Properties

Label 1248.2.n
Level $1248$
Weight $2$
Character orbit 1248.n
Rep. character $\chi_{1248}(1247,\cdot)$
Character field $\Q$
Dimension $56$
Newform subspaces $5$
Sturm bound $448$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.n (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 156 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(448\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1248, [\chi])\).

Total New Old
Modular forms 240 56 184
Cusp forms 208 56 152
Eisenstein series 32 0 32

Trace form

\( 56 q + 8 q^{13} + 56 q^{25} + 72 q^{49} - 48 q^{61} + 32 q^{69} + 32 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1248, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1248.2.n.a 1248.n 156.h $4$ $9.965$ \(\Q(\zeta_{8})\) None 1248.2.n.a \(0\) \(-4\) \(-8\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}-1)q^{3}+(\beta_{3}-2)q^{5}+(-\beta_{3}+2)q^{7}+\cdots\)
1248.2.n.b 1248.n 156.h $4$ $9.965$ \(\Q(\zeta_{8})\) None 1248.2.n.a \(0\) \(-4\) \(8\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}-1)q^{3}+(\beta_{3}+2)q^{5}+(-\beta_{3}-2)q^{7}+\cdots\)
1248.2.n.c 1248.n 156.h $4$ $9.965$ \(\Q(\zeta_{8})\) None 1248.2.n.a \(0\) \(4\) \(-8\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}+1)q^{3}+(\beta_{3}-2)q^{5}+(\beta_{3}-2)q^{7}+\cdots\)
1248.2.n.d 1248.n 156.h $4$ $9.965$ \(\Q(\zeta_{8})\) None 1248.2.n.a \(0\) \(4\) \(8\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+1)q^{3}+(-\beta_{3}+2)q^{5}+\cdots\)
1248.2.n.e 1248.n 156.h $40$ $9.965$ None 1248.2.n.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1248, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1248, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 2}\)