Properties

Label 1248.2.n.d.1247.4
Level $1248$
Weight $2$
Character 1248.1247
Analytic conductor $9.965$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,2,Mod(1247,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.1247"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1247.4
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1248.1247
Dual form 1248.2.n.d.1247.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.41421i) q^{3} +3.41421 q^{5} +3.41421 q^{7} +(-1.00000 + 2.82843i) q^{9} -0.828427i q^{11} +(3.00000 + 2.00000i) q^{13} +(3.41421 + 4.82843i) q^{15} -2.82843i q^{17} -2.24264 q^{19} +(3.41421 + 4.82843i) q^{21} -3.65685 q^{23} +6.65685 q^{25} +(-5.00000 + 1.41421i) q^{27} -6.82843i q^{29} -9.07107 q^{31} +(1.17157 - 0.828427i) q^{33} +11.6569 q^{35} +1.65685i q^{37} +(0.171573 + 6.24264i) q^{39} +3.41421 q^{41} -8.00000i q^{43} +(-3.41421 + 9.65685i) q^{45} +3.17157i q^{47} +4.65685 q^{49} +(4.00000 - 2.82843i) q^{51} -12.0000i q^{53} -2.82843i q^{55} +(-2.24264 - 3.17157i) q^{57} +3.17157i q^{59} -13.6569 q^{61} +(-3.41421 + 9.65685i) q^{63} +(10.2426 + 6.82843i) q^{65} -12.5858 q^{67} +(-3.65685 - 5.17157i) q^{69} -8.82843i q^{71} +4.00000i q^{73} +(6.65685 + 9.41421i) q^{75} -2.82843i q^{77} +12.4853i q^{79} +(-7.00000 - 5.65685i) q^{81} +8.82843i q^{83} -9.65685i q^{85} +(9.65685 - 6.82843i) q^{87} +11.4142 q^{89} +(10.2426 + 6.82843i) q^{91} +(-9.07107 - 12.8284i) q^{93} -7.65685 q^{95} +(2.34315 + 0.828427i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 8 q^{5} + 8 q^{7} - 4 q^{9} + 12 q^{13} + 8 q^{15} + 8 q^{19} + 8 q^{21} + 8 q^{23} + 4 q^{25} - 20 q^{27} - 8 q^{31} + 16 q^{33} + 24 q^{35} + 12 q^{39} + 8 q^{41} - 8 q^{45} - 4 q^{49}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 1.41421i 0.577350 + 0.816497i
\(4\) 0 0
\(5\) 3.41421 1.52688 0.763441 0.645877i \(-0.223508\pi\)
0.763441 + 0.645877i \(0.223508\pi\)
\(6\) 0 0
\(7\) 3.41421 1.29045 0.645226 0.763992i \(-0.276763\pi\)
0.645226 + 0.763992i \(0.276763\pi\)
\(8\) 0 0
\(9\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(10\) 0 0
\(11\) 0.828427i 0.249780i −0.992171 0.124890i \(-0.960142\pi\)
0.992171 0.124890i \(-0.0398578\pi\)
\(12\) 0 0
\(13\) 3.00000 + 2.00000i 0.832050 + 0.554700i
\(14\) 0 0
\(15\) 3.41421 + 4.82843i 0.881546 + 1.24669i
\(16\) 0 0
\(17\) 2.82843i 0.685994i −0.939336 0.342997i \(-0.888558\pi\)
0.939336 0.342997i \(-0.111442\pi\)
\(18\) 0 0
\(19\) −2.24264 −0.514497 −0.257249 0.966345i \(-0.582816\pi\)
−0.257249 + 0.966345i \(0.582816\pi\)
\(20\) 0 0
\(21\) 3.41421 + 4.82843i 0.745042 + 1.05365i
\(22\) 0 0
\(23\) −3.65685 −0.762507 −0.381253 0.924471i \(-0.624507\pi\)
−0.381253 + 0.924471i \(0.624507\pi\)
\(24\) 0 0
\(25\) 6.65685 1.33137
\(26\) 0 0
\(27\) −5.00000 + 1.41421i −0.962250 + 0.272166i
\(28\) 0 0
\(29\) 6.82843i 1.26801i −0.773330 0.634004i \(-0.781410\pi\)
0.773330 0.634004i \(-0.218590\pi\)
\(30\) 0 0
\(31\) −9.07107 −1.62921 −0.814606 0.580015i \(-0.803047\pi\)
−0.814606 + 0.580015i \(0.803047\pi\)
\(32\) 0 0
\(33\) 1.17157 0.828427i 0.203945 0.144211i
\(34\) 0 0
\(35\) 11.6569 1.97037
\(36\) 0 0
\(37\) 1.65685i 0.272385i 0.990682 + 0.136193i \(0.0434866\pi\)
−0.990682 + 0.136193i \(0.956513\pi\)
\(38\) 0 0
\(39\) 0.171573 + 6.24264i 0.0274736 + 0.999623i
\(40\) 0 0
\(41\) 3.41421 0.533211 0.266605 0.963806i \(-0.414098\pi\)
0.266605 + 0.963806i \(0.414098\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 0 0
\(45\) −3.41421 + 9.65685i −0.508961 + 1.43956i
\(46\) 0 0
\(47\) 3.17157i 0.462621i 0.972880 + 0.231311i \(0.0743014\pi\)
−0.972880 + 0.231311i \(0.925699\pi\)
\(48\) 0 0
\(49\) 4.65685 0.665265
\(50\) 0 0
\(51\) 4.00000 2.82843i 0.560112 0.396059i
\(52\) 0 0
\(53\) 12.0000i 1.64833i −0.566352 0.824163i \(-0.691646\pi\)
0.566352 0.824163i \(-0.308354\pi\)
\(54\) 0 0
\(55\) 2.82843i 0.381385i
\(56\) 0 0
\(57\) −2.24264 3.17157i −0.297045 0.420085i
\(58\) 0 0
\(59\) 3.17157i 0.412904i 0.978457 + 0.206452i \(0.0661917\pi\)
−0.978457 + 0.206452i \(0.933808\pi\)
\(60\) 0 0
\(61\) −13.6569 −1.74858 −0.874291 0.485403i \(-0.838673\pi\)
−0.874291 + 0.485403i \(0.838673\pi\)
\(62\) 0 0
\(63\) −3.41421 + 9.65685i −0.430150 + 1.21665i
\(64\) 0 0
\(65\) 10.2426 + 6.82843i 1.27044 + 0.846962i
\(66\) 0 0
\(67\) −12.5858 −1.53760 −0.768799 0.639490i \(-0.779145\pi\)
−0.768799 + 0.639490i \(0.779145\pi\)
\(68\) 0 0
\(69\) −3.65685 5.17157i −0.440234 0.622584i
\(70\) 0 0
\(71\) 8.82843i 1.04774i −0.851798 0.523871i \(-0.824487\pi\)
0.851798 0.523871i \(-0.175513\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 0 0
\(75\) 6.65685 + 9.41421i 0.768667 + 1.08706i
\(76\) 0 0
\(77\) 2.82843i 0.322329i
\(78\) 0 0
\(79\) 12.4853i 1.40470i 0.711830 + 0.702352i \(0.247867\pi\)
−0.711830 + 0.702352i \(0.752133\pi\)
\(80\) 0 0
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 0 0
\(83\) 8.82843i 0.969046i 0.874779 + 0.484523i \(0.161007\pi\)
−0.874779 + 0.484523i \(0.838993\pi\)
\(84\) 0 0
\(85\) 9.65685i 1.04743i
\(86\) 0 0
\(87\) 9.65685 6.82843i 1.03532 0.732084i
\(88\) 0 0
\(89\) 11.4142 1.20990 0.604952 0.796262i \(-0.293192\pi\)
0.604952 + 0.796262i \(0.293192\pi\)
\(90\) 0 0
\(91\) 10.2426 + 6.82843i 1.07372 + 0.715814i
\(92\) 0 0
\(93\) −9.07107 12.8284i −0.940626 1.33025i
\(94\) 0 0
\(95\) −7.65685 −0.785577
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 2.34315 + 0.828427i 0.235495 + 0.0832601i
\(100\) 0 0
\(101\) 17.6569i 1.75692i 0.477813 + 0.878461i \(0.341429\pi\)
−0.477813 + 0.878461i \(0.658571\pi\)
\(102\) 0 0
\(103\) 1.65685i 0.163255i −0.996663 0.0816274i \(-0.973988\pi\)
0.996663 0.0816274i \(-0.0260117\pi\)
\(104\) 0 0
\(105\) 11.6569 + 16.4853i 1.13759 + 1.60880i
\(106\) 0 0
\(107\) −1.65685 −0.160174 −0.0800871 0.996788i \(-0.525520\pi\)
−0.0800871 + 0.996788i \(0.525520\pi\)
\(108\) 0 0
\(109\) 16.9706i 1.62549i 0.582623 + 0.812743i \(0.302026\pi\)
−0.582623 + 0.812743i \(0.697974\pi\)
\(110\) 0 0
\(111\) −2.34315 + 1.65685i −0.222402 + 0.157262i
\(112\) 0 0
\(113\) 8.48528i 0.798228i −0.916901 0.399114i \(-0.869318\pi\)
0.916901 0.399114i \(-0.130682\pi\)
\(114\) 0 0
\(115\) −12.4853 −1.16426
\(116\) 0 0
\(117\) −8.65685 + 6.48528i −0.800326 + 0.599564i
\(118\) 0 0
\(119\) 9.65685i 0.885242i
\(120\) 0 0
\(121\) 10.3137 0.937610
\(122\) 0 0
\(123\) 3.41421 + 4.82843i 0.307849 + 0.435365i
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) 20.4853i 1.81777i 0.417042 + 0.908887i \(0.363067\pi\)
−0.417042 + 0.908887i \(0.636933\pi\)
\(128\) 0 0
\(129\) 11.3137 8.00000i 0.996116 0.704361i
\(130\) 0 0
\(131\) −1.65685 −0.144760 −0.0723800 0.997377i \(-0.523059\pi\)
−0.0723800 + 0.997377i \(0.523059\pi\)
\(132\) 0 0
\(133\) −7.65685 −0.663933
\(134\) 0 0
\(135\) −17.0711 + 4.82843i −1.46924 + 0.415565i
\(136\) 0 0
\(137\) 13.5563 1.15820 0.579099 0.815258i \(-0.303405\pi\)
0.579099 + 0.815258i \(0.303405\pi\)
\(138\) 0 0
\(139\) 2.34315i 0.198743i −0.995050 0.0993715i \(-0.968317\pi\)
0.995050 0.0993715i \(-0.0316832\pi\)
\(140\) 0 0
\(141\) −4.48528 + 3.17157i −0.377729 + 0.267095i
\(142\) 0 0
\(143\) 1.65685 2.48528i 0.138553 0.207830i
\(144\) 0 0
\(145\) 23.3137i 1.93610i
\(146\) 0 0
\(147\) 4.65685 + 6.58579i 0.384091 + 0.543187i
\(148\) 0 0
\(149\) 6.72792 0.551173 0.275586 0.961276i \(-0.411128\pi\)
0.275586 + 0.961276i \(0.411128\pi\)
\(150\) 0 0
\(151\) 12.5858 1.02422 0.512108 0.858921i \(-0.328865\pi\)
0.512108 + 0.858921i \(0.328865\pi\)
\(152\) 0 0
\(153\) 8.00000 + 2.82843i 0.646762 + 0.228665i
\(154\) 0 0
\(155\) −30.9706 −2.48762
\(156\) 0 0
\(157\) −1.65685 −0.132231 −0.0661157 0.997812i \(-0.521061\pi\)
−0.0661157 + 0.997812i \(0.521061\pi\)
\(158\) 0 0
\(159\) 16.9706 12.0000i 1.34585 0.951662i
\(160\) 0 0
\(161\) −12.4853 −0.983978
\(162\) 0 0
\(163\) 10.2426 0.802266 0.401133 0.916020i \(-0.368617\pi\)
0.401133 + 0.916020i \(0.368617\pi\)
\(164\) 0 0
\(165\) 4.00000 2.82843i 0.311400 0.220193i
\(166\) 0 0
\(167\) 8.82843i 0.683164i 0.939852 + 0.341582i \(0.110963\pi\)
−0.939852 + 0.341582i \(0.889037\pi\)
\(168\) 0 0
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 0 0
\(171\) 2.24264 6.34315i 0.171499 0.485072i
\(172\) 0 0
\(173\) 23.3137i 1.77251i −0.463199 0.886254i \(-0.653299\pi\)
0.463199 0.886254i \(-0.346701\pi\)
\(174\) 0 0
\(175\) 22.7279 1.71807
\(176\) 0 0
\(177\) −4.48528 + 3.17157i −0.337134 + 0.238390i
\(178\) 0 0
\(179\) −9.65685 −0.721787 −0.360894 0.932607i \(-0.617528\pi\)
−0.360894 + 0.932607i \(0.617528\pi\)
\(180\) 0 0
\(181\) −12.9706 −0.964094 −0.482047 0.876145i \(-0.660107\pi\)
−0.482047 + 0.876145i \(0.660107\pi\)
\(182\) 0 0
\(183\) −13.6569 19.3137i −1.00954 1.42771i
\(184\) 0 0
\(185\) 5.65685i 0.415900i
\(186\) 0 0
\(187\) −2.34315 −0.171348
\(188\) 0 0
\(189\) −17.0711 + 4.82843i −1.24174 + 0.351216i
\(190\) 0 0
\(191\) −3.65685 −0.264601 −0.132300 0.991210i \(-0.542236\pi\)
−0.132300 + 0.991210i \(0.542236\pi\)
\(192\) 0 0
\(193\) 4.00000i 0.287926i −0.989583 0.143963i \(-0.954015\pi\)
0.989583 0.143963i \(-0.0459847\pi\)
\(194\) 0 0
\(195\) 0.585786 + 21.3137i 0.0419490 + 1.52631i
\(196\) 0 0
\(197\) −19.4142 −1.38321 −0.691603 0.722278i \(-0.743095\pi\)
−0.691603 + 0.722278i \(0.743095\pi\)
\(198\) 0 0
\(199\) 12.4853i 0.885058i −0.896754 0.442529i \(-0.854081\pi\)
0.896754 0.442529i \(-0.145919\pi\)
\(200\) 0 0
\(201\) −12.5858 17.7990i −0.887733 1.25544i
\(202\) 0 0
\(203\) 23.3137i 1.63630i
\(204\) 0 0
\(205\) 11.6569 0.814150
\(206\) 0 0
\(207\) 3.65685 10.3431i 0.254169 0.718898i
\(208\) 0 0
\(209\) 1.85786i 0.128511i
\(210\) 0 0
\(211\) 27.7990i 1.91376i −0.290481 0.956881i \(-0.593815\pi\)
0.290481 0.956881i \(-0.406185\pi\)
\(212\) 0 0
\(213\) 12.4853 8.82843i 0.855477 0.604914i
\(214\) 0 0
\(215\) 27.3137i 1.86278i
\(216\) 0 0
\(217\) −30.9706 −2.10242
\(218\) 0 0
\(219\) −5.65685 + 4.00000i −0.382255 + 0.270295i
\(220\) 0 0
\(221\) 5.65685 8.48528i 0.380521 0.570782i
\(222\) 0 0
\(223\) 6.72792 0.450535 0.225267 0.974297i \(-0.427674\pi\)
0.225267 + 0.974297i \(0.427674\pi\)
\(224\) 0 0
\(225\) −6.65685 + 18.8284i −0.443790 + 1.25523i
\(226\) 0 0
\(227\) 26.4853i 1.75789i −0.476923 0.878945i \(-0.658248\pi\)
0.476923 0.878945i \(-0.341752\pi\)
\(228\) 0 0
\(229\) 25.6569i 1.69545i 0.530434 + 0.847726i \(0.322029\pi\)
−0.530434 + 0.847726i \(0.677971\pi\)
\(230\) 0 0
\(231\) 4.00000 2.82843i 0.263181 0.186097i
\(232\) 0 0
\(233\) 2.34315i 0.153505i 0.997050 + 0.0767523i \(0.0244551\pi\)
−0.997050 + 0.0767523i \(0.975545\pi\)
\(234\) 0 0
\(235\) 10.8284i 0.706369i
\(236\) 0 0
\(237\) −17.6569 + 12.4853i −1.14694 + 0.811006i
\(238\) 0 0
\(239\) 4.82843i 0.312325i −0.987731 0.156162i \(-0.950088\pi\)
0.987731 0.156162i \(-0.0499124\pi\)
\(240\) 0 0
\(241\) 21.6569i 1.39504i 0.716565 + 0.697520i \(0.245713\pi\)
−0.716565 + 0.697520i \(0.754287\pi\)
\(242\) 0 0
\(243\) 1.00000 15.5563i 0.0641500 0.997940i
\(244\) 0 0
\(245\) 15.8995 1.01578
\(246\) 0 0
\(247\) −6.72792 4.48528i −0.428087 0.285392i
\(248\) 0 0
\(249\) −12.4853 + 8.82843i −0.791223 + 0.559479i
\(250\) 0 0
\(251\) 20.6274 1.30199 0.650996 0.759082i \(-0.274352\pi\)
0.650996 + 0.759082i \(0.274352\pi\)
\(252\) 0 0
\(253\) 3.02944i 0.190459i
\(254\) 0 0
\(255\) 13.6569 9.65685i 0.855225 0.604736i
\(256\) 0 0
\(257\) 3.31371i 0.206703i 0.994645 + 0.103352i \(0.0329567\pi\)
−0.994645 + 0.103352i \(0.967043\pi\)
\(258\) 0 0
\(259\) 5.65685i 0.351500i
\(260\) 0 0
\(261\) 19.3137 + 6.82843i 1.19549 + 0.422669i
\(262\) 0 0
\(263\) 19.3137 1.19093 0.595467 0.803380i \(-0.296967\pi\)
0.595467 + 0.803380i \(0.296967\pi\)
\(264\) 0 0
\(265\) 40.9706i 2.51680i
\(266\) 0 0
\(267\) 11.4142 + 16.1421i 0.698539 + 0.987883i
\(268\) 0 0
\(269\) 1.17157i 0.0714321i 0.999362 + 0.0357160i \(0.0113712\pi\)
−0.999362 + 0.0357160i \(0.988629\pi\)
\(270\) 0 0
\(271\) 2.24264 0.136231 0.0681154 0.997677i \(-0.478301\pi\)
0.0681154 + 0.997677i \(0.478301\pi\)
\(272\) 0 0
\(273\) 0.585786 + 21.3137i 0.0354534 + 1.28996i
\(274\) 0 0
\(275\) 5.51472i 0.332550i
\(276\) 0 0
\(277\) −6.00000 −0.360505 −0.180253 0.983620i \(-0.557691\pi\)
−0.180253 + 0.983620i \(0.557691\pi\)
\(278\) 0 0
\(279\) 9.07107 25.6569i 0.543071 1.53604i
\(280\) 0 0
\(281\) 5.55635 0.331464 0.165732 0.986171i \(-0.447001\pi\)
0.165732 + 0.986171i \(0.447001\pi\)
\(282\) 0 0
\(283\) 15.5147i 0.922254i −0.887334 0.461127i \(-0.847445\pi\)
0.887334 0.461127i \(-0.152555\pi\)
\(284\) 0 0
\(285\) −7.65685 10.8284i −0.453553 0.641421i
\(286\) 0 0
\(287\) 11.6569 0.688082
\(288\) 0 0
\(289\) 9.00000 0.529412
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −30.7279 −1.79514 −0.897572 0.440868i \(-0.854671\pi\)
−0.897572 + 0.440868i \(0.854671\pi\)
\(294\) 0 0
\(295\) 10.8284i 0.630455i
\(296\) 0 0
\(297\) 1.17157 + 4.14214i 0.0679816 + 0.240351i
\(298\) 0 0
\(299\) −10.9706 7.31371i −0.634444 0.422963i
\(300\) 0 0
\(301\) 27.3137i 1.57434i
\(302\) 0 0
\(303\) −24.9706 + 17.6569i −1.43452 + 1.01436i
\(304\) 0 0
\(305\) −46.6274 −2.66988
\(306\) 0 0
\(307\) −10.2426 −0.584578 −0.292289 0.956330i \(-0.594417\pi\)
−0.292289 + 0.956330i \(0.594417\pi\)
\(308\) 0 0
\(309\) 2.34315 1.65685i 0.133297 0.0942551i
\(310\) 0 0
\(311\) −4.34315 −0.246277 −0.123139 0.992389i \(-0.539296\pi\)
−0.123139 + 0.992389i \(0.539296\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) −11.6569 + 32.9706i −0.656789 + 1.85768i
\(316\) 0 0
\(317\) 20.5858 1.15621 0.578106 0.815961i \(-0.303792\pi\)
0.578106 + 0.815961i \(0.303792\pi\)
\(318\) 0 0
\(319\) −5.65685 −0.316723
\(320\) 0 0
\(321\) −1.65685 2.34315i −0.0924766 0.130782i
\(322\) 0 0
\(323\) 6.34315i 0.352942i
\(324\) 0 0
\(325\) 19.9706 + 13.3137i 1.10777 + 0.738512i
\(326\) 0 0
\(327\) −24.0000 + 16.9706i −1.32720 + 0.938474i
\(328\) 0 0
\(329\) 10.8284i 0.596991i
\(330\) 0 0
\(331\) 31.6985 1.74231 0.871153 0.491011i \(-0.163373\pi\)
0.871153 + 0.491011i \(0.163373\pi\)
\(332\) 0 0
\(333\) −4.68629 1.65685i −0.256807 0.0907951i
\(334\) 0 0
\(335\) −42.9706 −2.34773
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) 12.0000 8.48528i 0.651751 0.460857i
\(340\) 0 0
\(341\) 7.51472i 0.406945i
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) −12.4853 17.6569i −0.672185 0.950613i
\(346\) 0 0
\(347\) −6.68629 −0.358939 −0.179469 0.983764i \(-0.557438\pi\)
−0.179469 + 0.983764i \(0.557438\pi\)
\(348\) 0 0
\(349\) 14.3431i 0.767771i −0.923381 0.383885i \(-0.874586\pi\)
0.923381 0.383885i \(-0.125414\pi\)
\(350\) 0 0
\(351\) −17.8284 5.75736i −0.951611 0.307305i
\(352\) 0 0
\(353\) −2.44365 −0.130062 −0.0650312 0.997883i \(-0.520715\pi\)
−0.0650312 + 0.997883i \(0.520715\pi\)
\(354\) 0 0
\(355\) 30.1421i 1.59978i
\(356\) 0 0
\(357\) 13.6569 9.65685i 0.722797 0.511095i
\(358\) 0 0
\(359\) 24.1421i 1.27417i 0.770792 + 0.637087i \(0.219861\pi\)
−0.770792 + 0.637087i \(0.780139\pi\)
\(360\) 0 0
\(361\) −13.9706 −0.735293
\(362\) 0 0
\(363\) 10.3137 + 14.5858i 0.541329 + 0.765555i
\(364\) 0 0
\(365\) 13.6569i 0.714832i
\(366\) 0 0
\(367\) 4.00000i 0.208798i 0.994535 + 0.104399i \(0.0332919\pi\)
−0.994535 + 0.104399i \(0.966708\pi\)
\(368\) 0 0
\(369\) −3.41421 + 9.65685i −0.177737 + 0.502716i
\(370\) 0 0
\(371\) 40.9706i 2.12709i
\(372\) 0 0
\(373\) 24.6274 1.27516 0.637580 0.770384i \(-0.279936\pi\)
0.637580 + 0.770384i \(0.279936\pi\)
\(374\) 0 0
\(375\) 5.65685 + 8.00000i 0.292119 + 0.413118i
\(376\) 0 0
\(377\) 13.6569 20.4853i 0.703364 1.05505i
\(378\) 0 0
\(379\) 14.7279 0.756523 0.378261 0.925699i \(-0.376522\pi\)
0.378261 + 0.925699i \(0.376522\pi\)
\(380\) 0 0
\(381\) −28.9706 + 20.4853i −1.48421 + 1.04949i
\(382\) 0 0
\(383\) 13.7990i 0.705095i 0.935794 + 0.352548i \(0.114685\pi\)
−0.935794 + 0.352548i \(0.885315\pi\)
\(384\) 0 0
\(385\) 9.65685i 0.492159i
\(386\) 0 0
\(387\) 22.6274 + 8.00000i 1.15022 + 0.406663i
\(388\) 0 0
\(389\) 15.7990i 0.801041i 0.916288 + 0.400520i \(0.131171\pi\)
−0.916288 + 0.400520i \(0.868829\pi\)
\(390\) 0 0
\(391\) 10.3431i 0.523075i
\(392\) 0 0
\(393\) −1.65685 2.34315i −0.0835772 0.118196i
\(394\) 0 0
\(395\) 42.6274i 2.14482i
\(396\) 0 0
\(397\) 32.9706i 1.65475i −0.561654 0.827373i \(-0.689835\pi\)
0.561654 0.827373i \(-0.310165\pi\)
\(398\) 0 0
\(399\) −7.65685 10.8284i −0.383322 0.542099i
\(400\) 0 0
\(401\) −1.07107 −0.0534866 −0.0267433 0.999642i \(-0.508514\pi\)
−0.0267433 + 0.999642i \(0.508514\pi\)
\(402\) 0 0
\(403\) −27.2132 18.1421i −1.35559 0.903724i
\(404\) 0 0
\(405\) −23.8995 19.3137i −1.18758 0.959706i
\(406\) 0 0
\(407\) 1.37258 0.0680364
\(408\) 0 0
\(409\) 12.9706i 0.641353i −0.947189 0.320677i \(-0.896090\pi\)
0.947189 0.320677i \(-0.103910\pi\)
\(410\) 0 0
\(411\) 13.5563 + 19.1716i 0.668685 + 0.945664i
\(412\) 0 0
\(413\) 10.8284i 0.532832i
\(414\) 0 0
\(415\) 30.1421i 1.47962i
\(416\) 0 0
\(417\) 3.31371 2.34315i 0.162273 0.114744i
\(418\) 0 0
\(419\) −28.9706 −1.41530 −0.707652 0.706561i \(-0.750246\pi\)
−0.707652 + 0.706561i \(0.750246\pi\)
\(420\) 0 0
\(421\) 16.9706i 0.827095i −0.910483 0.413547i \(-0.864290\pi\)
0.910483 0.413547i \(-0.135710\pi\)
\(422\) 0 0
\(423\) −8.97056 3.17157i −0.436164 0.154207i
\(424\) 0 0
\(425\) 18.8284i 0.913313i
\(426\) 0 0
\(427\) −46.6274 −2.25646
\(428\) 0 0
\(429\) 5.17157 0.142136i 0.249686 0.00686237i
\(430\) 0 0
\(431\) 38.4853i 1.85377i −0.375344 0.926885i \(-0.622476\pi\)
0.375344 0.926885i \(-0.377524\pi\)
\(432\) 0 0
\(433\) 20.9706 1.00778 0.503890 0.863768i \(-0.331902\pi\)
0.503890 + 0.863768i \(0.331902\pi\)
\(434\) 0 0
\(435\) 32.9706 23.3137i 1.58082 1.11781i
\(436\) 0 0
\(437\) 8.20101 0.392308
\(438\) 0 0
\(439\) 12.9706i 0.619051i −0.950891 0.309526i \(-0.899830\pi\)
0.950891 0.309526i \(-0.100170\pi\)
\(440\) 0 0
\(441\) −4.65685 + 13.1716i −0.221755 + 0.627218i
\(442\) 0 0
\(443\) −6.34315 −0.301372 −0.150686 0.988582i \(-0.548148\pi\)
−0.150686 + 0.988582i \(0.548148\pi\)
\(444\) 0 0
\(445\) 38.9706 1.84738
\(446\) 0 0
\(447\) 6.72792 + 9.51472i 0.318220 + 0.450031i
\(448\) 0 0
\(449\) 32.8701 1.55123 0.775617 0.631204i \(-0.217439\pi\)
0.775617 + 0.631204i \(0.217439\pi\)
\(450\) 0 0
\(451\) 2.82843i 0.133185i
\(452\) 0 0
\(453\) 12.5858 + 17.7990i 0.591332 + 0.836269i
\(454\) 0 0
\(455\) 34.9706 + 23.3137i 1.63945 + 1.09296i
\(456\) 0 0
\(457\) 4.97056i 0.232513i 0.993219 + 0.116257i \(0.0370895\pi\)
−0.993219 + 0.116257i \(0.962911\pi\)
\(458\) 0 0
\(459\) 4.00000 + 14.1421i 0.186704 + 0.660098i
\(460\) 0 0
\(461\) −22.9289 −1.06791 −0.533953 0.845514i \(-0.679294\pi\)
−0.533953 + 0.845514i \(0.679294\pi\)
\(462\) 0 0
\(463\) 30.7279 1.42805 0.714024 0.700121i \(-0.246871\pi\)
0.714024 + 0.700121i \(0.246871\pi\)
\(464\) 0 0
\(465\) −30.9706 43.7990i −1.43623 2.03113i
\(466\) 0 0
\(467\) 30.0000 1.38823 0.694117 0.719862i \(-0.255795\pi\)
0.694117 + 0.719862i \(0.255795\pi\)
\(468\) 0 0
\(469\) −42.9706 −1.98420
\(470\) 0 0
\(471\) −1.65685 2.34315i −0.0763438 0.107966i
\(472\) 0 0
\(473\) −6.62742 −0.304729
\(474\) 0 0
\(475\) −14.9289 −0.684986
\(476\) 0 0
\(477\) 33.9411 + 12.0000i 1.55406 + 0.549442i
\(478\) 0 0
\(479\) 21.5147i 0.983033i 0.870868 + 0.491516i \(0.163557\pi\)
−0.870868 + 0.491516i \(0.836443\pi\)
\(480\) 0 0
\(481\) −3.31371 + 4.97056i −0.151092 + 0.226638i
\(482\) 0 0
\(483\) −12.4853 17.6569i −0.568100 0.803415i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −2.24264 −0.101624 −0.0508119 0.998708i \(-0.516181\pi\)
−0.0508119 + 0.998708i \(0.516181\pi\)
\(488\) 0 0
\(489\) 10.2426 + 14.4853i 0.463188 + 0.655047i
\(490\) 0 0
\(491\) 24.6274 1.11142 0.555710 0.831376i \(-0.312447\pi\)
0.555710 + 0.831376i \(0.312447\pi\)
\(492\) 0 0
\(493\) −19.3137 −0.869846
\(494\) 0 0
\(495\) 8.00000 + 2.82843i 0.359573 + 0.127128i
\(496\) 0 0
\(497\) 30.1421i 1.35206i
\(498\) 0 0
\(499\) −20.3848 −0.912548 −0.456274 0.889839i \(-0.650816\pi\)
−0.456274 + 0.889839i \(0.650816\pi\)
\(500\) 0 0
\(501\) −12.4853 + 8.82843i −0.557801 + 0.394425i
\(502\) 0 0
\(503\) −30.6274 −1.36561 −0.682805 0.730601i \(-0.739240\pi\)
−0.682805 + 0.730601i \(0.739240\pi\)
\(504\) 0 0
\(505\) 60.2843i 2.68261i
\(506\) 0 0
\(507\) −11.9706 + 19.0711i −0.531631 + 0.846976i
\(508\) 0 0
\(509\) −9.07107 −0.402068 −0.201034 0.979584i \(-0.564430\pi\)
−0.201034 + 0.979584i \(0.564430\pi\)
\(510\) 0 0
\(511\) 13.6569i 0.604144i
\(512\) 0 0
\(513\) 11.2132 3.17157i 0.495075 0.140028i
\(514\) 0 0
\(515\) 5.65685i 0.249271i
\(516\) 0 0
\(517\) 2.62742 0.115554
\(518\) 0 0
\(519\) 32.9706 23.3137i 1.44725 1.02336i
\(520\) 0 0
\(521\) 15.5147i 0.679712i −0.940477 0.339856i \(-0.889622\pi\)
0.940477 0.339856i \(-0.110378\pi\)
\(522\) 0 0
\(523\) 16.9706i 0.742071i 0.928619 + 0.371035i \(0.120997\pi\)
−0.928619 + 0.371035i \(0.879003\pi\)
\(524\) 0 0
\(525\) 22.7279 + 32.1421i 0.991928 + 1.40280i
\(526\) 0 0
\(527\) 25.6569i 1.11763i
\(528\) 0 0
\(529\) −9.62742 −0.418583
\(530\) 0 0
\(531\) −8.97056 3.17157i −0.389289 0.137635i
\(532\) 0 0
\(533\) 10.2426 + 6.82843i 0.443658 + 0.295772i
\(534\) 0 0
\(535\) −5.65685 −0.244567
\(536\) 0 0
\(537\) −9.65685 13.6569i −0.416724 0.589337i
\(538\) 0 0
\(539\) 3.85786i 0.166170i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −12.9706 18.3431i −0.556620 0.787180i
\(544\) 0 0
\(545\) 57.9411i 2.48193i
\(546\) 0 0
\(547\) 16.9706i 0.725609i 0.931865 + 0.362804i \(0.118181\pi\)
−0.931865 + 0.362804i \(0.881819\pi\)
\(548\) 0 0
\(549\) 13.6569 38.6274i 0.582860 1.64858i
\(550\) 0 0
\(551\) 15.3137i 0.652386i
\(552\) 0 0
\(553\) 42.6274i 1.81270i
\(554\) 0 0
\(555\) −8.00000 + 5.65685i −0.339581 + 0.240120i
\(556\) 0 0
\(557\) 16.1005 0.682200 0.341100 0.940027i \(-0.389200\pi\)
0.341100 + 0.940027i \(0.389200\pi\)
\(558\) 0 0
\(559\) 16.0000 24.0000i 0.676728 1.01509i
\(560\) 0 0
\(561\) −2.34315 3.31371i −0.0989277 0.139905i
\(562\) 0 0
\(563\) 28.9706 1.22096 0.610482 0.792030i \(-0.290976\pi\)
0.610482 + 0.792030i \(0.290976\pi\)
\(564\) 0 0
\(565\) 28.9706i 1.21880i
\(566\) 0 0
\(567\) −23.8995 19.3137i −1.00368 0.811100i
\(568\) 0 0
\(569\) 19.3137i 0.809673i −0.914389 0.404836i \(-0.867328\pi\)
0.914389 0.404836i \(-0.132672\pi\)
\(570\) 0 0
\(571\) 7.51472i 0.314481i −0.987560 0.157241i \(-0.949740\pi\)
0.987560 0.157241i \(-0.0502598\pi\)
\(572\) 0 0
\(573\) −3.65685 5.17157i −0.152767 0.216046i
\(574\) 0 0
\(575\) −24.3431 −1.01518
\(576\) 0 0
\(577\) 37.9411i 1.57951i 0.613423 + 0.789755i \(0.289792\pi\)
−0.613423 + 0.789755i \(0.710208\pi\)
\(578\) 0 0
\(579\) 5.65685 4.00000i 0.235091 0.166234i
\(580\) 0 0
\(581\) 30.1421i 1.25051i
\(582\) 0 0
\(583\) −9.94113 −0.411719
\(584\) 0 0
\(585\) −29.5563 + 22.1421i −1.22200 + 0.915465i
\(586\) 0 0
\(587\) 9.79899i 0.404448i −0.979339 0.202224i \(-0.935183\pi\)
0.979339 0.202224i \(-0.0648168\pi\)
\(588\) 0 0
\(589\) 20.3431 0.838225
\(590\) 0 0
\(591\) −19.4142 27.4558i −0.798594 1.12938i
\(592\) 0 0
\(593\) −5.55635 −0.228172 −0.114086 0.993471i \(-0.536394\pi\)
−0.114086 + 0.993471i \(0.536394\pi\)
\(594\) 0 0
\(595\) 32.9706i 1.35166i
\(596\) 0 0
\(597\) 17.6569 12.4853i 0.722647 0.510989i
\(598\) 0 0
\(599\) 22.6274 0.924531 0.462266 0.886742i \(-0.347037\pi\)
0.462266 + 0.886742i \(0.347037\pi\)
\(600\) 0 0
\(601\) −6.00000 −0.244745 −0.122373 0.992484i \(-0.539050\pi\)
−0.122373 + 0.992484i \(0.539050\pi\)
\(602\) 0 0
\(603\) 12.5858 35.5980i 0.512533 1.44966i
\(604\) 0 0
\(605\) 35.2132 1.43162
\(606\) 0 0
\(607\) 25.6569i 1.04138i 0.853746 + 0.520690i \(0.174325\pi\)
−0.853746 + 0.520690i \(0.825675\pi\)
\(608\) 0 0
\(609\) 32.9706 23.3137i 1.33603 0.944719i
\(610\) 0 0
\(611\) −6.34315 + 9.51472i −0.256616 + 0.384924i
\(612\) 0 0
\(613\) 14.3431i 0.579314i 0.957130 + 0.289657i \(0.0935413\pi\)
−0.957130 + 0.289657i \(0.906459\pi\)
\(614\) 0 0
\(615\) 11.6569 + 16.4853i 0.470050 + 0.664751i
\(616\) 0 0
\(617\) −29.5563 −1.18989 −0.594947 0.803765i \(-0.702827\pi\)
−0.594947 + 0.803765i \(0.702827\pi\)
\(618\) 0 0
\(619\) 17.2721 0.694223 0.347112 0.937824i \(-0.387162\pi\)
0.347112 + 0.937824i \(0.387162\pi\)
\(620\) 0 0
\(621\) 18.2843 5.17157i 0.733723 0.207528i
\(622\) 0 0
\(623\) 38.9706 1.56132
\(624\) 0 0
\(625\) −13.9706 −0.558823
\(626\) 0 0
\(627\) −2.62742 + 1.85786i −0.104929 + 0.0741960i
\(628\) 0 0
\(629\) 4.68629 0.186855
\(630\) 0 0
\(631\) 20.3848 0.811505 0.405753 0.913983i \(-0.367009\pi\)
0.405753 + 0.913983i \(0.367009\pi\)
\(632\) 0 0
\(633\) 39.3137 27.7990i 1.56258 1.10491i
\(634\) 0 0
\(635\) 69.9411i 2.77553i
\(636\) 0 0
\(637\) 13.9706 + 9.31371i 0.553534 + 0.369023i
\(638\) 0 0
\(639\) 24.9706 + 8.82843i 0.987820 + 0.349247i
\(640\) 0 0
\(641\) 10.8284i 0.427697i 0.976867 + 0.213849i \(0.0685999\pi\)
−0.976867 + 0.213849i \(0.931400\pi\)
\(642\) 0 0
\(643\) 5.55635 0.219121 0.109561 0.993980i \(-0.465056\pi\)
0.109561 + 0.993980i \(0.465056\pi\)
\(644\) 0 0
\(645\) 38.6274 27.3137i 1.52095 1.07548i
\(646\) 0 0
\(647\) 20.6863 0.813262 0.406631 0.913592i \(-0.366703\pi\)
0.406631 + 0.913592i \(0.366703\pi\)
\(648\) 0 0
\(649\) 2.62742 0.103135
\(650\) 0 0
\(651\) −30.9706 43.7990i −1.21383 1.71662i
\(652\) 0 0
\(653\) 40.7696i 1.59544i 0.603031 + 0.797718i \(0.293960\pi\)
−0.603031 + 0.797718i \(0.706040\pi\)
\(654\) 0 0
\(655\) −5.65685 −0.221032
\(656\) 0 0
\(657\) −11.3137 4.00000i −0.441390 0.156055i
\(658\) 0 0
\(659\) 14.6863 0.572097 0.286048 0.958215i \(-0.407658\pi\)
0.286048 + 0.958215i \(0.407658\pi\)
\(660\) 0 0
\(661\) 24.0000i 0.933492i 0.884391 + 0.466746i \(0.154574\pi\)
−0.884391 + 0.466746i \(0.845426\pi\)
\(662\) 0 0
\(663\) 17.6569 0.485281i 0.685735 0.0188468i
\(664\) 0 0
\(665\) −26.1421 −1.01375
\(666\) 0 0
\(667\) 24.9706i 0.966864i
\(668\) 0 0
\(669\) 6.72792 + 9.51472i 0.260116 + 0.367860i
\(670\) 0 0
\(671\) 11.3137i 0.436761i
\(672\) 0 0
\(673\) −8.97056 −0.345790 −0.172895 0.984940i \(-0.555312\pi\)
−0.172895 + 0.984940i \(0.555312\pi\)
\(674\) 0 0
\(675\) −33.2843 + 9.41421i −1.28111 + 0.362353i
\(676\) 0 0
\(677\) 35.5980i 1.36814i −0.729416 0.684071i \(-0.760208\pi\)
0.729416 0.684071i \(-0.239792\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 37.4558 26.4853i 1.43531 1.01492i
\(682\) 0 0
\(683\) 12.1421i 0.464606i 0.972643 + 0.232303i \(0.0746261\pi\)
−0.972643 + 0.232303i \(0.925374\pi\)
\(684\) 0 0
\(685\) 46.2843 1.76843
\(686\) 0 0
\(687\) −36.2843 + 25.6569i −1.38433 + 0.978870i
\(688\) 0 0
\(689\) 24.0000 36.0000i 0.914327 1.37149i
\(690\) 0 0
\(691\) 12.5858 0.478786 0.239393 0.970923i \(-0.423052\pi\)
0.239393 + 0.970923i \(0.423052\pi\)
\(692\) 0 0
\(693\) 8.00000 + 2.82843i 0.303895 + 0.107443i
\(694\) 0 0
\(695\) 8.00000i 0.303457i
\(696\) 0 0
\(697\) 9.65685i 0.365779i
\(698\) 0 0
\(699\) −3.31371 + 2.34315i −0.125336 + 0.0886259i
\(700\) 0 0
\(701\) 42.1421i 1.59169i −0.605503 0.795843i \(-0.707028\pi\)
0.605503 0.795843i \(-0.292972\pi\)
\(702\) 0 0
\(703\) 3.71573i 0.140141i
\(704\) 0 0
\(705\) −15.3137 + 10.8284i −0.576748 + 0.407822i
\(706\) 0 0
\(707\) 60.2843i 2.26722i
\(708\) 0 0
\(709\) 2.34315i 0.0879987i 0.999032 + 0.0439993i \(0.0140099\pi\)
−0.999032 + 0.0439993i \(0.985990\pi\)
\(710\) 0 0
\(711\) −35.3137 12.4853i −1.32437 0.468235i
\(712\) 0 0
\(713\) 33.1716 1.24229
\(714\) 0 0
\(715\) 5.65685 8.48528i 0.211554 0.317332i
\(716\) 0 0
\(717\) 6.82843 4.82843i 0.255012 0.180321i
\(718\) 0 0
\(719\) −24.3431 −0.907846 −0.453923 0.891041i \(-0.649976\pi\)
−0.453923 + 0.891041i \(0.649976\pi\)
\(720\) 0 0
\(721\) 5.65685i 0.210672i
\(722\) 0 0
\(723\) −30.6274 + 21.6569i −1.13905 + 0.805427i
\(724\) 0 0
\(725\) 45.4558i 1.68819i
\(726\) 0 0
\(727\) 1.17157i 0.0434512i 0.999764 + 0.0217256i \(0.00691602\pi\)
−0.999764 + 0.0217256i \(0.993084\pi\)
\(728\) 0 0
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 0 0
\(731\) −22.6274 −0.836905
\(732\) 0 0
\(733\) 29.9411i 1.10590i 0.833214 + 0.552950i \(0.186498\pi\)
−0.833214 + 0.552950i \(0.813502\pi\)
\(734\) 0 0
\(735\) 15.8995 + 22.4853i 0.586462 + 0.829382i
\(736\) 0 0
\(737\) 10.4264i 0.384062i
\(738\) 0 0
\(739\) 30.7279 1.13034 0.565172 0.824973i \(-0.308810\pi\)
0.565172 + 0.824973i \(0.308810\pi\)
\(740\) 0 0
\(741\) −0.384776 14.0000i −0.0141351 0.514303i
\(742\) 0 0
\(743\) 27.1716i 0.996828i −0.866939 0.498414i \(-0.833916\pi\)
0.866939 0.498414i \(-0.166084\pi\)
\(744\) 0 0
\(745\) 22.9706 0.841576
\(746\) 0 0
\(747\) −24.9706 8.82843i −0.913625 0.323015i
\(748\) 0 0
\(749\) −5.65685 −0.206697
\(750\) 0 0
\(751\) 25.6569i 0.936232i 0.883667 + 0.468116i \(0.155067\pi\)
−0.883667 + 0.468116i \(0.844933\pi\)
\(752\) 0 0
\(753\) 20.6274 + 29.1716i 0.751705 + 1.06307i
\(754\) 0 0
\(755\) 42.9706 1.56386
\(756\) 0 0
\(757\) 12.2843 0.446479 0.223240 0.974764i \(-0.428337\pi\)
0.223240 + 0.974764i \(0.428337\pi\)
\(758\) 0 0
\(759\) −4.28427 + 3.02944i −0.155509 + 0.109962i
\(760\) 0 0
\(761\) −53.5563 −1.94142 −0.970708 0.240262i \(-0.922767\pi\)
−0.970708 + 0.240262i \(0.922767\pi\)
\(762\) 0 0
\(763\) 57.9411i 2.09761i
\(764\) 0 0
\(765\) 27.3137 + 9.65685i 0.987529 + 0.349144i
\(766\) 0 0
\(767\) −6.34315 + 9.51472i −0.229038 + 0.343557i
\(768\) 0 0
\(769\) 21.9411i 0.791217i −0.918419 0.395609i \(-0.870534\pi\)
0.918419 0.395609i \(-0.129466\pi\)
\(770\) 0 0
\(771\) −4.68629 + 3.31371i −0.168773 + 0.119340i
\(772\) 0 0
\(773\) −29.3553 −1.05584 −0.527919 0.849295i \(-0.677028\pi\)
−0.527919 + 0.849295i \(0.677028\pi\)
\(774\) 0 0
\(775\) −60.3848 −2.16909
\(776\) 0 0
\(777\) −8.00000 + 5.65685i −0.286998 + 0.202939i
\(778\) 0 0
\(779\) −7.65685 −0.274335
\(780\) 0 0
\(781\) −7.31371 −0.261705
\(782\) 0 0
\(783\) 9.65685 + 34.1421i 0.345108 + 1.22014i
\(784\) 0 0
\(785\) −5.65685 −0.201902
\(786\) 0 0
\(787\) 11.4142 0.406873 0.203436 0.979088i \(-0.434789\pi\)
0.203436 + 0.979088i \(0.434789\pi\)
\(788\) 0 0
\(789\) 19.3137 + 27.3137i 0.687586 + 0.972394i
\(790\) 0 0
\(791\) 28.9706i 1.03007i
\(792\) 0 0
\(793\) −40.9706 27.3137i −1.45491 0.969938i
\(794\) 0 0
\(795\) 57.9411 40.9706i 2.05496 1.45308i
\(796\) 0 0
\(797\) 32.7696i 1.16076i 0.814347 + 0.580379i \(0.197095\pi\)
−0.814347 + 0.580379i \(0.802905\pi\)
\(798\) 0 0
\(799\) 8.97056 0.317356
\(800\) 0 0
\(801\) −11.4142 + 32.2843i −0.403301 + 1.14071i
\(802\) 0 0
\(803\) 3.31371 0.116938
\(804\) 0 0
\(805\) −42.6274 −1.50242
\(806\) 0 0
\(807\) −1.65685 + 1.17157i −0.0583240 + 0.0412413i
\(808\) 0 0
\(809\) 49.4558i 1.73877i 0.494131 + 0.869387i \(0.335486\pi\)
−0.494131 + 0.869387i \(0.664514\pi\)
\(810\) 0 0
\(811\) −34.0416 −1.19536 −0.597682 0.801734i \(-0.703911\pi\)
−0.597682 + 0.801734i \(0.703911\pi\)
\(812\) 0 0
\(813\) 2.24264 + 3.17157i 0.0786528 + 0.111232i
\(814\) 0 0
\(815\) 34.9706 1.22497
\(816\) 0 0
\(817\) 17.9411i 0.627681i
\(818\) 0 0
\(819\) −29.5563 + 22.1421i −1.03278 + 0.773709i
\(820\) 0 0
\(821\) 8.87006 0.309567 0.154784 0.987948i \(-0.450532\pi\)
0.154784 + 0.987948i \(0.450532\pi\)
\(822\) 0 0
\(823\) 20.0000i 0.697156i 0.937280 + 0.348578i \(0.113335\pi\)
−0.937280 + 0.348578i \(0.886665\pi\)
\(824\) 0 0
\(825\) 7.79899 5.51472i 0.271526 0.191998i
\(826\) 0 0
\(827\) 25.7990i 0.897119i 0.893753 + 0.448559i \(0.148063\pi\)
−0.893753 + 0.448559i \(0.851937\pi\)
\(828\) 0 0
\(829\) 13.6569 0.474322 0.237161 0.971470i \(-0.423783\pi\)
0.237161 + 0.971470i \(0.423783\pi\)
\(830\) 0 0
\(831\) −6.00000 8.48528i −0.208138 0.294351i
\(832\) 0 0
\(833\) 13.1716i 0.456368i
\(834\) 0 0
\(835\) 30.1421i 1.04311i
\(836\) 0 0
\(837\) 45.3553 12.8284i 1.56771 0.443415i
\(838\) 0 0
\(839\) 42.7696i 1.47657i −0.674489 0.738284i \(-0.735636\pi\)
0.674489 0.738284i \(-0.264364\pi\)
\(840\) 0 0
\(841\) −17.6274 −0.607842
\(842\) 0 0
\(843\) 5.55635 + 7.85786i 0.191371 + 0.270639i
\(844\) 0 0
\(845\) 17.0711 + 40.9706i 0.587263 + 1.40943i
\(846\) 0 0
\(847\) 35.2132 1.20994
\(848\) 0 0
\(849\) 21.9411 15.5147i 0.753017 0.532464i
\(850\) 0 0
\(851\) 6.05887i 0.207696i
\(852\) 0 0
\(853\) 6.62742i 0.226918i 0.993543 + 0.113459i \(0.0361931\pi\)
−0.993543 + 0.113459i \(0.963807\pi\)
\(854\) 0 0
\(855\) 7.65685 21.6569i 0.261859 0.740649i
\(856\) 0 0
\(857\) 31.5980i 1.07937i −0.841868 0.539683i \(-0.818544\pi\)
0.841868 0.539683i \(-0.181456\pi\)
\(858\) 0 0
\(859\) 18.8284i 0.642418i 0.947008 + 0.321209i \(0.104089\pi\)
−0.947008 + 0.321209i \(0.895911\pi\)
\(860\) 0 0
\(861\) 11.6569 + 16.4853i 0.397265 + 0.561817i
\(862\) 0 0
\(863\) 29.7990i 1.01437i 0.861837 + 0.507185i \(0.169314\pi\)
−0.861837 + 0.507185i \(0.830686\pi\)
\(864\) 0 0
\(865\) 79.5980i 2.70641i
\(866\) 0 0
\(867\) 9.00000 + 12.7279i 0.305656 + 0.432263i
\(868\) 0 0
\(869\) 10.3431 0.350867
\(870\) 0 0
\(871\) −37.7574 25.1716i −1.27936 0.852906i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 19.3137 0.652923
\(876\) 0 0
\(877\) 16.6863i 0.563456i −0.959494 0.281728i \(-0.909092\pi\)
0.959494 0.281728i \(-0.0909076\pi\)
\(878\) 0 0
\(879\) −30.7279 43.4558i −1.03643 1.46573i
\(880\) 0 0
\(881\) 18.3431i 0.617996i 0.951063 + 0.308998i \(0.0999937\pi\)
−0.951063 + 0.308998i \(0.900006\pi\)
\(882\) 0 0
\(883\) 25.4558i 0.856657i −0.903623 0.428329i \(-0.859103\pi\)
0.903623 0.428329i \(-0.140897\pi\)
\(884\) 0 0
\(885\) −15.3137 + 10.8284i −0.514765 + 0.363994i
\(886\) 0 0
\(887\) 45.5980 1.53103 0.765515 0.643418i \(-0.222484\pi\)
0.765515 + 0.643418i \(0.222484\pi\)
\(888\) 0 0
\(889\) 69.9411i 2.34575i
\(890\) 0 0
\(891\) −4.68629 + 5.79899i −0.156997 + 0.194273i
\(892\) 0 0
\(893\) 7.11270i 0.238017i
\(894\) 0 0
\(895\) −32.9706 −1.10208
\(896\) 0 0
\(897\) −0.627417 22.8284i −0.0209488 0.762219i
\(898\) 0 0
\(899\) 61.9411i 2.06585i
\(900\) 0 0
\(901\) −33.9411 −1.13074
\(902\) 0 0
\(903\) 38.6274 27.3137i 1.28544 0.908943i
\(904\) 0 0
\(905\) −44.2843 −1.47206
\(906\) 0 0
\(907\) 39.1127i 1.29872i −0.760483 0.649358i \(-0.775038\pi\)
0.760483 0.649358i \(-0.224962\pi\)
\(908\) 0 0
\(909\) −49.9411 17.6569i −1.65644 0.585641i
\(910\) 0 0
\(911\) −22.9706 −0.761049 −0.380524 0.924771i \(-0.624256\pi\)
−0.380524 + 0.924771i \(0.624256\pi\)
\(912\) 0 0
\(913\) 7.31371 0.242048
\(914\) 0 0
\(915\) −46.6274 65.9411i −1.54145 2.17995i
\(916\) 0 0
\(917\) −5.65685 −0.186806
\(918\) 0 0
\(919\) 29.4558i 0.971659i 0.874054 + 0.485829i \(0.161482\pi\)
−0.874054 + 0.485829i \(0.838518\pi\)
\(920\) 0 0
\(921\) −10.2426 14.4853i −0.337506 0.477306i
\(922\) 0 0
\(923\) 17.6569 26.4853i 0.581182 0.871774i
\(924\) 0 0
\(925\) 11.0294i 0.362646i
\(926\) 0 0
\(927\) 4.68629 + 1.65685i 0.153918 + 0.0544182i
\(928\) 0 0
\(929\) −15.8995 −0.521646 −0.260823 0.965387i \(-0.583994\pi\)
−0.260823 + 0.965387i \(0.583994\pi\)
\(930\) 0 0
\(931\) −10.4437 −0.342277
\(932\) 0 0
\(933\) −4.34315 6.14214i −0.142188 0.201084i
\(934\) 0 0
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) 4.97056 0.162381 0.0811906 0.996699i \(-0.474128\pi\)
0.0811906 + 0.996699i \(0.474128\pi\)
\(938\) 0 0
\(939\) −10.0000 14.1421i −0.326338 0.461511i
\(940\) 0 0
\(941\) −55.4975 −1.80917 −0.904583 0.426298i \(-0.859818\pi\)
−0.904583 + 0.426298i \(0.859818\pi\)
\(942\) 0 0
\(943\) −12.4853 −0.406577
\(944\) 0 0
\(945\) −58.2843 + 16.4853i −1.89599 + 0.536266i
\(946\) 0 0
\(947\) 9.79899i 0.318424i −0.987244 0.159212i \(-0.949105\pi\)
0.987244 0.159212i \(-0.0508954\pi\)
\(948\) 0 0
\(949\) −8.00000 + 12.0000i −0.259691 + 0.389536i
\(950\) 0 0
\(951\) 20.5858 + 29.1127i 0.667540 + 0.944044i
\(952\) 0 0
\(953\) 24.0000i 0.777436i 0.921357 + 0.388718i \(0.127082\pi\)
−0.921357 + 0.388718i \(0.872918\pi\)
\(954\) 0 0
\(955\) −12.4853 −0.404014
\(956\) 0 0
\(957\) −5.65685 8.00000i −0.182860 0.258603i
\(958\) 0 0
\(959\) 46.2843 1.49460
\(960\) 0 0
\(961\) 51.2843 1.65433
\(962\) 0 0
\(963\) 1.65685 4.68629i 0.0533914 0.151014i
\(964\) 0 0
\(965\) 13.6569i 0.439630i
\(966\) 0 0
\(967\) 37.7574 1.21419 0.607097 0.794627i \(-0.292334\pi\)
0.607097 + 0.794627i \(0.292334\pi\)
\(968\) 0 0
\(969\) −8.97056 + 6.34315i −0.288176 + 0.203771i
\(970\) 0 0
\(971\) −41.3137 −1.32582 −0.662910 0.748699i \(-0.730679\pi\)
−0.662910 + 0.748699i \(0.730679\pi\)
\(972\) 0 0
\(973\) 8.00000i 0.256468i
\(974\) 0 0
\(975\) 1.14214 + 41.5563i 0.0365776 + 1.33087i
\(976\) 0 0
\(977\) 6.72792 0.215245 0.107623 0.994192i \(-0.465676\pi\)
0.107623 + 0.994192i \(0.465676\pi\)
\(978\) 0 0
\(979\) 9.45584i 0.302210i
\(980\) 0 0
\(981\) −48.0000 16.9706i −1.53252 0.541828i
\(982\) 0 0
\(983\) 43.4558i 1.38603i 0.720925 + 0.693013i \(0.243717\pi\)
−0.720925 + 0.693013i \(0.756283\pi\)
\(984\) 0 0
\(985\) −66.2843 −2.11199
\(986\) 0 0
\(987\) −15.3137 + 10.8284i −0.487441 + 0.344673i
\(988\) 0 0
\(989\) 29.2548i 0.930250i
\(990\) 0 0
\(991\) 45.9411i 1.45937i −0.683785 0.729684i \(-0.739667\pi\)
0.683785 0.729684i \(-0.260333\pi\)
\(992\) 0 0
\(993\) 31.6985 + 44.8284i 1.00592 + 1.42259i
\(994\) 0 0
\(995\) 42.6274i 1.35138i
\(996\) 0 0
\(997\) −2.68629 −0.0850757 −0.0425379 0.999095i \(-0.513544\pi\)
−0.0425379 + 0.999095i \(0.513544\pi\)
\(998\) 0 0
\(999\) −2.34315 8.28427i −0.0741339 0.262103i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.n.d.1247.4 yes 4
3.2 odd 2 1248.2.n.a.1247.3 yes 4
4.3 odd 2 1248.2.n.b.1247.2 yes 4
12.11 even 2 1248.2.n.c.1247.1 yes 4
13.12 even 2 1248.2.n.c.1247.3 yes 4
39.38 odd 2 1248.2.n.b.1247.4 yes 4
52.51 odd 2 1248.2.n.a.1247.1 4
156.155 even 2 inner 1248.2.n.d.1247.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.2.n.a.1247.1 4 52.51 odd 2
1248.2.n.a.1247.3 yes 4 3.2 odd 2
1248.2.n.b.1247.2 yes 4 4.3 odd 2
1248.2.n.b.1247.4 yes 4 39.38 odd 2
1248.2.n.c.1247.1 yes 4 12.11 even 2
1248.2.n.c.1247.3 yes 4 13.12 even 2
1248.2.n.d.1247.2 yes 4 156.155 even 2 inner
1248.2.n.d.1247.4 yes 4 1.1 even 1 trivial