788423
\(786\) 0 0
\(787\) 4.46022e11 7.72532e11i 0.0414448 0.0717844i −0.844559 0.535463i \(-0.820137\pi\)
0.886004 + 0.463678i \(0.153471\pi\)
\(788\) 4.56461e12 7.90614e12i 0.421731 0.730460i
\(789\) 0 0
\(790\) −8.15644e11 −0.0745038
\(791\) 1.50749e13 + 2.67436e12i 1.36918 + 0.242899i
\(792\) 0 0
\(793\) 3.27192e12 + 5.66713e12i 0.293814 + 0.508901i
\(794\) −7.56059e11 + 1.30953e12i −0.0675093 + 0.116930i
\(795\) 0 0
\(796\) −4.64025e12 8.03714e12i −0.409668 0.709566i
\(797\) 1.89547e13 1.66401 0.832004 0.554770i \(-0.187194\pi\)
0.832004 + 0.554770i \(0.187194\pi\)
\(798\) 0 0
\(799\) −1.26392e13 −1.09714
\(800\) −6.54235e11 1.13317e12i −0.0564714 0.0978113i
\(801\) 0 0
\(802\) −1.98780e12 + 3.44297e12i −0.169663 + 0.293865i
\(803\) −9.03504e11 1.56492e12i −0.0766850 0.132822i
\(804\) 0 0
\(805\) −3.20353e12 + 3.80973e12i −0.268873 + 0.319752i
\(806\) −9.75684e12 −0.814332
\(807\) 0 0
\(808\) −2.97036e12 + 5.14482e12i −0.245165 + 0.424638i
\(809\) 5.43138e12 9.40743e12i 0.445802 0.772152i −0.552306 0.833642i \(-0.686252\pi\)
0.998108 + 0.0614900i \(0.0195852\pi\)
\(810\) 0 0
\(811\) 9.26752e12 0.752263 0.376131 0.926566i \(-0.377254\pi\)
0.376131 + 0.926566i \(0.377254\pi\)
\(812\) −6.20592e12 + 7.38026e12i −0.500961 + 0.595758i
\(813\) 0 0
\(814\) −6.21842e12 1.07706e13i −0.496444 0.859867i
\(815\) −7.40503e11 + 1.28259e12i −0.0587919 + 0.101831i
\(816\) 0 0
\(817\) −6.73765e12 1.16700e13i −0.529065 0.916368i
\(818\) 5.40242e12 0.421889
\(819\) 0 0
\(820\) −6.58429e11 −0.0508565
\(821\) −5.50162e12 9.52909e12i −0.422617 0.731994i 0.573578 0.819151i \(-0.305555\pi\)
−0.996195 + 0.0871574i \(0.972222\pi\)
\(822\) 0 0
\(823\) −7.42852e12 + 1.28666e13i −0.564421 + 0.977606i 0.432682 + 0.901547i \(0.357567\pi\)
−0.997103 + 0.0760596i \(0.975766\pi\)
\(824\) 2.40447e11 + 4.16466e11i 0.0181697 + 0.0314708i
\(825\) 0 0
\(826\) −2.21797e12 3.93477e11i −0.165785 0.0294109i
\(827\) 1.90248e13 1.41431 0.707155 0.707058i \(-0.249978\pi\)
0.707155 + 0.707058i \(0.249978\pi\)
\(828\) 0 0
\(829\) 6.07299e12 1.05187e13i 0.446588 0.773513i −0.551573 0.834127i \(-0.685972\pi\)
0.998161 + 0.0606131i \(0.0193056\pi\)
\(830\) −1.93956e12 + 3.35942e12i −0.141858 + 0.245705i
\(831\) 0 0
\(832\) −1.54290e12 −0.111630
\(833\) 9.56224e12 7.98969e12i 0.688109 0.574946i
\(834\) 0 0
\(835\) −7.63044e12 1.32163e13i −0.543201 0.940852i
\(836\) 4.19551e12 7.26683e12i 0.297068 0.514537i
\(837\) 0 0
\(838\) −7.68556e12 1.33118e13i −0.538366 0.932477i
\(839\) −1.47673e13 −1.02890 −0.514448 0.857522i \(-0.672003\pi\)
−0.514448 + 0.857522i \(0.672003\pi\)
\(840\) 0 0
\(841\) 2.06518e13 1.42356
\(842\) 6.93660e12 + 1.20146e13i 0.475601 + 0.823765i
\(843\) 0 0
\(844\) 5.29251e12 9.16689e12i 0.359021 0.621843i
\(845\) −9.01586e11 1.56159e12i −0.0608348 0.105369i
\(846\) 0 0
\(847\) −1.40632e12 3.87643e12i −0.0938877 0.258795i
\(848\) −4.82011e12 −0.320093
\(849\) 0 0
\(850\) 3.08260e12 5.33922e12i 0.202550 0.350827i
\(851\) 8.77236e12 1.51942e13i 0.573368 0.993103i
\(852\) 0 0
\(853\) 5.05930e12 0.327205 0.163602 0.986526i \(-0.447689\pi\)
0.163602 + 0.986526i \(0.447689\pi\)
\(854\) −4.65461e12 + 5.53540e12i −0.299449 + 0.356113i
\(855\) 0 0
\(856\) −1.52325e11 2.63835e11i −0.00969705 0.0167958i
\(857\) 1.40992e12 2.44205e12i 0.0892854 0.154647i −0.817924 0.575326i \(-0.804875\pi\)
0.907209 + 0.420680i \(0.138208\pi\)
\(858\) 0 0
\(859\) −3.29627e12 5.70931e12i −0.206564 0.357779i 0.744066 0.668106i \(-0.232895\pi\)
−0.950630 + 0.310327i \(0.899561\pi\)
\(860\) 3.65366e12 0.227764
\(861\) 0 0
\(862\) 1.60868e13 0.992398
\(863\) 1.28478e12 + 2.22530e12i 0.0788460 + 0.136565i 0.902752 0.430161i \(-0.141543\pi\)
−0.823906 + 0.566726i \(0.808210\pi\)
\(864\) 0 0
\(865\) 9.48252e12 1.64242e13i 0.575906 0.997498i
\(866\) −1.11624e13 1.93339e13i −0.674415 1.16812i
\(867\) 0 0
\(868\) −3.67753e12 1.01369e13i −0.219896 0.606129i
\(869\) −2.50928e12 −0.149266
\(870\) 0 0
\(871\) −1.00910e13 + 1.74780e13i −0.594088 + 1.02899i
\(872\) −5.13923e12 + 8.90141e12i −0.301005 + 0.521356i
\(873\) 0 0
\(874\) 1.18372e13 0.686197
\(875\) −1.68141e13 2.98289e12i −0.969699 0.172029i
\(876\) 0 0
\(877\) 4.58693e12 + 7.94479e12i 0.261833 + 0.453507i 0.966729 0.255803i \(-0.0823398\pi\)
−0.704896 + 0.709310i \(0.749006\pi\)
\(878\) 7.47842e12 1.29530e13i 0.424702 0.735606i
\(879\) 0 0
\(880\) 1.13756e12 + 1.97031e12i 0.0639444 + 0.110755i
\(881\) 2.92110e11 0.0163363 0.00816816 0.999967i \(-0.497400\pi\)
0.00816816 + 0.999967i \(0.497400\pi\)
\(882\) 0 0
\(883\) 2.80668e13 1.55371 0.776856 0.629678i \(-0.216813\pi\)
0.776856 + 0.629678i \(0.216813\pi\)
\(884\) −3.63489e12 6.29581e12i −0.200196 0.346750i
\(885\) 0 0
\(886\) −9.06245e12 + 1.56966e13i −0.494076 + 0.855765i
\(887\) 1.13253e13 + 1.96161e13i 0.614320 + 1.06403i 0.990503 + 0.137488i \(0.0439029\pi\)
−0.376183 + 0.926545i \(0.622764\pi\)
\(888\) 0 0
\(889\) 2.30885e13 + 4.09599e12i 1.23976 + 0.219938i
\(890\) 1.17866e12 0.0629700
\(891\) 0 0
\(892\) 6.40568e12 1.10950e13i 0.338784 0.586792i
\(893\) 1.62276e13 2.81071e13i 0.853933 1.47906i
\(894\) 0 0
\(895\) −9.32441e12 −0.485755
\(896\) −5.81546e11 1.60299e12i −0.0301438 0.0830894i
\(897\) 0 0
\(898\) −4.26628e12 7.38941e12i −0.218930 0.379198i
\(899\) −1.96589e13 + 3.40502e13i −1.00379 + 1.73861i
\(900\) 0 0
\(901\) −1.13556e13 1.96685e13i −0.574049 0.994283i
\(902\) −2.02562e12 −0.101889
\(903\) 0 0
\(904\) 9.87195e12 0.491637
\(905\) 3.54959e12 + 6.14807e12i 0.175897 + 0.304663i
\(906\) 0 0
\(907\) 1.67377e13 2.89906e13i 0.821229 1.42241i −0.0835391 0.996505i \(-0.526622\pi\)
0.904768 0.425905i \(-0.140044\pi\)
\(908\) −3.52851e9 6.11156e9i −0.000172268 0.000298377i
\(909\) 0 0
\(910\) −5.05201e12 + 6.00800e12i −0.244218 + 0.290431i
\(911\) −5.92250e12 −0.284887 −0.142444 0.989803i \(-0.545496\pi\)
−0.142444 + 0.989803i \(0.545496\pi\)
\(912\) 0 0
\(913\) −5.96695e12 + 1.03351e13i −0.284206 + 0.492260i
\(914\) 9.25512e12 1.60303e13i 0.438656 0.759774i
\(915\) 0 0
\(916\) −9.64951e12 −0.452872
\(917\) −3.85645e12 1.06300e13i −0.180105 0.496447i
\(918\) 0 0
\(919\) 1.30980e13 + 2.26863e13i 0.605737 + 1.04917i 0.991935 + 0.126751i \(0.0404550\pi\)
−0.386197 + 0.922416i \(0.626212\pi\)
\(920\) −1.60476e12 + 2.77953e12i −0.0738525 + 0.127916i
\(921\) 0 0
\(922\) 9.04094e12 + 1.56594e13i 0.412026 + 0.713650i
\(923\) −1.63193e12 −0.0740104
\(924\) 0 0
\(925\) 2.34643e13 1.05383
\(926\) 6.75409e12 + 1.16984e13i 0.301868 + 0.522851i
\(927\) 0 0
\(928\) −3.10876e12 + 5.38453e12i −0.137601 + 0.238332i
\(929\) 1.04935e13 + 1.81753e13i 0.462222 + 0.800591i 0.999071 0.0430866i \(-0.0137191\pi\)
−0.536850 + 0.843678i \(0.680386\pi\)
\(930\) 0 0
\(931\) 5.49039e12 + 3.15225e13i 0.239513 + 1.37514i
\(932\) −4.53895e12 −0.197053
\(933\) 0 0
\(934\) −1.03607e13 + 1.79452e13i −0.445479 + 0.771592i
\(935\) −5.35992e12 + 9.28365e12i −0.229354 + 0.397252i
\(936\) 0 0
\(937\) −1.48411e13 −0.628982 −0.314491 0.949261i \(-0.601834\pi\)
−0.314491 + 0.949261i \(0.601834\pi\)
\(938\) −2.19623e13 3.89620e12i −0.926327 0.164334i
\(939\) 0 0
\(940\) 4.39993e12 + 7.62090e12i 0.183810 + 0.318369i
\(941\) −1.04462e13 + 1.80933e13i −0.434315 + 0.752255i −0.997239 0.0742532i \(-0.976343\pi\)
0.562925 + 0.826508i \(0.309676\pi\)
\(942\) 0 0
\(943\) −1.42877e12 2.47471e12i −0.0588384 0.101911i
\(944\) −1.45245e12 −0.0595290
\(945\) 0 0
\(946\) 1.12403e13 0.456317
\(947\) −1.70007e13 2.94461e13i −0.686897 1.18974i −0.972836 0.231493i \(-0.925639\pi\)
0.285939 0.958248i \(-0.407695\pi\)
\(948\) 0 0
\(949\) 2.01003e12 3.48147e12i 0.0804458 0.139336i
\(950\) 7.91556e12 + 1.37101e13i 0.315301 + 0.546117i
\(951\) 0 0
\(952\) 5.17097e12 6.14947e12i 0.204036 0.242645i
\(953\) 4.42130e13 1.73633 0.868165 0.496276i \(-0.165300\pi\)
0.868165 + 0.496276i \(0.165300\pi\)
\(954\) 0 0
\(955\) 6.57497e12 1.13882e13i 0.255787 0.443036i
\(956\) −9.15125e12 + 1.58504e13i −0.354340 + 0.613735i
\(957\) 0 0
\(958\) −9.96579e12 −0.382267
\(959\) 2.48934e12 2.96039e12i 0.0950387 0.113023i
\(960\) 0 0
\(961\) −8.76453e12 1.51806e13i −0.331492 0.574162i
\(962\) 1.38341e13 2.39614e13i 0.520791 0.902037i
\(963\) 0 0
\(964\) −1.48022e12 2.56382e12i −0.0552052 0.0956182i
\(965\) 2.99088e12 0.111026
\(966\) 0 0
\(967\) −5.00320e13 −1.84005 −0.920023 0.391864i \(-0.871830\pi\)
−0.920023 + 0.391864i \(0.871830\pi\)
\(968\) −1.32944e12 2.30266e12i −0.0486665 0.0842929i
\(969\) 0 0
\(970\) −7.76401e12 + 1.34477e13i −0.281587 + 0.487724i
\(971\) 5.24298e12 + 9.08110e12i 0.189274 + 0.327833i 0.945008 0.327046i \(-0.106053\pi\)
−0.755734 + 0.654878i \(0.772720\pi\)
\(972\) 0 0
\(973\) 5.42982e12 + 9.63274e11i 0.194213 + 0.0344542i
\(974\) −1.80128e12 −0.0641308
\(975\) 0 0
\(976\) −2.33166e12 + 4.03855e12i −0.0822509 + 0.142463i
\(977\) 1.94596e13 3.37050e13i 0.683295 1.18350i −0.290674 0.956822i \(-0.593880\pi\)
0.973969 0.226680i \(-0.0727871\pi\)
\(978\) 0 0
\(979\) 3.62608e12 0.126158
\(980\) −8.14620e12 2.98426e12i −0.282122 0.103352i
\(981\) 0 0
\(982\) −2.01253e12 3.48580e12i −0.0690621 0.119619i
\(983\) −1.91410e13 + 3.31532e13i −0.653844 + 1.13249i 0.328338 + 0.944560i \(0.393512\pi\)
−0.982182 + 0.187931i \(0.939822\pi\)
\(984\) 0 0
\(985\) −1.49742e13 2.59360e13i −0.506850 0.877889i
\(986\) −2.92955e13 −0.987086
\(987\) 0 0
\(988\) 1.86675e13 0.623274
\(989\) 7.92835e12 + 1.37323e13i 0.263512 + 0.456415i
\(990\) 0 0
\(991\) −9.41837e12 + 1.63131e13i −0.310202 + 0.537285i −0.978406 0.206693i \(-0.933730\pi\)
0.668204 + 0.743978i \(0.267063\pi\)
\(992\) −3.47650e12 6.02147e12i −0.113983 0.197424i
\(993\) 0 0
\(994\) −6.15102e11 1.69549e12i −0.0199852 0.0550879i
\(995\) −3.04445e13 −0.984704
\(996\) 0 0
\(997\) 9.64240e12 1.67011e13i 0.309070 0.535325i −0.669089 0.743182i \(-0.733316\pi\)
0.978159 + 0.207857i \(0.0666490\pi\)
\(998\) 2.50417e12 4.33734e12i 0.0799054 0.138400i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.10.g.c.109.2 4
3.2 odd 2 42.10.e.b.25.1 4
7.2 even 3 inner 126.10.g.c.37.2 4
21.2 odd 6 42.10.e.b.37.1 yes 4
21.11 odd 6 294.10.a.o.1.2 2
21.17 even 6 294.10.a.n.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.10.e.b.25.1 4 3.2 odd 2
42.10.e.b.37.1 yes 4 21.2 odd 6
126.10.g.c.37.2 4 7.2 even 3 inner
126.10.g.c.109.2 4 1.1 even 1 trivial
294.10.a.n.1.1 2 21.17 even 6
294.10.a.o.1.2 2 21.11 odd 6