Properties

Label 1248.2.g.a.625.3
Level $1248$
Weight $2$
Character 1248.625
Analytic conductor $9.965$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,2,Mod(625,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.625"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 625.3
Root \(-0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 1248.625
Dual form 1248.2.g.a.625.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +1.28408i q^{5} -0.442463 q^{7} -1.00000 q^{9} -0.841616i q^{11} +1.00000i q^{13} +1.28408 q^{15} +0.351141 q^{17} +3.67853i q^{19} +0.442463i q^{21} +7.04029 q^{23} +3.35114 q^{25} +1.00000i q^{27} +0.217017i q^{29} +5.14475 q^{31} -0.841616 q^{33} -0.568158i q^{35} -5.60845i q^{37} +1.00000 q^{39} +4.49890 q^{41} +10.4317i q^{43} -1.28408i q^{45} +6.90096 q^{47} -6.80423 q^{49} -0.351141i q^{51} +3.35706i q^{53} +1.08070 q^{55} +3.67853 q^{57} -4.74559i q^{59} +7.23607i q^{61} +0.442463 q^{63} -1.28408 q^{65} +7.67853i q^{67} -7.04029i q^{69} +7.78589 q^{71} +4.23015 q^{73} -3.35114i q^{75} +0.372384i q^{77} +0.230146 q^{79} +1.00000 q^{81} -7.86067i q^{83} +0.450893i q^{85} +0.217017 q^{87} +5.81787 q^{89} -0.442463i q^{91} -5.14475i q^{93} -4.72353 q^{95} +9.66780 q^{97} +0.841616i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{7} - 8 q^{9} + 4 q^{15} - 16 q^{17} + 8 q^{23} + 8 q^{25} + 4 q^{31} + 8 q^{39} + 36 q^{41} - 24 q^{47} - 24 q^{49} + 40 q^{55} + 12 q^{57} + 4 q^{63} - 4 q^{65} - 16 q^{71} + 32 q^{73} + 8 q^{81}+ \cdots - 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 1.28408i 0.574258i 0.957892 + 0.287129i \(0.0927008\pi\)
−0.957892 + 0.287129i \(0.907299\pi\)
\(6\) 0 0
\(7\) −0.442463 −0.167235 −0.0836177 0.996498i \(-0.526647\pi\)
−0.0836177 + 0.996498i \(0.526647\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 0.841616i − 0.253757i −0.991918 0.126878i \(-0.959504\pi\)
0.991918 0.126878i \(-0.0404958\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 1.28408 0.331548
\(16\) 0 0
\(17\) 0.351141 0.0851642 0.0425821 0.999093i \(-0.486442\pi\)
0.0425821 + 0.999093i \(0.486442\pi\)
\(18\) 0 0
\(19\) 3.67853i 0.843913i 0.906616 + 0.421956i \(0.138657\pi\)
−0.906616 + 0.421956i \(0.861343\pi\)
\(20\) 0 0
\(21\) 0.442463i 0.0965534i
\(22\) 0 0
\(23\) 7.04029 1.46800 0.734001 0.679148i \(-0.237651\pi\)
0.734001 + 0.679148i \(0.237651\pi\)
\(24\) 0 0
\(25\) 3.35114 0.670228
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0.217017i 0.0402991i 0.999797 + 0.0201495i \(0.00641423\pi\)
−0.999797 + 0.0201495i \(0.993586\pi\)
\(30\) 0 0
\(31\) 5.14475 0.924024 0.462012 0.886874i \(-0.347128\pi\)
0.462012 + 0.886874i \(0.347128\pi\)
\(32\) 0 0
\(33\) −0.841616 −0.146506
\(34\) 0 0
\(35\) − 0.568158i − 0.0960362i
\(36\) 0 0
\(37\) − 5.60845i − 0.922024i −0.887394 0.461012i \(-0.847487\pi\)
0.887394 0.461012i \(-0.152513\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 4.49890 0.702611 0.351305 0.936261i \(-0.385738\pi\)
0.351305 + 0.936261i \(0.385738\pi\)
\(42\) 0 0
\(43\) 10.4317i 1.59082i 0.606069 + 0.795412i \(0.292745\pi\)
−0.606069 + 0.795412i \(0.707255\pi\)
\(44\) 0 0
\(45\) − 1.28408i − 0.191419i
\(46\) 0 0
\(47\) 6.90096 1.00661 0.503304 0.864109i \(-0.332117\pi\)
0.503304 + 0.864109i \(0.332117\pi\)
\(48\) 0 0
\(49\) −6.80423 −0.972032
\(50\) 0 0
\(51\) − 0.351141i − 0.0491696i
\(52\) 0 0
\(53\) 3.35706i 0.461128i 0.973057 + 0.230564i \(0.0740571\pi\)
−0.973057 + 0.230564i \(0.925943\pi\)
\(54\) 0 0
\(55\) 1.08070 0.145722
\(56\) 0 0
\(57\) 3.67853 0.487233
\(58\) 0 0
\(59\) − 4.74559i − 0.617824i −0.951091 0.308912i \(-0.900035\pi\)
0.951091 0.308912i \(-0.0999648\pi\)
\(60\) 0 0
\(61\) 7.23607i 0.926484i 0.886232 + 0.463242i \(0.153314\pi\)
−0.886232 + 0.463242i \(0.846686\pi\)
\(62\) 0 0
\(63\) 0.442463 0.0557452
\(64\) 0 0
\(65\) −1.28408 −0.159270
\(66\) 0 0
\(67\) 7.67853i 0.938082i 0.883176 + 0.469041i \(0.155400\pi\)
−0.883176 + 0.469041i \(0.844600\pi\)
\(68\) 0 0
\(69\) − 7.04029i − 0.847552i
\(70\) 0 0
\(71\) 7.78589 0.924015 0.462007 0.886876i \(-0.347129\pi\)
0.462007 + 0.886876i \(0.347129\pi\)
\(72\) 0 0
\(73\) 4.23015 0.495101 0.247551 0.968875i \(-0.420374\pi\)
0.247551 + 0.968875i \(0.420374\pi\)
\(74\) 0 0
\(75\) − 3.35114i − 0.386956i
\(76\) 0 0
\(77\) 0.372384i 0.0424371i
\(78\) 0 0
\(79\) 0.230146 0.0258935 0.0129467 0.999916i \(-0.495879\pi\)
0.0129467 + 0.999916i \(0.495879\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 7.86067i − 0.862820i −0.902156 0.431410i \(-0.858016\pi\)
0.902156 0.431410i \(-0.141984\pi\)
\(84\) 0 0
\(85\) 0.450893i 0.0489062i
\(86\) 0 0
\(87\) 0.217017 0.0232667
\(88\) 0 0
\(89\) 5.81787 0.616692 0.308346 0.951274i \(-0.400224\pi\)
0.308346 + 0.951274i \(0.400224\pi\)
\(90\) 0 0
\(91\) − 0.442463i − 0.0463828i
\(92\) 0 0
\(93\) − 5.14475i − 0.533485i
\(94\) 0 0
\(95\) −4.72353 −0.484623
\(96\) 0 0
\(97\) 9.66780 0.981616 0.490808 0.871268i \(-0.336702\pi\)
0.490808 + 0.871268i \(0.336702\pi\)
\(98\) 0 0
\(99\) 0.841616i 0.0845855i
\(100\) 0 0
\(101\) 5.92522i 0.589582i 0.955562 + 0.294791i \(0.0952500\pi\)
−0.955562 + 0.294791i \(0.904750\pi\)
\(102\) 0 0
\(103\) −0.608565 −0.0599637 −0.0299818 0.999550i \(-0.509545\pi\)
−0.0299818 + 0.999550i \(0.509545\pi\)
\(104\) 0 0
\(105\) −0.568158 −0.0554466
\(106\) 0 0
\(107\) − 18.3701i − 1.77590i −0.459938 0.887951i \(-0.652128\pi\)
0.459938 0.887951i \(-0.347872\pi\)
\(108\) 0 0
\(109\) − 2.54691i − 0.243950i −0.992533 0.121975i \(-0.961077\pi\)
0.992533 0.121975i \(-0.0389228\pi\)
\(110\) 0 0
\(111\) −5.60845 −0.532331
\(112\) 0 0
\(113\) −10.7273 −1.00914 −0.504568 0.863372i \(-0.668348\pi\)
−0.504568 + 0.863372i \(0.668348\pi\)
\(114\) 0 0
\(115\) 9.04029i 0.843012i
\(116\) 0 0
\(117\) − 1.00000i − 0.0924500i
\(118\) 0 0
\(119\) −0.155367 −0.0142425
\(120\) 0 0
\(121\) 10.2917 0.935608
\(122\) 0 0
\(123\) − 4.49890i − 0.405653i
\(124\) 0 0
\(125\) 10.7235i 0.959141i
\(126\) 0 0
\(127\) −8.92303 −0.791791 −0.395895 0.918296i \(-0.629566\pi\)
−0.395895 + 0.918296i \(0.629566\pi\)
\(128\) 0 0
\(129\) 10.4317 0.918463
\(130\) 0 0
\(131\) − 7.19566i − 0.628688i −0.949309 0.314344i \(-0.898215\pi\)
0.949309 0.314344i \(-0.101785\pi\)
\(132\) 0 0
\(133\) − 1.62762i − 0.141132i
\(134\) 0 0
\(135\) −1.28408 −0.110516
\(136\) 0 0
\(137\) 7.99448 0.683014 0.341507 0.939879i \(-0.389063\pi\)
0.341507 + 0.939879i \(0.389063\pi\)
\(138\) 0 0
\(139\) − 9.27855i − 0.786997i −0.919325 0.393498i \(-0.871265\pi\)
0.919325 0.393498i \(-0.128735\pi\)
\(140\) 0 0
\(141\) − 6.90096i − 0.581166i
\(142\) 0 0
\(143\) 0.841616 0.0703794
\(144\) 0 0
\(145\) −0.278667 −0.0231420
\(146\) 0 0
\(147\) 6.80423i 0.561203i
\(148\) 0 0
\(149\) − 17.3161i − 1.41859i −0.704910 0.709297i \(-0.749013\pi\)
0.704910 0.709297i \(-0.250987\pi\)
\(150\) 0 0
\(151\) 0.555344 0.0451933 0.0225966 0.999745i \(-0.492807\pi\)
0.0225966 + 0.999745i \(0.492807\pi\)
\(152\) 0 0
\(153\) −0.351141 −0.0283881
\(154\) 0 0
\(155\) 6.60626i 0.530628i
\(156\) 0 0
\(157\) 22.8826i 1.82623i 0.407700 + 0.913116i \(0.366331\pi\)
−0.407700 + 0.913116i \(0.633669\pi\)
\(158\) 0 0
\(159\) 3.35706 0.266232
\(160\) 0 0
\(161\) −3.11507 −0.245502
\(162\) 0 0
\(163\) 20.0853i 1.57320i 0.617462 + 0.786601i \(0.288161\pi\)
−0.617462 + 0.786601i \(0.711839\pi\)
\(164\) 0 0
\(165\) − 1.08070i − 0.0841325i
\(166\) 0 0
\(167\) −17.0776 −1.32150 −0.660751 0.750605i \(-0.729762\pi\)
−0.660751 + 0.750605i \(0.729762\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) − 3.67853i − 0.281304i
\(172\) 0 0
\(173\) − 17.1421i − 1.30329i −0.758523 0.651646i \(-0.774079\pi\)
0.758523 0.651646i \(-0.225921\pi\)
\(174\) 0 0
\(175\) −1.48276 −0.112086
\(176\) 0 0
\(177\) −4.74559 −0.356701
\(178\) 0 0
\(179\) − 5.24418i − 0.391969i −0.980607 0.195984i \(-0.937210\pi\)
0.980607 0.195984i \(-0.0627902\pi\)
\(180\) 0 0
\(181\) 16.4105i 1.21978i 0.792485 + 0.609891i \(0.208787\pi\)
−0.792485 + 0.609891i \(0.791213\pi\)
\(182\) 0 0
\(183\) 7.23607 0.534906
\(184\) 0 0
\(185\) 7.20170 0.529479
\(186\) 0 0
\(187\) − 0.295526i − 0.0216110i
\(188\) 0 0
\(189\) − 0.442463i − 0.0321845i
\(190\) 0 0
\(191\) −14.9537 −1.08201 −0.541005 0.841019i \(-0.681956\pi\)
−0.541005 + 0.841019i \(0.681956\pi\)
\(192\) 0 0
\(193\) −20.6868 −1.48907 −0.744536 0.667582i \(-0.767329\pi\)
−0.744536 + 0.667582i \(0.767329\pi\)
\(194\) 0 0
\(195\) 1.28408i 0.0919548i
\(196\) 0 0
\(197\) 8.12048i 0.578561i 0.957244 + 0.289280i \(0.0934160\pi\)
−0.957244 + 0.289280i \(0.906584\pi\)
\(198\) 0 0
\(199\) −25.9098 −1.83670 −0.918348 0.395774i \(-0.870476\pi\)
−0.918348 + 0.395774i \(0.870476\pi\)
\(200\) 0 0
\(201\) 7.67853 0.541602
\(202\) 0 0
\(203\) − 0.0960221i − 0.00673943i
\(204\) 0 0
\(205\) 5.77695i 0.403480i
\(206\) 0 0
\(207\) −7.04029 −0.489334
\(208\) 0 0
\(209\) 3.09591 0.214149
\(210\) 0 0
\(211\) − 19.4589i − 1.33961i −0.742539 0.669803i \(-0.766379\pi\)
0.742539 0.669803i \(-0.233621\pi\)
\(212\) 0 0
\(213\) − 7.78589i − 0.533480i
\(214\) 0 0
\(215\) −13.3952 −0.913543
\(216\) 0 0
\(217\) −2.27636 −0.154530
\(218\) 0 0
\(219\) − 4.23015i − 0.285847i
\(220\) 0 0
\(221\) 0.351141i 0.0236203i
\(222\) 0 0
\(223\) 14.5325 0.973165 0.486582 0.873635i \(-0.338243\pi\)
0.486582 + 0.873635i \(0.338243\pi\)
\(224\) 0 0
\(225\) −3.35114 −0.223409
\(226\) 0 0
\(227\) 8.94345i 0.593597i 0.954940 + 0.296799i \(0.0959190\pi\)
−0.954940 + 0.296799i \(0.904081\pi\)
\(228\) 0 0
\(229\) 21.0343i 1.38998i 0.719018 + 0.694991i \(0.244592\pi\)
−0.719018 + 0.694991i \(0.755408\pi\)
\(230\) 0 0
\(231\) 0.372384 0.0245011
\(232\) 0 0
\(233\) −9.94646 −0.651615 −0.325807 0.945436i \(-0.605636\pi\)
−0.325807 + 0.945436i \(0.605636\pi\)
\(234\) 0 0
\(235\) 8.86138i 0.578053i
\(236\) 0 0
\(237\) − 0.230146i − 0.0149496i
\(238\) 0 0
\(239\) 1.83441 0.118658 0.0593290 0.998238i \(-0.481104\pi\)
0.0593290 + 0.998238i \(0.481104\pi\)
\(240\) 0 0
\(241\) −8.11727 −0.522879 −0.261440 0.965220i \(-0.584197\pi\)
−0.261440 + 0.965220i \(0.584197\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) − 8.73716i − 0.558197i
\(246\) 0 0
\(247\) −3.67853 −0.234059
\(248\) 0 0
\(249\) −7.86067 −0.498149
\(250\) 0 0
\(251\) 31.3723i 1.98020i 0.140363 + 0.990100i \(0.455173\pi\)
−0.140363 + 0.990100i \(0.544827\pi\)
\(252\) 0 0
\(253\) − 5.92522i − 0.372515i
\(254\) 0 0
\(255\) 0.450893 0.0282360
\(256\) 0 0
\(257\) −20.8789 −1.30239 −0.651195 0.758911i \(-0.725732\pi\)
−0.651195 + 0.758911i \(0.725732\pi\)
\(258\) 0 0
\(259\) 2.48154i 0.154195i
\(260\) 0 0
\(261\) − 0.217017i − 0.0134330i
\(262\) 0 0
\(263\) 4.83139 0.297916 0.148958 0.988843i \(-0.452408\pi\)
0.148958 + 0.988843i \(0.452408\pi\)
\(264\) 0 0
\(265\) −4.31073 −0.264806
\(266\) 0 0
\(267\) − 5.81787i − 0.356048i
\(268\) 0 0
\(269\) 11.7022i 0.713494i 0.934201 + 0.356747i \(0.116114\pi\)
−0.934201 + 0.356747i \(0.883886\pi\)
\(270\) 0 0
\(271\) 9.27385 0.563347 0.281673 0.959510i \(-0.409111\pi\)
0.281673 + 0.959510i \(0.409111\pi\)
\(272\) 0 0
\(273\) −0.442463 −0.0267791
\(274\) 0 0
\(275\) − 2.82037i − 0.170075i
\(276\) 0 0
\(277\) − 0.676024i − 0.0406183i −0.999794 0.0203092i \(-0.993535\pi\)
0.999794 0.0203092i \(-0.00646506\pi\)
\(278\) 0 0
\(279\) −5.14475 −0.308008
\(280\) 0 0
\(281\) −1.07891 −0.0643621 −0.0321811 0.999482i \(-0.510245\pi\)
−0.0321811 + 0.999482i \(0.510245\pi\)
\(282\) 0 0
\(283\) − 6.72353i − 0.399672i −0.979829 0.199836i \(-0.935959\pi\)
0.979829 0.199836i \(-0.0640410\pi\)
\(284\) 0 0
\(285\) 4.72353i 0.279797i
\(286\) 0 0
\(287\) −1.99060 −0.117501
\(288\) 0 0
\(289\) −16.8767 −0.992747
\(290\) 0 0
\(291\) − 9.66780i − 0.566736i
\(292\) 0 0
\(293\) − 32.9152i − 1.92293i −0.274934 0.961463i \(-0.588656\pi\)
0.274934 0.961463i \(-0.411344\pi\)
\(294\) 0 0
\(295\) 6.09372 0.354790
\(296\) 0 0
\(297\) 0.841616 0.0488355
\(298\) 0 0
\(299\) 7.04029i 0.407151i
\(300\) 0 0
\(301\) − 4.61566i − 0.266042i
\(302\) 0 0
\(303\) 5.92522 0.340395
\(304\) 0 0
\(305\) −9.29168 −0.532040
\(306\) 0 0
\(307\) 10.8105i 0.616986i 0.951227 + 0.308493i \(0.0998246\pi\)
−0.951227 + 0.308493i \(0.900175\pi\)
\(308\) 0 0
\(309\) 0.608565i 0.0346201i
\(310\) 0 0
\(311\) 23.7426 1.34632 0.673159 0.739498i \(-0.264937\pi\)
0.673159 + 0.739498i \(0.264937\pi\)
\(312\) 0 0
\(313\) −12.4398 −0.703142 −0.351571 0.936161i \(-0.614352\pi\)
−0.351571 + 0.936161i \(0.614352\pi\)
\(314\) 0 0
\(315\) 0.568158i 0.0320121i
\(316\) 0 0
\(317\) − 28.4643i − 1.59871i −0.600856 0.799357i \(-0.705173\pi\)
0.600856 0.799357i \(-0.294827\pi\)
\(318\) 0 0
\(319\) 0.182645 0.0102262
\(320\) 0 0
\(321\) −18.3701 −1.02532
\(322\) 0 0
\(323\) 1.29168i 0.0718712i
\(324\) 0 0
\(325\) 3.35114i 0.185888i
\(326\) 0 0
\(327\) −2.54691 −0.140845
\(328\) 0 0
\(329\) −3.05342 −0.168341
\(330\) 0 0
\(331\) − 12.1021i − 0.665194i −0.943069 0.332597i \(-0.892075\pi\)
0.943069 0.332597i \(-0.107925\pi\)
\(332\) 0 0
\(333\) 5.60845i 0.307341i
\(334\) 0 0
\(335\) −9.85984 −0.538701
\(336\) 0 0
\(337\) −34.9882 −1.90593 −0.952964 0.303084i \(-0.901984\pi\)
−0.952964 + 0.303084i \(0.901984\pi\)
\(338\) 0 0
\(339\) 10.7273i 0.582625i
\(340\) 0 0
\(341\) − 4.32990i − 0.234477i
\(342\) 0 0
\(343\) 6.10787 0.329794
\(344\) 0 0
\(345\) 9.04029 0.486713
\(346\) 0 0
\(347\) − 14.9561i − 0.802886i −0.915884 0.401443i \(-0.868509\pi\)
0.915884 0.401443i \(-0.131491\pi\)
\(348\) 0 0
\(349\) − 21.1802i − 1.13375i −0.823803 0.566876i \(-0.808152\pi\)
0.823803 0.566876i \(-0.191848\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −5.64462 −0.300433 −0.150216 0.988653i \(-0.547997\pi\)
−0.150216 + 0.988653i \(0.547997\pi\)
\(354\) 0 0
\(355\) 9.99769i 0.530623i
\(356\) 0 0
\(357\) 0.155367i 0.00822290i
\(358\) 0 0
\(359\) −1.54993 −0.0818023 −0.0409011 0.999163i \(-0.513023\pi\)
−0.0409011 + 0.999163i \(0.513023\pi\)
\(360\) 0 0
\(361\) 5.46841 0.287811
\(362\) 0 0
\(363\) − 10.2917i − 0.540173i
\(364\) 0 0
\(365\) 5.43184i 0.284316i
\(366\) 0 0
\(367\) −16.7367 −0.873646 −0.436823 0.899547i \(-0.643896\pi\)
−0.436823 + 0.899547i \(0.643896\pi\)
\(368\) 0 0
\(369\) −4.49890 −0.234204
\(370\) 0 0
\(371\) − 1.48538i − 0.0771170i
\(372\) 0 0
\(373\) 22.3532i 1.15741i 0.815538 + 0.578703i \(0.196441\pi\)
−0.815538 + 0.578703i \(0.803559\pi\)
\(374\) 0 0
\(375\) 10.7235 0.553760
\(376\) 0 0
\(377\) −0.217017 −0.0111769
\(378\) 0 0
\(379\) − 4.22545i − 0.217047i −0.994094 0.108523i \(-0.965388\pi\)
0.994094 0.108523i \(-0.0346122\pi\)
\(380\) 0 0
\(381\) 8.92303i 0.457141i
\(382\) 0 0
\(383\) 25.2602 1.29074 0.645368 0.763872i \(-0.276704\pi\)
0.645368 + 0.763872i \(0.276704\pi\)
\(384\) 0 0
\(385\) −0.478171 −0.0243698
\(386\) 0 0
\(387\) − 10.4317i − 0.530275i
\(388\) 0 0
\(389\) 12.3130i 0.624296i 0.950034 + 0.312148i \(0.101048\pi\)
−0.950034 + 0.312148i \(0.898952\pi\)
\(390\) 0 0
\(391\) 2.47214 0.125021
\(392\) 0 0
\(393\) −7.19566 −0.362973
\(394\) 0 0
\(395\) 0.295526i 0.0148695i
\(396\) 0 0
\(397\) − 24.0271i − 1.20588i −0.797785 0.602942i \(-0.793995\pi\)
0.797785 0.602942i \(-0.206005\pi\)
\(398\) 0 0
\(399\) −1.62762 −0.0814827
\(400\) 0 0
\(401\) 36.4832 1.82189 0.910943 0.412532i \(-0.135355\pi\)
0.910943 + 0.412532i \(0.135355\pi\)
\(402\) 0 0
\(403\) 5.14475i 0.256278i
\(404\) 0 0
\(405\) 1.28408i 0.0638064i
\(406\) 0 0
\(407\) −4.72016 −0.233970
\(408\) 0 0
\(409\) 35.6796 1.76424 0.882122 0.471020i \(-0.156114\pi\)
0.882122 + 0.471020i \(0.156114\pi\)
\(410\) 0 0
\(411\) − 7.99448i − 0.394338i
\(412\) 0 0
\(413\) 2.09975i 0.103322i
\(414\) 0 0
\(415\) 10.0937 0.495481
\(416\) 0 0
\(417\) −9.27855 −0.454373
\(418\) 0 0
\(419\) − 38.6383i − 1.88761i −0.330509 0.943803i \(-0.607220\pi\)
0.330509 0.943803i \(-0.392780\pi\)
\(420\) 0 0
\(421\) − 21.9454i − 1.06956i −0.844993 0.534778i \(-0.820395\pi\)
0.844993 0.534778i \(-0.179605\pi\)
\(422\) 0 0
\(423\) −6.90096 −0.335536
\(424\) 0 0
\(425\) 1.17672 0.0570795
\(426\) 0 0
\(427\) − 3.20170i − 0.154941i
\(428\) 0 0
\(429\) − 0.841616i − 0.0406336i
\(430\) 0 0
\(431\) −18.9340 −0.912021 −0.456010 0.889974i \(-0.650722\pi\)
−0.456010 + 0.889974i \(0.650722\pi\)
\(432\) 0 0
\(433\) −13.8790 −0.666982 −0.333491 0.942753i \(-0.608227\pi\)
−0.333491 + 0.942753i \(0.608227\pi\)
\(434\) 0 0
\(435\) 0.278667i 0.0133611i
\(436\) 0 0
\(437\) 25.8979i 1.23887i
\(438\) 0 0
\(439\) −2.56585 −0.122461 −0.0612307 0.998124i \(-0.519503\pi\)
−0.0612307 + 0.998124i \(0.519503\pi\)
\(440\) 0 0
\(441\) 6.80423 0.324011
\(442\) 0 0
\(443\) 31.6297i 1.50277i 0.659863 + 0.751386i \(0.270614\pi\)
−0.659863 + 0.751386i \(0.729386\pi\)
\(444\) 0 0
\(445\) 7.47060i 0.354140i
\(446\) 0 0
\(447\) −17.3161 −0.819026
\(448\) 0 0
\(449\) −20.9329 −0.987886 −0.493943 0.869494i \(-0.664445\pi\)
−0.493943 + 0.869494i \(0.664445\pi\)
\(450\) 0 0
\(451\) − 3.78635i − 0.178292i
\(452\) 0 0
\(453\) − 0.555344i − 0.0260923i
\(454\) 0 0
\(455\) 0.568158 0.0266357
\(456\) 0 0
\(457\) 32.5740 1.52375 0.761873 0.647726i \(-0.224280\pi\)
0.761873 + 0.647726i \(0.224280\pi\)
\(458\) 0 0
\(459\) 0.351141i 0.0163899i
\(460\) 0 0
\(461\) − 38.3837i − 1.78771i −0.448358 0.893854i \(-0.647991\pi\)
0.448358 0.893854i \(-0.352009\pi\)
\(462\) 0 0
\(463\) −8.83401 −0.410551 −0.205276 0.978704i \(-0.565809\pi\)
−0.205276 + 0.978704i \(0.565809\pi\)
\(464\) 0 0
\(465\) 6.60626 0.306358
\(466\) 0 0
\(467\) 2.58502i 0.119620i 0.998210 + 0.0598102i \(0.0190495\pi\)
−0.998210 + 0.0598102i \(0.980950\pi\)
\(468\) 0 0
\(469\) − 3.39747i − 0.156881i
\(470\) 0 0
\(471\) 22.8826 1.05438
\(472\) 0 0
\(473\) 8.77951 0.403682
\(474\) 0 0
\(475\) 12.3273i 0.565614i
\(476\) 0 0
\(477\) − 3.35706i − 0.153709i
\(478\) 0 0
\(479\) −12.5138 −0.571770 −0.285885 0.958264i \(-0.592288\pi\)
−0.285885 + 0.958264i \(0.592288\pi\)
\(480\) 0 0
\(481\) 5.60845 0.255723
\(482\) 0 0
\(483\) 3.11507i 0.141741i
\(484\) 0 0
\(485\) 12.4142i 0.563700i
\(486\) 0 0
\(487\) −36.2215 −1.64135 −0.820676 0.571394i \(-0.806403\pi\)
−0.820676 + 0.571394i \(0.806403\pi\)
\(488\) 0 0
\(489\) 20.0853 0.908288
\(490\) 0 0
\(491\) 23.7638i 1.07245i 0.844076 + 0.536223i \(0.180149\pi\)
−0.844076 + 0.536223i \(0.819851\pi\)
\(492\) 0 0
\(493\) 0.0762036i 0.00343204i
\(494\) 0 0
\(495\) −1.08070 −0.0485739
\(496\) 0 0
\(497\) −3.44497 −0.154528
\(498\) 0 0
\(499\) − 30.6430i − 1.37177i −0.727710 0.685885i \(-0.759415\pi\)
0.727710 0.685885i \(-0.240585\pi\)
\(500\) 0 0
\(501\) 17.0776i 0.762970i
\(502\) 0 0
\(503\) 10.0748 0.449212 0.224606 0.974450i \(-0.427890\pi\)
0.224606 + 0.974450i \(0.427890\pi\)
\(504\) 0 0
\(505\) −7.60845 −0.338572
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) − 0.833186i − 0.0369303i −0.999830 0.0184652i \(-0.994122\pi\)
0.999830 0.0184652i \(-0.00587798\pi\)
\(510\) 0 0
\(511\) −1.87169 −0.0827985
\(512\) 0 0
\(513\) −3.67853 −0.162411
\(514\) 0 0
\(515\) − 0.781445i − 0.0344346i
\(516\) 0 0
\(517\) − 5.80796i − 0.255434i
\(518\) 0 0
\(519\) −17.1421 −0.752456
\(520\) 0 0
\(521\) 44.9453 1.96909 0.984545 0.175130i \(-0.0560345\pi\)
0.984545 + 0.175130i \(0.0560345\pi\)
\(522\) 0 0
\(523\) − 29.3048i − 1.28141i −0.767787 0.640705i \(-0.778642\pi\)
0.767787 0.640705i \(-0.221358\pi\)
\(524\) 0 0
\(525\) 1.48276i 0.0647128i
\(526\) 0 0
\(527\) 1.80653 0.0786937
\(528\) 0 0
\(529\) 26.5657 1.15503
\(530\) 0 0
\(531\) 4.74559i 0.205941i
\(532\) 0 0
\(533\) 4.49890i 0.194869i
\(534\) 0 0
\(535\) 23.5886 1.01983
\(536\) 0 0
\(537\) −5.24418 −0.226303
\(538\) 0 0
\(539\) 5.72654i 0.246660i
\(540\) 0 0
\(541\) 21.7177i 0.933719i 0.884332 + 0.466859i \(0.154615\pi\)
−0.884332 + 0.466859i \(0.845385\pi\)
\(542\) 0 0
\(543\) 16.4105 0.704241
\(544\) 0 0
\(545\) 3.27044 0.140090
\(546\) 0 0
\(547\) 37.4660i 1.60193i 0.598711 + 0.800965i \(0.295680\pi\)
−0.598711 + 0.800965i \(0.704320\pi\)
\(548\) 0 0
\(549\) − 7.23607i − 0.308828i
\(550\) 0 0
\(551\) −0.798304 −0.0340089
\(552\) 0 0
\(553\) −0.101831 −0.00433030
\(554\) 0 0
\(555\) − 7.20170i − 0.305695i
\(556\) 0 0
\(557\) 39.0824i 1.65597i 0.560747 + 0.827987i \(0.310514\pi\)
−0.560747 + 0.827987i \(0.689486\pi\)
\(558\) 0 0
\(559\) −10.4317 −0.441215
\(560\) 0 0
\(561\) −0.295526 −0.0124771
\(562\) 0 0
\(563\) − 2.72956i − 0.115037i −0.998344 0.0575186i \(-0.981681\pi\)
0.998344 0.0575186i \(-0.0183189\pi\)
\(564\) 0 0
\(565\) − 13.7746i − 0.579504i
\(566\) 0 0
\(567\) −0.442463 −0.0185817
\(568\) 0 0
\(569\) 34.4068 1.44241 0.721203 0.692724i \(-0.243589\pi\)
0.721203 + 0.692724i \(0.243589\pi\)
\(570\) 0 0
\(571\) 0.642937i 0.0269061i 0.999910 + 0.0134530i \(0.00428236\pi\)
−0.999910 + 0.0134530i \(0.995718\pi\)
\(572\) 0 0
\(573\) 14.9537i 0.624699i
\(574\) 0 0
\(575\) 23.5930 0.983897
\(576\) 0 0
\(577\) 38.0210 1.58284 0.791418 0.611276i \(-0.209343\pi\)
0.791418 + 0.611276i \(0.209343\pi\)
\(578\) 0 0
\(579\) 20.6868i 0.859716i
\(580\) 0 0
\(581\) 3.47806i 0.144294i
\(582\) 0 0
\(583\) 2.82536 0.117014
\(584\) 0 0
\(585\) 1.28408 0.0530901
\(586\) 0 0
\(587\) 25.8546i 1.06713i 0.845758 + 0.533567i \(0.179149\pi\)
−0.845758 + 0.533567i \(0.820851\pi\)
\(588\) 0 0
\(589\) 18.9251i 0.779795i
\(590\) 0 0
\(591\) 8.12048 0.334032
\(592\) 0 0
\(593\) −45.7853 −1.88018 −0.940089 0.340928i \(-0.889259\pi\)
−0.940089 + 0.340928i \(0.889259\pi\)
\(594\) 0 0
\(595\) − 0.199504i − 0.00817885i
\(596\) 0 0
\(597\) 25.9098i 1.06042i
\(598\) 0 0
\(599\) −20.6319 −0.842996 −0.421498 0.906829i \(-0.638496\pi\)
−0.421498 + 0.906829i \(0.638496\pi\)
\(600\) 0 0
\(601\) 15.6688 0.639144 0.319572 0.947562i \(-0.396461\pi\)
0.319572 + 0.947562i \(0.396461\pi\)
\(602\) 0 0
\(603\) − 7.67853i − 0.312694i
\(604\) 0 0
\(605\) 13.2153i 0.537280i
\(606\) 0 0
\(607\) 22.1224 0.897921 0.448961 0.893552i \(-0.351794\pi\)
0.448961 + 0.893552i \(0.351794\pi\)
\(608\) 0 0
\(609\) −0.0960221 −0.00389101
\(610\) 0 0
\(611\) 6.90096i 0.279183i
\(612\) 0 0
\(613\) − 2.50278i − 0.101086i −0.998722 0.0505431i \(-0.983905\pi\)
0.998722 0.0505431i \(-0.0160952\pi\)
\(614\) 0 0
\(615\) 5.77695 0.232949
\(616\) 0 0
\(617\) −15.8712 −0.638949 −0.319475 0.947595i \(-0.603506\pi\)
−0.319475 + 0.947595i \(0.603506\pi\)
\(618\) 0 0
\(619\) 2.24088i 0.0900686i 0.998985 + 0.0450343i \(0.0143397\pi\)
−0.998985 + 0.0450343i \(0.985660\pi\)
\(620\) 0 0
\(621\) 7.04029i 0.282517i
\(622\) 0 0
\(623\) −2.57419 −0.103133
\(624\) 0 0
\(625\) 2.98585 0.119434
\(626\) 0 0
\(627\) − 3.09591i − 0.123639i
\(628\) 0 0
\(629\) − 1.96936i − 0.0785234i
\(630\) 0 0
\(631\) 35.9870 1.43262 0.716309 0.697783i \(-0.245830\pi\)
0.716309 + 0.697783i \(0.245830\pi\)
\(632\) 0 0
\(633\) −19.4589 −0.773422
\(634\) 0 0
\(635\) − 11.4579i − 0.454692i
\(636\) 0 0
\(637\) − 6.80423i − 0.269593i
\(638\) 0 0
\(639\) −7.78589 −0.308005
\(640\) 0 0
\(641\) 11.5943 0.457947 0.228974 0.973433i \(-0.426463\pi\)
0.228974 + 0.973433i \(0.426463\pi\)
\(642\) 0 0
\(643\) − 38.8146i − 1.53070i −0.643615 0.765350i \(-0.722566\pi\)
0.643615 0.765350i \(-0.277434\pi\)
\(644\) 0 0
\(645\) 13.3952i 0.527434i
\(646\) 0 0
\(647\) −2.24637 −0.0883141 −0.0441570 0.999025i \(-0.514060\pi\)
−0.0441570 + 0.999025i \(0.514060\pi\)
\(648\) 0 0
\(649\) −3.99397 −0.156777
\(650\) 0 0
\(651\) 2.27636i 0.0892177i
\(652\) 0 0
\(653\) − 49.2254i − 1.92634i −0.268894 0.963170i \(-0.586658\pi\)
0.268894 0.963170i \(-0.413342\pi\)
\(654\) 0 0
\(655\) 9.23980 0.361029
\(656\) 0 0
\(657\) −4.23015 −0.165034
\(658\) 0 0
\(659\) − 13.3783i − 0.521145i −0.965454 0.260572i \(-0.916089\pi\)
0.965454 0.260572i \(-0.0839113\pi\)
\(660\) 0 0
\(661\) − 16.8637i − 0.655921i −0.944691 0.327961i \(-0.893639\pi\)
0.944691 0.327961i \(-0.106361\pi\)
\(662\) 0 0
\(663\) 0.351141 0.0136372
\(664\) 0 0
\(665\) 2.08999 0.0810462
\(666\) 0 0
\(667\) 1.52786i 0.0591591i
\(668\) 0 0
\(669\) − 14.5325i − 0.561857i
\(670\) 0 0
\(671\) 6.08999 0.235101
\(672\) 0 0
\(673\) −13.1707 −0.507693 −0.253846 0.967245i \(-0.581696\pi\)
−0.253846 + 0.967245i \(0.581696\pi\)
\(674\) 0 0
\(675\) 3.35114i 0.128985i
\(676\) 0 0
\(677\) 9.70590i 0.373028i 0.982452 + 0.186514i \(0.0597190\pi\)
−0.982452 + 0.186514i \(0.940281\pi\)
\(678\) 0 0
\(679\) −4.27765 −0.164161
\(680\) 0 0
\(681\) 8.94345 0.342714
\(682\) 0 0
\(683\) 17.1371i 0.655734i 0.944724 + 0.327867i \(0.106330\pi\)
−0.944724 + 0.327867i \(0.893670\pi\)
\(684\) 0 0
\(685\) 10.2655i 0.392226i
\(686\) 0 0
\(687\) 21.0343 0.802507
\(688\) 0 0
\(689\) −3.35706 −0.127894
\(690\) 0 0
\(691\) 18.1669i 0.691101i 0.938400 + 0.345551i \(0.112308\pi\)
−0.938400 + 0.345551i \(0.887692\pi\)
\(692\) 0 0
\(693\) − 0.372384i − 0.0141457i
\(694\) 0 0
\(695\) 11.9144 0.451939
\(696\) 0 0
\(697\) 1.57975 0.0598373
\(698\) 0 0
\(699\) 9.94646i 0.376210i
\(700\) 0 0
\(701\) 23.6870i 0.894644i 0.894373 + 0.447322i \(0.147622\pi\)
−0.894373 + 0.447322i \(0.852378\pi\)
\(702\) 0 0
\(703\) 20.6309 0.778108
\(704\) 0 0
\(705\) 8.86138 0.333739
\(706\) 0 0
\(707\) − 2.62169i − 0.0985989i
\(708\) 0 0
\(709\) − 22.8135i − 0.856779i −0.903594 0.428390i \(-0.859081\pi\)
0.903594 0.428390i \(-0.140919\pi\)
\(710\) 0 0
\(711\) −0.230146 −0.00863115
\(712\) 0 0
\(713\) 36.2205 1.35647
\(714\) 0 0
\(715\) 1.08070i 0.0404159i
\(716\) 0 0
\(717\) − 1.83441i − 0.0685072i
\(718\) 0 0
\(719\) 29.6237 1.10478 0.552388 0.833587i \(-0.313717\pi\)
0.552388 + 0.833587i \(0.313717\pi\)
\(720\) 0 0
\(721\) 0.269268 0.0100281
\(722\) 0 0
\(723\) 8.11727i 0.301884i
\(724\) 0 0
\(725\) 0.727255i 0.0270096i
\(726\) 0 0
\(727\) −25.1105 −0.931296 −0.465648 0.884970i \(-0.654179\pi\)
−0.465648 + 0.884970i \(0.654179\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 3.66301i 0.135481i
\(732\) 0 0
\(733\) − 20.5850i − 0.760325i −0.924920 0.380162i \(-0.875868\pi\)
0.924920 0.380162i \(-0.124132\pi\)
\(734\) 0 0
\(735\) −8.73716 −0.322275
\(736\) 0 0
\(737\) 6.46237 0.238045
\(738\) 0 0
\(739\) − 34.0773i − 1.25355i −0.779199 0.626777i \(-0.784374\pi\)
0.779199 0.626777i \(-0.215626\pi\)
\(740\) 0 0
\(741\) 3.67853i 0.135134i
\(742\) 0 0
\(743\) −18.6165 −0.682973 −0.341486 0.939887i \(-0.610930\pi\)
−0.341486 + 0.939887i \(0.610930\pi\)
\(744\) 0 0
\(745\) 22.2353 0.814638
\(746\) 0 0
\(747\) 7.86067i 0.287607i
\(748\) 0 0
\(749\) 8.12809i 0.296994i
\(750\) 0 0
\(751\) −2.57046 −0.0937975 −0.0468988 0.998900i \(-0.514934\pi\)
−0.0468988 + 0.998900i \(0.514934\pi\)
\(752\) 0 0
\(753\) 31.3723 1.14327
\(754\) 0 0
\(755\) 0.713106i 0.0259526i
\(756\) 0 0
\(757\) − 30.9632i − 1.12538i −0.826669 0.562689i \(-0.809767\pi\)
0.826669 0.562689i \(-0.190233\pi\)
\(758\) 0 0
\(759\) −5.92522 −0.215072
\(760\) 0 0
\(761\) 20.0113 0.725410 0.362705 0.931904i \(-0.381853\pi\)
0.362705 + 0.931904i \(0.381853\pi\)
\(762\) 0 0
\(763\) 1.12692i 0.0407971i
\(764\) 0 0
\(765\) − 0.450893i − 0.0163021i
\(766\) 0 0
\(767\) 4.74559 0.171353
\(768\) 0 0
\(769\) −9.24418 −0.333354 −0.166677 0.986012i \(-0.553304\pi\)
−0.166677 + 0.986012i \(0.553304\pi\)
\(770\) 0 0
\(771\) 20.8789i 0.751935i
\(772\) 0 0
\(773\) 18.2225i 0.655419i 0.944778 + 0.327710i \(0.106277\pi\)
−0.944778 + 0.327710i \(0.893723\pi\)
\(774\) 0 0
\(775\) 17.2408 0.619307
\(776\) 0 0
\(777\) 2.48154 0.0890246
\(778\) 0 0
\(779\) 16.5494i 0.592942i
\(780\) 0 0
\(781\) − 6.55272i − 0.234475i
\(782\) 0 0
\(783\) −0.217017 −0.00775556
\(784\) 0 0
\(785\) −29.3831 −1.04873
\(786\) 0 0
\(787\) − 14.3323i − 0.510891i −0.966823 0.255446i \(-0.917778\pi\)
0.966823 0.255446i \(-0.0822221\pi\)
\(788\) 0 0
\(789\) − 4.83139i − 0.172002i
\(790\) 0 0
\(791\) 4.74642 0.168763
\(792\) 0 0
\(793\) −7.23607 −0.256960
\(794\) 0 0
\(795\) 4.31073i 0.152886i
\(796\) 0 0
\(797\) 22.7044i 0.804230i 0.915589 + 0.402115i \(0.131725\pi\)
−0.915589 + 0.402115i \(0.868275\pi\)
\(798\) 0 0
\(799\) 2.42321 0.0857270
\(800\) 0 0
\(801\) −5.81787 −0.205564
\(802\) 0 0
\(803\) − 3.56016i − 0.125635i
\(804\) 0 0
\(805\) − 4.00000i − 0.140981i
\(806\) 0 0
\(807\) 11.7022 0.411936
\(808\) 0 0
\(809\) 3.11134 0.109389 0.0546945 0.998503i \(-0.482582\pi\)
0.0546945 + 0.998503i \(0.482582\pi\)
\(810\) 0 0
\(811\) − 38.9979i − 1.36940i −0.728824 0.684701i \(-0.759933\pi\)
0.728824 0.684701i \(-0.240067\pi\)
\(812\) 0 0
\(813\) − 9.27385i − 0.325248i
\(814\) 0 0
\(815\) −25.7911 −0.903423
\(816\) 0 0
\(817\) −38.3734 −1.34252
\(818\) 0 0
\(819\) 0.442463i 0.0154609i
\(820\) 0 0
\(821\) − 18.3837i − 0.641596i −0.947148 0.320798i \(-0.896049\pi\)
0.947148 0.320798i \(-0.103951\pi\)
\(822\) 0 0
\(823\) 23.1232 0.806024 0.403012 0.915195i \(-0.367963\pi\)
0.403012 + 0.915195i \(0.367963\pi\)
\(824\) 0 0
\(825\) −2.82037 −0.0981928
\(826\) 0 0
\(827\) 40.9499i 1.42397i 0.702196 + 0.711984i \(0.252203\pi\)
−0.702196 + 0.711984i \(0.747797\pi\)
\(828\) 0 0
\(829\) − 21.8956i − 0.760467i −0.924891 0.380233i \(-0.875844\pi\)
0.924891 0.380233i \(-0.124156\pi\)
\(830\) 0 0
\(831\) −0.676024 −0.0234510
\(832\) 0 0
\(833\) −2.38924 −0.0827824
\(834\) 0 0
\(835\) − 21.9290i − 0.758883i
\(836\) 0 0
\(837\) 5.14475i 0.177828i
\(838\) 0 0
\(839\) −16.8477 −0.581645 −0.290823 0.956777i \(-0.593929\pi\)
−0.290823 + 0.956777i \(0.593929\pi\)
\(840\) 0 0
\(841\) 28.9529 0.998376
\(842\) 0 0
\(843\) 1.07891i 0.0371595i
\(844\) 0 0
\(845\) − 1.28408i − 0.0441737i
\(846\) 0 0
\(847\) −4.55369 −0.156467
\(848\) 0 0
\(849\) −6.72353 −0.230751
\(850\) 0 0
\(851\) − 39.4852i − 1.35353i
\(852\) 0 0
\(853\) 30.5527i 1.04611i 0.852300 + 0.523053i \(0.175207\pi\)
−0.852300 + 0.523053i \(0.824793\pi\)
\(854\) 0 0
\(855\) 4.72353 0.161541
\(856\) 0 0
\(857\) −13.5549 −0.463027 −0.231514 0.972832i \(-0.574368\pi\)
−0.231514 + 0.972832i \(0.574368\pi\)
\(858\) 0 0
\(859\) − 0.192044i − 0.00655247i −0.999995 0.00327623i \(-0.998957\pi\)
0.999995 0.00327623i \(-0.00104286\pi\)
\(860\) 0 0
\(861\) 1.99060i 0.0678395i
\(862\) 0 0
\(863\) 2.78227 0.0947096 0.0473548 0.998878i \(-0.484921\pi\)
0.0473548 + 0.998878i \(0.484921\pi\)
\(864\) 0 0
\(865\) 22.0118 0.748425
\(866\) 0 0
\(867\) 16.8767i 0.573163i
\(868\) 0 0
\(869\) − 0.193695i − 0.00657064i
\(870\) 0 0
\(871\) −7.67853 −0.260177
\(872\) 0 0
\(873\) −9.66780 −0.327205
\(874\) 0 0
\(875\) − 4.74477i − 0.160402i
\(876\) 0 0
\(877\) − 12.8805i − 0.434945i −0.976066 0.217473i \(-0.930219\pi\)
0.976066 0.217473i \(-0.0697812\pi\)
\(878\) 0 0
\(879\) −32.9152 −1.11020
\(880\) 0 0
\(881\) 23.9300 0.806223 0.403111 0.915151i \(-0.367929\pi\)
0.403111 + 0.915151i \(0.367929\pi\)
\(882\) 0 0
\(883\) 39.6941i 1.33581i 0.744246 + 0.667906i \(0.232809\pi\)
−0.744246 + 0.667906i \(0.767191\pi\)
\(884\) 0 0
\(885\) − 6.09372i − 0.204838i
\(886\) 0 0
\(887\) 34.5433 1.15985 0.579926 0.814669i \(-0.303082\pi\)
0.579926 + 0.814669i \(0.303082\pi\)
\(888\) 0 0
\(889\) 3.94811 0.132416
\(890\) 0 0
\(891\) − 0.841616i − 0.0281952i
\(892\) 0 0
\(893\) 25.3854i 0.849490i
\(894\) 0 0
\(895\) 6.73394 0.225091
\(896\) 0 0
\(897\) 7.04029 0.235069
\(898\) 0 0
\(899\) 1.11650i 0.0372373i
\(900\) 0 0
\(901\) 1.17880i 0.0392716i
\(902\) 0 0
\(903\) −4.61566 −0.153600
\(904\) 0 0
\(905\) −21.0724 −0.700469
\(906\) 0 0
\(907\) − 13.0082i − 0.431931i −0.976401 0.215966i \(-0.930710\pi\)
0.976401 0.215966i \(-0.0692899\pi\)
\(908\) 0 0
\(909\) − 5.92522i − 0.196527i
\(910\) 0 0
\(911\) −13.4420 −0.445355 −0.222677 0.974892i \(-0.571480\pi\)
−0.222677 + 0.974892i \(0.571480\pi\)
\(912\) 0 0
\(913\) −6.61566 −0.218946
\(914\) 0 0
\(915\) 9.29168i 0.307174i
\(916\) 0 0
\(917\) 3.18382i 0.105139i
\(918\) 0 0
\(919\) 49.5539 1.63463 0.817316 0.576190i \(-0.195461\pi\)
0.817316 + 0.576190i \(0.195461\pi\)
\(920\) 0 0
\(921\) 10.8105 0.356217
\(922\) 0 0
\(923\) 7.78589i 0.256276i
\(924\) 0 0
\(925\) − 18.7947i − 0.617966i
\(926\) 0 0
\(927\) 0.608565 0.0199879
\(928\) 0 0
\(929\) −30.8996 −1.01378 −0.506892 0.862010i \(-0.669206\pi\)
−0.506892 + 0.862010i \(0.669206\pi\)
\(930\) 0 0
\(931\) − 25.0296i − 0.820311i
\(932\) 0 0
\(933\) − 23.7426i − 0.777297i
\(934\) 0 0
\(935\) 0.379478 0.0124103
\(936\) 0 0
\(937\) −38.4580 −1.25637 −0.628184 0.778065i \(-0.716201\pi\)
−0.628184 + 0.778065i \(0.716201\pi\)
\(938\) 0 0
\(939\) 12.4398i 0.405959i
\(940\) 0 0
\(941\) − 8.97232i − 0.292489i −0.989248 0.146245i \(-0.953281\pi\)
0.989248 0.146245i \(-0.0467187\pi\)
\(942\) 0 0
\(943\) 31.6736 1.03143
\(944\) 0 0
\(945\) 0.568158 0.0184822
\(946\) 0 0
\(947\) − 48.9032i − 1.58914i −0.607173 0.794570i \(-0.707696\pi\)
0.607173 0.794570i \(-0.292304\pi\)
\(948\) 0 0
\(949\) 4.23015i 0.137316i
\(950\) 0 0
\(951\) −28.4643 −0.923018
\(952\) 0 0
\(953\) −36.2690 −1.17487 −0.587435 0.809272i \(-0.699862\pi\)
−0.587435 + 0.809272i \(0.699862\pi\)
\(954\) 0 0
\(955\) − 19.2017i − 0.621352i
\(956\) 0 0
\(957\) − 0.182645i − 0.00590407i
\(958\) 0 0
\(959\) −3.53726 −0.114224
\(960\) 0 0
\(961\) −4.53159 −0.146180
\(962\) 0 0
\(963\) 18.3701i 0.591968i
\(964\) 0 0
\(965\) − 26.5635i − 0.855111i
\(966\) 0 0
\(967\) −1.19828 −0.0385341 −0.0192671 0.999814i \(-0.506133\pi\)
−0.0192671 + 0.999814i \(0.506133\pi\)
\(968\) 0 0
\(969\) 1.29168 0.0414948
\(970\) 0 0
\(971\) 43.8767i 1.40807i 0.710165 + 0.704035i \(0.248620\pi\)
−0.710165 + 0.704035i \(0.751380\pi\)
\(972\) 0 0
\(973\) 4.10542i 0.131614i
\(974\) 0 0
\(975\) 3.35114 0.107322
\(976\) 0 0
\(977\) −22.5003 −0.719849 −0.359925 0.932981i \(-0.617198\pi\)
−0.359925 + 0.932981i \(0.617198\pi\)
\(978\) 0 0
\(979\) − 4.89641i − 0.156490i
\(980\) 0 0
\(981\) 2.54691i 0.0813167i
\(982\) 0 0
\(983\) 51.6457 1.64724 0.823621 0.567140i \(-0.191950\pi\)
0.823621 + 0.567140i \(0.191950\pi\)
\(984\) 0 0
\(985\) −10.4273 −0.332243
\(986\) 0 0
\(987\) 3.05342i 0.0971915i
\(988\) 0 0
\(989\) 73.4424i 2.33533i
\(990\) 0 0
\(991\) −49.2348 −1.56400 −0.781998 0.623281i \(-0.785799\pi\)
−0.781998 + 0.623281i \(0.785799\pi\)
\(992\) 0 0
\(993\) −12.1021 −0.384050
\(994\) 0 0
\(995\) − 33.2702i − 1.05474i
\(996\) 0 0
\(997\) − 33.9073i − 1.07386i −0.843628 0.536928i \(-0.819585\pi\)
0.843628 0.536928i \(-0.180415\pi\)
\(998\) 0 0
\(999\) 5.60845 0.177444
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.g.a.625.3 8
3.2 odd 2 3744.2.g.d.1873.3 8
4.3 odd 2 312.2.g.a.157.7 8
8.3 odd 2 312.2.g.a.157.8 yes 8
8.5 even 2 inner 1248.2.g.a.625.6 8
12.11 even 2 936.2.g.d.469.2 8
16.3 odd 4 9984.2.a.y.1.3 4
16.5 even 4 9984.2.a.s.1.2 4
16.11 odd 4 9984.2.a.bb.1.2 4
16.13 even 4 9984.2.a.bh.1.3 4
24.5 odd 2 3744.2.g.d.1873.6 8
24.11 even 2 936.2.g.d.469.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.g.a.157.7 8 4.3 odd 2
312.2.g.a.157.8 yes 8 8.3 odd 2
936.2.g.d.469.1 8 24.11 even 2
936.2.g.d.469.2 8 12.11 even 2
1248.2.g.a.625.3 8 1.1 even 1 trivial
1248.2.g.a.625.6 8 8.5 even 2 inner
3744.2.g.d.1873.3 8 3.2 odd 2
3744.2.g.d.1873.6 8 24.5 odd 2
9984.2.a.s.1.2 4 16.5 even 4
9984.2.a.y.1.3 4 16.3 odd 4
9984.2.a.bb.1.2 4 16.11 odd 4
9984.2.a.bh.1.3 4 16.13 even 4