Properties

Label 126.10
Level 126
Weight 10
Dimension 982
Nonzero newspaces 10
Sturm bound 8640
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 10 \)
Sturm bound: \(8640\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(126))\).

Total New Old
Modular forms 3984 982 3002
Cusp forms 3792 982 2810
Eisenstein series 192 0 192

Trace form

\( 982 q + 32 q^{2} - 150 q^{3} + 2560 q^{4} + 4740 q^{5} + 6048 q^{6} - 10628 q^{7} - 16384 q^{8} - 27114 q^{9} + 110688 q^{10} + 54636 q^{11} - 150528 q^{12} + 56582 q^{13} + 832256 q^{14} + 516252 q^{15}+ \cdots + 8347246728 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(126))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
126.10.a \(\chi_{126}(1, \cdot)\) 126.10.a.a 1 1
126.10.a.b 1
126.10.a.c 1
126.10.a.d 1
126.10.a.e 1
126.10.a.f 1
126.10.a.g 1
126.10.a.h 1
126.10.a.i 2
126.10.a.j 2
126.10.a.k 2
126.10.a.l 2
126.10.a.m 2
126.10.a.n 2
126.10.a.o 2
126.10.d \(\chi_{126}(125, \cdot)\) 126.10.d.a 24 1
126.10.e \(\chi_{126}(25, \cdot)\) n/a 144 2
126.10.f \(\chi_{126}(43, \cdot)\) n/a 108 2
126.10.g \(\chi_{126}(37, \cdot)\) 126.10.g.a 2 2
126.10.g.b 4
126.10.g.c 4
126.10.g.d 6
126.10.g.e 6
126.10.g.f 6
126.10.g.g 8
126.10.g.h 12
126.10.g.i 12
126.10.h \(\chi_{126}(67, \cdot)\) n/a 144 2
126.10.k \(\chi_{126}(17, \cdot)\) 126.10.k.a 48 2
126.10.l \(\chi_{126}(5, \cdot)\) n/a 144 2
126.10.m \(\chi_{126}(41, \cdot)\) n/a 144 2
126.10.t \(\chi_{126}(47, \cdot)\) n/a 144 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(126))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(126)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 2}\)